1
|
Zhang SY, Peng YQ, Xiang GS, Song WL, Feng L, Jiang XY, Li XJ, He SM, Yang SC, Zhao Y, Zhang GH. Functional characterization of genes related to triterpene and flavonoid biosynthesis in Cyclocarya paliurus. PLANTA 2024; 259:50. [PMID: 38285114 DOI: 10.1007/s00425-023-04282-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/04/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION The oxidosqualene cyclases (OSCs) generating triterpenoid skeletons in Cyclocarya paliurus were identified for the first time, and two uridine diphosphate (UDP)-glycosyltransferases (UGTs) catalyzing the glycosylation of flavonoids were characterized. Cyclocarya paliurus, a native rare dicotyledonous plant in China, contains an abundance of triterpenoid saponins and flavonoid glycosides that exhibit valuable pharmaceutical effects in preventing hypertension, hyperlipidemia, and diabetes. However, the molecular mechanism explaining the biosynthesis of triterpenoid saponin and flavonoid glycoside in C. paliurus remains unclear. In this study, the triterpene content in different tissues and the expression pattern of genes encoding the key enzymes associated with triterpenoid saponin and flavonoid glycoside biosynthesis were studied using transcriptome and metabolome analysis. The eight upstream oxidosqualene cyclases (OSCs) involved in triterpenoid saponin biosynthesis were functionally characterized, among them CpalOSC6 catalyzed 2,3;22,23-dioxidosqualene to form 3-epicabraleadiol; CpalOSC8 cyclized 2,3-oxidosqualene to generate dammarenediol-II; CpalOSC2 and CpalOSC3 produced β-amyrin and CpalOSC4 produced cycloartenol, while CpalOSC2-CpalOSC5, CpalOSC7, and CpalOSC8 all produced lanosterol. However, no catalytic product was detected for CpalOSC1. Moreover, two downstream flavonoid uridine diphosphate (UDP)-glycosyltransferases (UGTs) (CpalUGT015 and CpalUGT100) that catalyze the last step of flavonoid glycoside biosynthesis were functionally elucidated. These results uncovered the key genes involved in the biosynthesis of triterpenoid saponins and flavonoid glycosides in C. paliurus that could be applied to produce flavonoid glycosides and key triterpenoid saponins in the future via a synthetic strategy.
Collapse
Affiliation(s)
- Shuang-Yan Zhang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Yu-Qing Peng
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Gui-Sheng Xiang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Wan-Ling Song
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Lei Feng
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Xin-Yue Jiang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Xue-Jiao Li
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Si-Mei He
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Sheng-Chao Yang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China
| | - Yan Zhao
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
| | - Guang-Hui Zhang
- College of Agronomy and Biotechnology, National-Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, 650106, Yunnan, China.
| |
Collapse
|
2
|
Liu X, Xu Y, Di J, Liu A, Jiang J. The triterpenoid saponin content difference is associated with the two type oxidosqualene cyclase gene copy numbers of Pulsatilla chinensis and Pulsatilla cernua. FRONTIERS IN PLANT SCIENCE 2023; 14:1144738. [PMID: 36909385 PMCID: PMC9995806 DOI: 10.3389/fpls.2023.1144738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Pulsatilla chinensis is an important medicinal herb, its dried radix is used to treat the inflammation since ancient China. Triterpenoid saponins are proved to be the main active compounds of Pulsatilla genus. The triterpenoid saponin contents vary widely in different Pulsatilla species. But no enzyme involved in the triterpenoid saponin biosynthetic pathway was identified in Pulsitilla genus. This seriously limits the explanation of the triterpene content difference of Pulsatilla species. In this article, we obtained two oxidosqualene cyclase (OSC) genes from P. chinensis and P. cernua by touchdown PCR and anchored PCR. These two OSCs converted 2,3-oxidosqualene into different triterpenoids. The OSC from P. cernua is a monofunctional enzyme for β-amyrin synthesis, while the OSC from P. chinensis is a multifunctional enzyme for lupeol and β-amyrin synthesis, and the lupeol is the main product. Then we identified the 260th amino acid residue was the key site for the product difference by gene fusion and site-directed mutant technology. When the 260th amino acid residue was tryptophan (W260) and phenylalanine (F260), the main catalysate was β-amyrin and lupeol, respectively. Then we found that the expression of these two genes was strongly correlated with the lupeol-type and β-amyrin-type triterpenoid contents in P. cernua and P. chinensis. Finally, we found the gene copy number difference of these two genotypes leaded to the triterpenoid diversity in P. cernua and P. chinensis. This study provides useful information for the molecular breeding and quality improvement of P. chinensis and a molecular marker to identify the P. chinensis decoction pieces.
