1
|
Unksov IN, Korosec CS, Surendiran P, Verardo D, Lyttleton R, Forde NR, Linke H. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS NANOSCIENCE AU 2022; 2:140-159. [PMID: 35726277 PMCID: PMC9204826 DOI: 10.1021/acsnanoscienceau.1c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.
Collapse
Affiliation(s)
- Ivan N. Unksov
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Chapin S. Korosec
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | | | - Damiano Verardo
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- AlignedBio
AB, Medicon Village, Scheeletorget 1, 223 63 Lund, Sweden
| | - Roman Lyttleton
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Nancy R. Forde
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | - Heiner Linke
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
2
|
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
Wang Z, Hou R, Loh IY. Track-walking molecular motors: a new generation beyond bridge-burning designs. NANOSCALE 2019; 11:9240-9263. [PMID: 31062798 DOI: 10.1039/c9nr00033j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Track-walking molecular motors are the core bottom-up mechanism for nanometre-resolved translational movements - a fundamental technological capability at the root of numerous applications ranging from nanoscale assembly lines and chemical synthesis to molecular robots and shape-changing materials. Over the last 10 years, artificial molecular walkers (or nanowalkers) have evolved from the 1st generation of bridge-burning designs to the 2nd generation capable of truly sustainable movements. Invention of non-bridge-burning nanowalkers was slow at first, but has picked up speed since 2012, and is now close to breaking major barriers for wide-spread development. Here we review the 2nd generation of artificial nanowalkers, which are mostly made of DNA molecules and draw energy from light illumination or from chemical fuels for entirely autonomous operation. They are typically symmetric dimeric motors walking on entirely periodic tracks, yet the motors possess an inherent direction for large-scale amplification of the action of many motor copies. These translational motors encompass the function of rotational molecular motors on circular or linear tracks, and may involve molecular shuttles as 'engine' motifs. Some rules of thumb are provided to help readers design similar motors from DNA or other molecular building blocks. Opportunities and challenges for future development are discussed, especially in the areas of molecular robotics and active materials based on the advanced motors.
Collapse
Affiliation(s)
- Zhisong Wang
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | | | | |
Collapse
|
4
|
Chiang YH, Tsai SL, Tee SR, Nair OL, Loh IY, Liu MH, Wang ZS. Inchworm bipedal nanowalker. NANOSCALE 2018; 10:9199-9211. [PMID: 29726566 DOI: 10.1039/c7nr09724g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanowalkers take either inchworm (IW) or hand-over-hand (HOH) gait. The IW nanowalkers are advantageous over HOH ones in force generation, processivity and high-density integration, though both gaits occur in intracellular nanowalkers from biology. Artificial IW nanowalkers have been realized or proposed, but all rely on different 'head' and 'tail' to gain an adventitious direction. Here we report an inherently unidirectional IW nanowalker that is a biped with two identical legs (i.e., indistinguishable 'head' and 'tail'). This walker is made of DNA, and driven by a light-powered G-quadruplex engine. The directional inchworm motion is confirmed by operating the walker on a DNA duplex track that is designed to show a distinctive fluorescence pattern for IW walkers as compared to HOH ones. Interestingly, this walker exhibits stride-controlled IW-to-HOH gait switch and direction reversal when the track's periodic binding sites have wider and wider separation. The results altogether present an integrated mechanism for implementing nanowalkers of different gaits and directions on molecular tracks, optical potentials or even solid-state surfaces.
Collapse
Affiliation(s)
- Y H Chiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | | | | | | | | | | | | |
Collapse
|
5
|
Yeo QY, Loh IY, Tee SR, Chiang YH, Cheng J, Liu MH, Wang ZS. A DNA bipedal nanowalker with a piston-like expulsion stroke. NANOSCALE 2017; 9:12142-12149. [PMID: 28805877 DOI: 10.1039/c7nr03809g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Artificial molecular walkers beyond burn-bridge designs are important for nanotechnology, but their systematic development remains difficult. Herein, we have reported a new rationally designed DNA walker-track system and experimentally verified a previously proposed general expulsion regime for implementing non-burn-bridge nanowalkers. The DNA walker has an optically powered engine motif that reversibly extends and contracts the walker via a quadruplex-duplex conformational change. The walker's extension is an energy-absorbing and force-generating process, which drives the walker's leg dissociation off-track in a piston-like expulsion stroke. The unzipping-shearing asymmetry provides the expulsion stroke a bias, which decides the direction of the walker. Moreover, three candidate walkers of different sizes were fabricated. Fluorescence motility experiments indicated two of them as successful walkers and revealed a distinctive size dependence that was expected for these expulsive walkers, but was not observed in previously reported walkers. This study identifies unique technical requirements for expulsive nanowalkers. The present DNA design is readily adapted for making similar walkers from other molecules since the unzipping-shearing asymmetry is common.
