1
|
Zhang P, Jing L. Nanoprobes for Visualization of Cancer Pathology in Vivo※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
Shaydyuk Y, Bashmakova NV, Dmytruk AM, Kachkovsky OD, Koniev S, Strizhak AV, Komarov IV, Belfield KD, Bondar MV, Babii O. Nature of Fast Relaxation Processes and Spectroscopy of a Membrane-Active Peptide Modified with Fluorescent Amino Acid Exhibiting Excited State Intramolecular Proton Transfer and Efficient Stimulated Emission. ACS OMEGA 2021; 6:10119-10128. [PMID: 34056166 PMCID: PMC8153670 DOI: 10.1021/acsomega.1c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A fluorescently labeled peptide that exhibited fast excited state intramolecular proton transfer (ESIPT) was synthesized, and the nature of its electronic properties was comprehensively investigated, including linear photophysical and photochemical characterization, specific relaxation processes in the excited state, and its stimulated emission ability. The steady-state absorption, fluorescence, and excitation anisotropy spectra, along with fluorescence lifetimes and emission quantum yields, were obtained in liquid media and analyzed based on density functional theory quantum-chemical calculations. The nature of ESIPT processes of the peptide's chromophore moiety was explored using a femtosecond transient absorption pump-probe technique, revealing relatively fast ESIPT velocity (∼10 ps) in protic MeOH at room temperature. Efficient superluminescence properties of the peptide were realized upon femtosecond excitation in the main long-wavelength absorption band with a corresponding threshold of the pump pulse energy of ∼1.5 μJ. Quantum-chemical analysis of the electronic structure of the peptide was performed using the density functional theory/time-dependent density functional theory level of theory, affording good agreement with experimental data.
Collapse
Affiliation(s)
- Yevgeniy
O. Shaydyuk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Nataliia V. Bashmakova
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Andriy M. Dmytruk
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Olexiy D. Kachkovsky
- V.P.
Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the
National Academy of Sciences, Murmanskaya Street 1, Kyiv 02660, Ukraine
| | - Serhii Koniev
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | | | - Igor V. Komarov
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine
| | - Kevin D. Belfield
- New
Jersey Institute of Technology, College of Science and Liberal Arts, University Heights, Newark, New Jersey 07102, United States
| | - Mykhailo V. Bondar
- Institute
of Physics National Academy of Sciences of Ukraine, Prospect Nauki 46, Kyiv 03028, Ukraine
| | - Oleg Babii
- Institute
of Biological Interfaces (IBG-2), Karlsruhe
Institute of Technology (KIT), POB3640, Karlsruhe 76021, Germany
| |
Collapse
|
3
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
4
|
Méndez‐Ardoy A, Reina JJ, Montenegro J. Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry 2020; 26:7516-7536. [DOI: 10.1002/chem.201904834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
5
|
Shamsipur M, Barati A, Nematifar Z. Fluorescent pH nanosensors: Design strategies and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Cheng H, Fan GL, Fan JH, Zhao LP, Zheng RR, Yu XY, Li SY. Ratiometric theranostic nanoprobe for pH imaging-guided photodynamic therapy. NANOSCALE 2019; 11:9008-9014. [PMID: 31020984 DOI: 10.1039/c9nr00093c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An abnormal pH microenvironment results from the development of tumors, and also affects the therapeutic efficiency of anti-tumor drugs. In this work, a Förster resonance energy transfer (FRET)-based theranostic fluorescent nanoprobe was constructed for simultaneous ratiometric pH sensing and tumor-targeted photodynamic therapy. Based on the FRET process between rhodamine B and protoporphyrin IX (PpIX), the fabricated nanoprobe exhibited excellent pH responsiveness in both solutions and live cells with the ratiometric fluorescence changes. Moreover, this ratiometric pH fluorescent nanoprobe also possessed the capability for pH-responsive singlet oxygen (1O2) generation under light irradiation, guiding robust photodynamic therapy in a pH-dependent manner. Benefiting from the enhanced permeability and retention (EPR) effect, the nanoprobe could significantly inhibit tumor growth and metastasis via targeted photodynamic therapy in vivo. This work presents a novel paradigm for precise tumor theranostics by ratiometric pH fluorescence imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Yan F, Fan K, Bai Z, Zhang R, Zu F, Xu J, Li X. Fluorescein applications as fluorescent probes for the detection of analytes. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Zhang Y, Guo S, Cheng S, Ji X, He Z. Label-free silicon nanodots featured ratiometric fluorescent aptasensor for lysosomal imaging and pH measurement. Biosens Bioelectron 2017; 94:478-484. [PMID: 28342376 DOI: 10.1016/j.bios.2017.03.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/25/2022]
Abstract
The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry.