Collapse
Affiliation(s)
| | | | | | - An Liu
- *Correspondence: Jinzhu Jiang, ; An Liu,
| | | |
Collapse
|
3
|
Luo Y, Jiang Y, Chen L, Li C, Wang Y. Applications of protein engineering in the microbial synthesis of plant triterpenoids. Synth Syst Biotechnol 2022; 8:20-32. [PMID: 36381964 PMCID: PMC9634032 DOI: 10.1016/j.synbio.2022.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Triterpenoids are a class of natural products widely used in fields related to medicine and health due to their biological activities such as hepatoprotection, anti-inflammation, anti-viral, and anti-tumor. With the advancement in biotechnology, microorganisms have been used as cell factories to produce diverse natural products. Despite the significant progress that has been made in the construction of microbial cell factories for the heterogeneous biosynthesis of triterpenoids, the industrial production of triterpenoids employing microorganisms has been stymied due to the shortage of efficient enzymes as well as the low expression and low catalytic activity of heterologous proteins in microbes. Protein engineering has been demonstrated as an effective way for improving the specificity, catalytic activity, and stability of the enzyme, which can be employed to overcome these challenges. This review summarizes the current progress in the studies of Oxidosqualene cyclases (OSCs), cytochrome P450s (P450s), and UDP-glycosyltransferases (UGTs), the key enzymes in the triterpenoids synthetic pathway. The main obstacles restricting the efficient catalysis of these key enzymes are analyzed, the applications of protein engineering for the three key enzymes in the microbial synthesis of triterpenoids are systematically reviewed, and the challenges and prospects of protein engineering are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yaozhu Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Corresponding author.
| |
Collapse
|
4
|
A conserved mechanism affecting hydride shifting and deprotonation in the synthesis of hopane triterpenes as compositions of wax in oat. Proc Natl Acad Sci U S A 2022; 119:e2118709119. [PMID: 35290128 PMCID: PMC8944845 DOI: 10.1073/pnas.2118709119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hopanoids are a group of biologically important triterpene scaffolds found in nature, but the discovery of hopane-type triterpene synthases in plants has not been reported. We discovered two types of triterpene synthases synthesizing hopanoid skeletons from monocot and dicot plants and elucidated a mechanism involving the deprotonation at different sites by site-directed mutagenesis experiments and the quantum mechanics and molecular mechanics calculation. Our results provide a genetic element for synthesizing biologically active hopane-type triterpenoids and serve as a foundation for studying the molecular mechanisms of methyl and hydride transfer in the triterpene cyclization mechanism. Triterpenoids are biologically active metabolites synthesized from a common linear precursor catalyzed by 2,3-oxidosqualene cyclases (OSCs) to form diverse triterpenoid skeletons. OSCs corresponding to many discovered triterpene alcohols in nature have not been functionally and mechanistically characterized due to the diversity of chemical structures and complexity of the cyclization mechanism. We carried out a genome-wide investigation of OSCs from Avena strigosa and discovered two triterpene synthases, namely, AsHS1 and AsHS2, using a Nicotiana benthamiana expression system. These synthases produce hopenol B and hop-17(21)-en-3β-ol, which are components of surface wax in oat panicles and sheathes, respectively. We demonstrated that substitutions of two to three amino acid residues in AsHS1 with corresponding residues from AsHS2 allowed it to be completely converted into a hop-17(21)-en-3β-ol synthase. AsHS2 mutants with a substitution at site 410 could synthesize hopenol B alone or mixed with a side product isomotiol. The combined quantum mechanics and molecular mechanics calculation demonstrated that the side chain size of the residue at site 410 regulated the relative orientations between the hopyl C22 cation and Phe257, leading to a difference in deprotonation positions through providing or not providing cation–π interaction between the aromatic ring of F257 and the carbocation intermediate. A similar mechanism could be applied to a hopenol B synthase from a dicotyledonous plant Aquilegia. This study provided mechanistic insight into triterpenoid synthesis and discovered key amino acid residues acting on hydride transfer and a deprotonation site to differentiate between hopane-type scaffolds in diverse plant species.