Collapse
Affiliation(s)
- Q Y Yeo
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - I Y Loh
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - S R Tee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - Y H Chiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - J Cheng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - M H Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - Z S Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542. and NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
6
|
Small LSR, Bruning M, Thomson AR, Boyle AL, Davies RB, Curmi PMG, Forde NR, Linke H, Woolfson DN, Bromley EHC. Construction of a Chassis for a Tripartite Protein-Based Molecular Motor. ACS Synth Biol 2017; 6:1096-1102. [PMID: 28221767 PMCID: PMC5477008 DOI: 10.1021/acssynbio.7b00037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Improving our understanding of biological
motors, both to fully
comprehend their activities in vital processes, and to exploit their
impressive abilities for use in bionanotechnology, is highly desirable.
One means of understanding these systems is through the production
of synthetic molecular motors. We demonstrate the use of orthogonal
coiled-coil dimers (including both parallel and antiparallel coiled
coils) as a hub for linking other components of a previously described
synthetic molecular motor, the Tumbleweed. We use circular dichroism,
analytical ultracentrifugation, dynamic light scattering, and disulfide
rearrangement studies to demonstrate the ability of this six-peptide
set to form the structure designed for the Tumbleweed motor. The successful
formation of a suitable hub structure is both a test of the transferability
of design rules for protein folding as well as an important step in
the production of a synthetic protein-based molecular motor.
Collapse
Affiliation(s)
- Lara S. R. Small
- Department
of Physics, Durham University, Durham, DH1 3LE, United Kingdom
| | - Marc Bruning
- School
of Chemistry, University of Bristol, BS8 1TS, Bristol, United Kingdom
| | - Andrew R. Thomson
- School
of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Aimee L. Boyle
- Faculty
of Science, Leiden Institute of Chemistry, Leiden, 2333 CC, Netherlands
| | - Roberta B. Davies
- Structural
Biology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Paul M. G. Curmi
- School of
Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Nancy R. Forde
- Department
of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Heiner Linke
- NanoLund
and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, BS8 1TS, Bristol, United Kingdom
- School
of Biochemistry, University of Bristol, BS8 1TD, Bristol, United Kingdom
- BrisSynBio,
Life Sciences Building, University of Bristol, BS8 1TQ, Bristol, United Kingdom
| | | |
Collapse
|
7
|
Exploiting molecular motors as nanomachines: the mechanisms of de novo and re-engineered cytoskeletal motors. Curr Opin Biotechnol 2017; 46:20-26. [PMID: 28088100 DOI: 10.1016/j.copbio.2016.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Cytoskeletal molecular motors provide exciting proof that nanoscale transporters can be highly efficient, moving for microns along filamentous tracks by hydrolyzing ATP to fuel nanometer-size steps. For nanotechnology, such conversion of chemical energy into productive work serves as an enticing platform for re-purposing and re-engineering. It also provides a roadmap for successful molecular mechanisms that can be mimicked to create de novo molecular motors for nanotechnology applications. Here we focus specifically on how the mechanisms of molecular motors are being re-engineered for greater control over their transport parameters. We then discuss mechanistic work to create fully synthetic motors de novo and conclude with future directions in creating novel motor systems.
Collapse
|
8
|
Kovacic S, Samii L, Curmi PMG, Linke H, Zuckermann MJ, Forde NR. Design and Construction of the Lawnmower, An Artificial Burnt-Bridges Motor. IEEE Trans Nanobioscience 2015; 14:305-12. [DOI: 10.1109/tnb.2015.2393872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|