Collapse
Affiliation(s)
- Yanan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shibo Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Miki K, Kojima K, Oride K, Harada H, Morinibu A, Ohe K. pH-Responsive near-infrared fluorescent cyanine dyes for molecular imaging based on pH sensing. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc03035e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
pH-Responsive near-infrared cyanine dyes were synthesized and applied as imaging probes of acidic intracellular compartments of living cells.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kentaro Kojima
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuaki Oride
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology
- Radiation Biology Center
- Kyoto University
- Yoshida Konoe-cho
- Kyoto 606-8501
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology
- Radiation Biology Center
- Kyoto University
- Yoshida Konoe-cho
- Kyoto 606-8501
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
11
|
Li J, Cheng F, Huang H, Li L, Zhu JJ. Nanomaterial-based activatable imaging probes: from design to biological applications. Chem Soc Rev 2016. [PMID: 26214317 DOI: 10.1039/c4cs00476k] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activatable imaging probes as alternatives to "always on" imaging probes have attracted more and more attention due to their improved sensitivity and specificity. They are commonly designed to amplify or boost imaging signals only in response to specific biomolecular recognition or interaction. Thus, the design strategies play a vital role in the fabrication of activatable imaging probes. In this review, we focus on the design mechanisms and biological applications of those nanomaterial-based activatable imaging probes reported in the past five years, benefitting greatly from the good development of nanotechnology. These probes not only include the most studied activatable fluorescence imaging probes, but also cover more activatable MR imaging probes based on nanoparticle contrast agents and activatable photoacoustic imaging probes, providing more bases for clinical translation.
Collapse
Affiliation(s)
- Jingjing Li
- School of Medical Imaging, Xuzhou Medical College, Xuzhou 221004, China and Department of Radiology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Fangfang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Haiping Huang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Lingling Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
12
|
Zhang M, Søndergaard RV, Kumar EKP, Henriksen JR, Cui D, Hammershøj P, Clausen MH, Andresen TL. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments. Analyst 2015; 140:7246-53. [DOI: 10.1039/c5an01014d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This quadruple-labelled nanosensor has a broad sensitivity range from pH 1.4 to 7.0. It covers the full physiologically relevant range where especially the low pH range of some specialized cells can now be monitored.
Collapse
Affiliation(s)
- M. Zhang
- School of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
- China
- Institute of Nano Biomedicine and Engineering
| | - R. V. Søndergaard
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Lyngby
- Denmark
- Center for Nanomedicine and Theranostics
| | - E. K. P. Kumar
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Lyngby
- Denmark
- Center for Nanomedicine and Theranostics
| | - J. R. Henriksen
- Center for Nanomedicine and Theranostics
- Technical University of Denmark
- Lyngby
- Denmark
- Department of Chemistry
| | - D. Cui
- Institute of Nano Biomedicine and Engineering
- Department of Instrument Science and Engineering
- School of Electronic Information and Electrical Engineering
- Shanghai Jiao Tong University
- Shanghai
| | - P. Hammershøj
- Center for Nanomedicine and Theranostics
- Technical University of Denmark
- Lyngby
- Denmark
- Department of Chemistry
| | - M. H. Clausen
- Center for Nanomedicine and Theranostics
- Technical University of Denmark
- Lyngby
- Denmark
- Department of Chemistry
| | - T. L. Andresen
- Department of Micro- and Nanotechnology
- Technical University of Denmark
- Lyngby
- Denmark
- Center for Nanomedicine and Theranostics
| |
Collapse
|
13
|
Sun CY, Ma YC, Cao ZY, Li DD, Fan F, Wang JX, Tao W, Yang XZ. Effect of hydrophobicity of core on the anticancer efficiency of micelles as drug delivery carriers. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22709-22718. [PMID: 25426800 DOI: 10.1021/am5068723] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recently, micelles, which are self-assembled by amphiphilic copolymers, have attracted tremendous attention as promising drug delivery systems for cancer treatment. Thus, the hydrophobic core of the micelles, which could efficiently encapsulate small molecular drug, will play a significant role for the anticancer efficiency. Unfortunately, the effect of hydrophobicity of micellar core on its anticancer efficiency was rarely reported. Herein, the amphiphilic diblock polymers of poly(ethylene glycol) and polyphosphoester with different side groups (butyl, hexyl, octyl) were synthesized to tune the hydrophobicity of the micellar core. We found that the in vitro cytotoxicity of the DOX-loaded micelles decreased with the increasing hydrophobicity of micellar core due to the drug release rate. However, following systemic delivery, the DOX-loaded micelles with the most hydrophobic core exhibited the most significant inhibition of tumor growth in a MDA-MB-231 tumor model, indicating the importance of hydrophobicity of core on the antitumor efficacy of drug delivery systems.
Collapse
Affiliation(s)
- Chun-Yang Sun
- Department of Medical Materials and Rehabilitation Engineering, School of Medical Engineering, Hefei University of Technology , Hefei, Anhui 230009, China
| | | | | | | | | | | | | | | |
Collapse
|