Collapse
|
5
|
The Methionine 549 and Leucine 552 Residues of Friedelin Synthase from Maytenus ilicifolia Are Important for Substrate Binding Specificity. Molecules 2021; 26:molecules26226806. [PMID: 34833897 PMCID: PMC8617677 DOI: 10.3390/molecules26226806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Friedelin, a pentacyclic triterpene found in the leaves of the Celastraceae species, demonstrates numerous biological activities and is a precursor of quinonemethide triterpenes, which are promising antitumoral agents. Friedelin is biosynthesized from the cyclization of 2,3-oxidosqualene, involving a series of rearrangements to form a ketone by deprotonation of the hydroxylated intermediate, without the aid of an oxidoreductase enzyme. Mutagenesis studies among oxidosqualene cyclases (OSCs) have demonstrated the influence of amino acid residues on rearrangements during substrate cyclization: loss of catalytic activity, stabilization, rearrangement control or specificity changing. In the present study, friedelin synthase from Maytenus ilicifolia (Celastraceae) was expressed heterologously in Saccharomyces cerevisiae. Site-directed mutagenesis studies were performed by replacing phenylalanine with tryptophan at position 473 (Phe473Trp), methionine with serine at position 549 (Met549Ser) and leucine with phenylalanine at position 552 (Leu552Phe). Mutation Phe473Trp led to a total loss of function; mutants Met549Ser and Leu552Phe interfered with the enzyme specificity leading to enhanced friedelin production, in addition to α-amyrin and β-amyrin. Hence, these data showed that methionine 549 and leucine 552 are important residues for the function of this synthase.
Collapse
|
6
|
Wang J, Guo Y, Yin X, Wang X, Qi X, Xue Z. Diverse triterpene skeletons are derived from the expansion and divergent evolution of 2,3-oxidosqualene cyclases in plants. Crit Rev Biochem Mol Biol 2021; 57:113-132. [PMID: 34601979 DOI: 10.1080/10409238.2021.1979458] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triterpenoids are one of the largest groups of secondary metabolites and exhibit diverse structures, which are derived from C30 skeletons that are biosynthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene. Triterpenoids have a wide range of biological activities, and are used in functional foods, drugs, and as industrial materials. Due to the low content levels in their native plants and limited feasibility and efficiency of chemical synthesis, heterologous biosynthesis of triterpenoids is the most promising strategy. Herein, we classified 121 triterpene alcohols/ketones according to their conformation and ring numbers, among which 51 skeletons have been experimentally characterized as the products of oxidosqualene cyclases (OSCs). Interestingly, 24 skeletons that have not been reported from nature source were generated by OSCs in heterologous expression. Comprehensive evolutionary analysis of the identified 152 OSCs from 75 species in 25 plant orders show that several pentacyclic triterpene synthases repeatedly originated in multiple plant lineages. Comparative analysis of OSC catalytic reaction revealed that stabilization of intermediate cations, steric hindrance, and conformation of active center amino acid residues are primary factors affecting triterpene formation. Optimization of OSC could be achieved by changing of side-chain orientations of key residues. Recently, methods, such as rationally design of pathways, regulation of metabolic flow, compartmentalization engineering, etc., were introduced in improving chassis for the biosynthesis of triterpenoids. We expect that extensive study of natural variation of large number of OSCs and catalytical mechanism will provide basis for production of high level of triterpenoids by application of synthetic biology strategies.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China.,Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Yanhong Guo
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.,Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
7
|
Chen K, Zhang M, Ye M, Qiao X. Site-directed mutagenesis and substrate compatibility to reveal the structure-function relationships of plant oxidosqualene cyclases. Nat Prod Rep 2021; 38:2261-2275. [PMID: 33988197 DOI: 10.1039/d1np00015b] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to May 2020Oxidosqualene cyclases (OSCs) catalyze one of the most complex polycyclization reactions in nature, using the linear 2,3-oxidosqualene to generate an array of triterpene skeletons in plants. Despite the structural diversity of the products, the protein sequences of plant OSCs are highly conserved, where a few key amino acids could govern the product selectivity. Due to the absence of crystal structures, site-directed mutagenesis and substrate structural modification become key approaches to understand the cyclization mechanism. In this review, 98 mutation sites in 25 plant OSCs have been summarized, and the conserved key residues have been identified by sequence alignment. Structure-function relationships are further discussed. Meanwhile, the substrate selectivity has been summarized to probe the active site cavity of plant OSCs. A total of 77 references are included.
Collapse
Affiliation(s)
- Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
8
|
Srisawat P, Fukushima EO, Yasumoto S, Robertlee J, Suzuki H, Seki H, Muranaka T. Identification of oxidosqualene cyclases from the medicinal legume tree Bauhinia forficata: a step toward discovering preponderant α-amyrin-producing activity. THE NEW PHYTOLOGIST 2019; 224:352-366. [PMID: 31230357 DOI: 10.1111/nph.16013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/15/2019] [Indexed: 05/27/2023]
Abstract
Triterpenoids are widely distributed among plants of the legume family. However, most studies have focused on triterpenoids and their biosynthetic enzymes in model legumes. We evaluated the triterpenoid aglycones profile of the medicinal legume tree Bauhinia forficata by gas chromatography-mass spectrometry. Through transcriptome analyses, homology-based cloning, and heterologous expression, we discovered four oxidosqualene cyclases (OSCs) which are responsible for the diversity of triterpenols in B. forficata. We also investigated the effects of the unique motif TLCYCR on α-amyrin synthase activity. B. forficata highly accumulated α-amyrin. We discovered an OSC with a preponderant α-amyrin-producing activity, which accounted for at least 95% of the total triterpenols. We also discovered three other functional OSCs (BfOSC1, BfOSC2, and BfOSC4) that produce β-amyrin, germanicol, and cycloartenol. Furthermore, by replacing the unique motif TLCYCR from BfOSC3 with the MWCYCR motif, we altered the function of BfOSC3 such that it no longer produced α-amyrin. Our results provide new insights into OSC cyclization, which is responsible for the diversity of triterpenoid metabolites in B. forficata, a non-model legume plant.
Collapse
Affiliation(s)
- Pisanee Srisawat
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Universidad Regional Amazónica IKIAM, Tena, 150150, Ecuador
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Jekson Robertlee
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
9
|
Molecular Docking and Molecular Dynamics Studies on Selective Synthesis of α-Amyrin and β-Amyrin by Oxidosqualene Cyclases from Ilex Asprella. Int J Mol Sci 2019; 20:ijms20143469. [PMID: 31311103 PMCID: PMC6678101 DOI: 10.3390/ijms20143469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022] Open
Abstract
Amyrins are the immediate precursors of many pharmaceutically important pentacyclic triterpenoids. Although various amyrin synthases have been identified, little is known about the relationship between protein structures and the constituent and content of the products. IaAS1 and IaAS2 identified from Ilex asprella in our previous work belong to multifunctional oxidosqualene cyclases and can produce α-amyrin and β-amyrin at different ratios. More than 80% of total production of IaAS1 is α-amyrin; while IaAS2 mainly produces β-amyrin with a yield of 95%. Here, we present a molecular modeling approach to explore the underlying mechanism for selective synthesis. The structures of IaAS1 and IaAS2 were constructed by homology modeling, and were evaluated by Ramachandran Plot and Verify 3D program. The enzyme-product conformations generated by molecular docking indicated that ASP484 residue plays an important role in the catalytic process; and TRP611 residue of IaAS2 had interaction with β-amyrin through π–σ interaction. MM/GBSA binding free energy calculations and free energy decomposition after 50 ns molecular dynamics simulations were performed. The binding affinity between the main product and corresponding enzyme was higher than that of the by-product. Conserved amino acid residues such as TRP257; TYR259; PHE47; TRP534; TRP612; and TYR728 for IaAS1 (TRP257; TYR259; PHE473; TRP533; TRP611; and TYR727 for IaAS2) had strong interactions with both products. GLN450 and LYS372 had negative contribution to binding affinity between α-amyrin or β-amyrin and IaAS1. LYS372 and ARG261 had strong repulsive effects for the binding of α-amyrin with IaAS2. The importance of Lys372 and TRP612 of IaAS1, and Lys372 and TRP611 of IaAS2, for synthesizing amyrins were confirmed by site-directed mutagenesis. The different patterns of residue–product interactions is the cause for the difference in the yields of two products.
Collapse
|
10
|
Forestier E, Romero-Segura C, Pateraki I, Centeno E, Compagnon V, Preiss M, Berna A, Boronat A, Bach TJ, Darnet S, Schaller H. Distinct triterpene synthases in the laticifers of Euphorbia lathyris. Sci Rep 2019; 9:4840. [PMID: 30886213 PMCID: PMC6423090 DOI: 10.1038/s41598-019-40905-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
Euphorbia lathyris was proposed about fifty years ago as a potential agroenergetic crop. The tremendous amounts of triterpenes present in its latex has driven investigations for transforming this particular biological fluid into an industrial hydrocarbon source. The huge accumulation of terpenes in the latex of many plant species represent a challenging question regarding cellular homeostasis. In fact, the enzymes, the mechanisms and the controllers that tune the amount of products accumulated in specialized compartments (to fulfill ecological roles) or deposited at important sites (as essential factors) are not known. Here, we have isolated oxidosqualene cyclases highly expressed in the latex of Euphorbia lathyris. This triterpene biosynthetic machinery is made of distinct paralogous enzymes responsible for the massive accumulation of steroidal and non-steroidal tetracyclic triterpenes. More than eighty years after the isolation of butyrospermol from shea butter (Heilbronn IM, Moffet GL, and Spring FS J. Chem. Soc. 1934, 1583), a butyrospermol synthase is characterized in this work using yeast and in folia heterologous expression assays.
Collapse
Affiliation(s)
- Edith Forestier
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Carmen Romero-Segura
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Irini Pateraki
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Emilio Centeno
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Vincent Compagnon
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Myriam Preiss
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Anne Berna
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Albert Boronat
- Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Thomas J Bach
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France
| | - Sylvain Darnet
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Pará, Brazil
| | - Hubert Schaller
- Plant Isoprenoid Biology team, Institut de Biologie Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg cedex, 67084, France.
| |
Collapse
|
11
|
Giner JL. Batatasenol, a Major Triterpenol from Sweet Potato Skins. Chem Biodivers 2019; 16:e1800439. [PMID: 30716207 DOI: 10.1002/cbdv.201800439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 11/05/2022]
Abstract
Sweet potatoes (the tuber of Ipomoea batatas) are a major food crop globally. The sweet potato weevil (Cylas formicarius elegantulus) is a serious pest of this important crop. The triterpenol, boehmerol, has previously been found in the skin of the tuber where, as its acetate ester, it has been shown to signal oviposition by the weevil. A new triterpenol, batatasenol, was identified in two varieties of sweet potatoes, 'Covington' and 'Purple Stokes'. In the 'Covington' variety, batatasenol was practically the only triterpenol present in the skins. In the 'Purple Stokes' variety, batatasenol was present along with boehmerol and several minor triterpenols. Based on the structures of the co-occurring compounds, it is proposed that their biosynthesis involves an epoxysqualene cyclase which can carry out both all-chair and B-boat cyclizations.
Collapse
Affiliation(s)
- José-Luis Giner
- Department of Chemistry, State University of New York - ESF, Syracuse, NY, 13210, USA
| |
Collapse
|
12
|
Identification of Key Amino Acid Residues Determining Product Specificity of 2,3-Oxidosqualene Cyclase in Siraitia grosvenorii. Catalysts 2018. [DOI: 10.3390/catal8120577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sterols and triterpenes are structurally diverse bioactive molecules generated through cyclization of linear 2,3-oxidosqualene. Based on carbocationic intermediates generated during the initial substrate preorganization step, oxidosqualene cyclases (OSCs) are roughly segregated into a dammarenyl cation group that predominantly catalyzes triterpenoid precursor products and a protosteryl cation group which mostly generates sterol precursor products. The mechanism of conversion between two scaffolds is not well understood. Previously, we have characterized a promiscuous OSC from Siraitia grosvenorii (SgCS) that synthesizes a novel cucurbitane-type triterpene cucurbitadienol as its main product. By integration of homology modeling, molecular docking and site-directed mutagenesis, we discover that five key amino acid residues (Asp486, Cys487, Cys565, Tyr535, and His260) may be responsible for interconversions between chair–boat–chair and chair–chair–chair conformations. The discovery of euphol, dihydrolanosterol, dihydroxyeuphol and tirucallenol unlocks a new path to triterpene diversity in nature. Our findings also reveal mechanistic insights into the cyclization of oxidosqualene into cucurbitane-type and lanostane-type skeletons, and provide a new strategy to identify key residues determining OSC specificity.
Collapse
|
13
|
Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, Liu D, Zhao B, Duan L, Qi X. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun 2018; 9:604. [PMID: 29426861 PMCID: PMC5807508 DOI: 10.1038/s41467-018-03048-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/16/2018] [Indexed: 11/26/2022] Open
Abstract
In flowering plants, the pollen coat protects the released male germ cells from desiccation and damage during pollination. However, we know little about the mechanism by which the chemical composition of the pollen coat prevents dehydration of pollen grains. Here we report that deficiency of a grass conserved triterpene synthase, OsOSC12/OsPTS1, in rice leads to failure of pollen coat formation. The mutant plants are male sterile at low relative humidity (RH < 60%), but fully male fertile at high relative humidity (>80%). The lack of three major fatty acids in the pollen coat results in rapid dehydration of pollen grains. We show that applying mixtures of linolenic acid and palmitic acid or stearic acid are able to prevent over-dehydration of mutant pollen grains. We propose that humidity-sensitive genic male sterility (HGMS) could be a desirable trait for hybrid breeding in rice, wheat, maize, and other crops. In flowering plants, the pollen coat surrounds the male germ cells and protects against dehydration, damage and pathogen attack. Here, the authors show that a deficiency in terpenoid synthesis results in rice pollen over-dehydration and leads to a humidity-sensitive conditional male sterile phenotype.
Collapse
Affiliation(s)
- Zheyong Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Xia Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yuan Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yingchun Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Dan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Binbin Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Lixin Duan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.
| |
Collapse
|
14
|
Aiba Y, Watanabe T, Terasawa Y, Nakano C, Hoshino T. Strictly Conserved Residues in Euphorbia tirucalli
β-Amyrin Cyclase: Trp612 Stabilizes Transient Cation through Cation-π Interaction and CH-π Interaction of Tyr736 with Leu734 Confers Robust Local Protein Architecture. Chembiochem 2018; 19:486-495. [DOI: 10.1002/cbic.201700572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yukari Aiba
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Takumi Watanabe
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Yuri Terasawa
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Chiaki Nakano
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| | - Tsutomu Hoshino
- Graduate School of Science and Technology and Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
15
|
Hoshino T, Nakagawa K, Aiba Y, Itoh D, Nakada C, Masukawa Y. Euphorbia tirucalli
β-Amyrin Synthase: Critical Roles of Steric Sizes at Val483 and Met729 and the CH-π Interaction between Val483 and Trp534 for Catalytic Action. Chembiochem 2017; 18:2145-2155. [DOI: 10.1002/cbic.201700368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Tsutomu Hoshino
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Kazuya Nakagawa
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Yukari Aiba
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Daichi Itoh
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Chika Nakada
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| | - Yukari Masukawa
- Graduate School of Science and Technology and; Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Ikarashi 2-8050 Nishi-ku Niigata 950-2181 Japan), E-mail: address
| |
Collapse
|
16
|
Hoshino T. β-Amyrin biosynthesis: catalytic mechanism and substrate recognition. Org Biomol Chem 2017; 15:2869-2891. [DOI: 10.1039/c7ob00238f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the past five years, there have been remarkable advances in the study of β-amyrin synthase. This review outlines the catalytic mechanism and substrate recognition in β-amyrin biosynthesis, which have been attained by the site-directed mutagenesis and substrate analog experiments.
Collapse
Affiliation(s)
- Tsutomu Hoshino
- Graduate School of Science and Technology and Department of Applied Biological Chemistry
- Faculty of Agriculture
- Niigata University
- Niigata 950-2181
- Japan
| |
Collapse
|
17
|
Ito R, Nakada C, Hoshino T. β-Amyrin synthase from Euphorbia tirucalli L. functional analyses of the highly conserved aromatic residues Phe413, Tyr259 and Trp257 disclose the importance of the appropriate steric bulk, and cation-π and CH-π interactions for the efficient catalytic action of the polyolefin cyclization cascade. Org Biomol Chem 2016; 15:177-188. [PMID: 27942657 DOI: 10.1039/c6ob02539k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Many of the functions of the active site residues in β-amyrin synthase and its catalytic mechanism remain unclear. Herein, we examined the functions of the highly conserved Phe413, Tyr259, and Trp257 residues in the β-amyrin synthase of Euphorbia tirucalli. The site-specific mutants F413V and F413M [corrected] showed nearly the same enzymatic activities as the wild type, indicating that π-electrons are not needed for the catalytic reaction. However, the F413A [corrected] mutant yielded a large amount of the tetracyclic dammarane skeleton, with decreased production of β-amyrin. This indicates that the Phe413 [corrected] residue is located near the D-ring formation site and works to position the oxidosqualene substrate correctly within the reaction cavity. On the other hand, the major catalysis-related function of the Tyr259 and Trp257 residues is to yield their π-electrons to the cationic intermediates. The Y259F variant showed nearly equivalent activity to that of the wild type, but aliphatic mutants such as the Ala, Val, and Leu variants showed significantly decreased the activity and yielded the tetracyclic dammarane scaffold, strongly demonstrating that the Tyr259 residue stabilizes the baccharenyl secondary cation via cation-π interaction. The aliphatic variants of Trp257 exhibited remarkably decreased enzymatic activity, and lupeol was produced in a high production ratio, indicating that Trp257 stabilizes the oleanyl cation via cation-π interaction. The aromatic Phe and Tyr mutants exhibited high activities owing to their more increased π-electron density relative to that of the aliphatic mutants, but lupeol was produced in a significantly high yield besides β-amyrin. The Trp residue is likely to be responsible for the robust binding of Me-30 through CH-π interaction. The decreased π-electron density of the Phe and Tyr mutants compared to that of Trp would have resulted in the high production of lupeol.
Collapse
Affiliation(s)
- Ryousuke Ito
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Chika Nakada
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Tsutomu Hoshino
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
18
|
Kaneko I, Hoshino T. β-Amyrin Biosynthesis: Promiscuity for Steric Bulk at Position 23 in the Oxidosqualene Substrate and the Significance of Hydrophobic Interaction between the Methyl Group at Position 30 and the Binding Site. J Org Chem 2016; 81:6657-71. [DOI: 10.1021/acs.joc.6b01313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ikki Kaneko
- Department
of Applied Biological
Chemistry, Faculty of Agriculture and Graduate School of Science and
Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata, Japan 950-2181
| | - Tsutomu Hoshino
- Department
of Applied Biological
Chemistry, Faculty of Agriculture and Graduate School of Science and
Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata, Japan 950-2181
| |
Collapse
|
19
|
Hoshino T, Miyahara Y, Hanaoka M, Takahashi K, Kaneko I. β-Amyrin Biosynthesis: The Methyl-30 Group of (3S)-2,3-Oxidosqualene Is More Critical to Its Correct Folding To Generate the Pentacyclic Scaffold than the Methyl-24 Group. Chemistry 2015; 21:15769-84. [DOI: 10.1002/chem.201502389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 11/11/2022]
|
20
|
Hoshino T, Yamaguchi Y, Takahashi K, Ito R. β-Amyrin Biosynthesis: The Critical Role of Steric Volume at C-19 of 2,3-Oxidosqualene for Its Correct Folding To Generate the Pentacyclic Scaffold. Org Lett 2014; 16:3548-51. [DOI: 10.1021/ol501498q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tsutomu Hoshino
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Yuki Yamaguchi
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kazunari Takahashi
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Ryousuke Ito
- Graduate School of Science
and Technology, and Department of Applied Biological Chemistry, Faculty
of Agriculture, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|