1
|
Cai Q, Jiang J, Zhang H, Ge P, Yang L, Zhu W. Reduction-Responsive Anticancer Nanodrug Using a Full Poly(ethylene glycol) Carrier. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19387-19397. [PMID: 33876927 DOI: 10.1021/acsami.1c04648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(ethylene glycol) (PEG) is applied extensively in biomedical fields because of its nontoxic, nonimmunogenic, and protein resistance properties. However, the strong hydrophilicity of PEG prevents it from self-assembling into an amphiphilic micelle in water, making it a challenge to fabricate a full-PEG carrier to deliver hydrophobic anticancer drugs. Herein, a paclitaxel (PTX)-loaded nanodrug was readily prepared through self-assembly of PTX and an amphiphilic PEG derivative, which was synthesized via melt polycondensation of two PEG diols (i.e., PEG200 and PEG10k) and mercaptosuccinic acid. The full PEG component endows the nanocarrier with good biocompatibility. Furthermore, because of the core cross-linked structure via the oxidation of mercapto groups, the nanodrug can be selectively disassociated under an intratumor reductive microenvironment through the reduction of disulfide bonds to release the loaded PTX and kill the cancer cells while maintaining high stability under the extratumor physiological condition. Additionally, it was confirmed that the nanodrug not only prolongs the biocirculation time of PTX but also possesses excellent in vivo antitumor efficacy while avoiding side effects of free PTX, for example, liver damage, which is promising for delivering clinical hydrophobic drugs to treat a variety of malignant tumors.
Collapse
Affiliation(s)
- Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahong Jiang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hongjie Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310027, China
| |
Collapse
|
2
|
Ge P, Cai Q, Zhang H, Yao X, Zhu W. Full Poly(ethylene glycol) Hydrogels with High Ductility and Self-Recoverability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37549-37560. [PMID: 32702232 DOI: 10.1021/acsami.0c08716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy dissipation is a common mechanism to improve the ductility of polymeric hydrogels. However, for poly(ethylene glycol) (PEG) hydrogels, it is not easy to dissipate energy, as polymer chains are dispersed in water without strong interchain interactions or decent entanglement. The brittleness limits the real applications of PEG hydrogels, although they are promising candidates in biomedical fields, as PEG has been approved by the U.S. Food and Drug Administration. Herein, we chemically introduced a center for energy dissipation in the PEG hydrogel system. Amphiphilic segmented PEG derivatives were designed through the melt polycondensation of triethylene glycol (PEG150) and high molecular weight PEG in the presence of succinic acid and mercaptosuccinic acid as dicarboxylic acids. Full PEG hydrogels with elastic nanospheres as giant cross-linkers were facilely prepared by the self-assembly of esterified PEG150 segments and the oxidation of mercapto groups. The resultant full PEG hydrogels can dissipate energy by the deformation of elastic nanospheres with outstanding ductility and self-recoverability while maintaining the excellent biocompatibility owing to their full PEG components. This work provides an original strategy to fabricate full PEG hydrogels with high ductility and self-recoverability, potentially applicable in biomedical fields.
Collapse
Affiliation(s)
- Pengfei Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongjie Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou, 310027, China
| |
Collapse
|
3
|
Zhu CN, Zang LY, Zheng DY, Cao HM, Liu XJ. Small-sized copolymeric nanoparticles for tumor penetration and intracellular drug release. Chem Commun (Camb) 2020; 56:2000-2003. [DOI: 10.1039/c9cc09716c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small-sized copolymeric nanoparticles have been developed for deep tumor penetration and nuclear drug delivery, which exhibit excellent solid tumor growth suppression.
Collapse
Affiliation(s)
- Chun-Nan Zhu
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Liu-Yuan Zang
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Dong-Yun Zheng
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Hui-Min Cao
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xiao-Jun Liu
- College of Biomedical Engineering
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Cognitive Science (State Ethnic Affairs Commission)
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| |
Collapse
|
4
|
Zhen S, Yi X, Zhao Z, Lou X, Xia F, Tang BZ. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 2019; 218:119330. [DOI: 10.1016/j.biomaterials.2019.119330] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
|
5
|
Yang XL, Xing X, Li J, Liu YH, Wang N, Yu XQ. Enzymatic synthesis of selenium-containing amphiphilic aliphatic polycarbonate as an oxidation-responsive drug delivery vehicle. RSC Adv 2019; 9:6003-6010. [PMID: 35517302 PMCID: PMC9060885 DOI: 10.1039/c8ra10282a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/04/2019] [Indexed: 11/30/2022] Open
Abstract
Although functional aliphatic polycarbonates (APCs) have attracted prominent research interest as stimuli-responsive biomaterials, the majority of functional APCs are fabricated by detrimental organometallic catalysts or organo-catalysts. Herein, a facile synthetic strategy based on enzymatic polymerization was developed to construct a selenium-containing amphiphilic aliphatic polycarbonate (mPEG-b-CMP45). Specifically, the selenium in its backbone framework underwent a hydrophobic–hydrophilic transition upon exposure to the abnormal ROS level of the tumor, thus providing a promising platform for ROS-triggered drug release. This amphiphilic mPEG-b-CMP45 efficiently encapsulated doxorubicin (DOX) via self-assembly in aqueous solution and showed an excellent ability to regulate the release of DOX in response to H2O2 at biologically relevant concentrations (100 μM). These DOX-loaded nanoparticles could easily be internalized into U87 cells and possess the inherent antitumor properties of DOX, while they exhibited much lower cytotoxicity in normal cells HL-7702. Moreover, in many cases, the introduction of selenium caused high cytotoxicity of the materials, but the cytotoxicity results in HL-7702 cells demonstrated the good biocompatibility of mPEG-b-CMP45. These collective data suggested the potential use of mPEG-b-CMP45 as a biocompatible and smart drug delivery vehicle. A facile synthetic strategy based on enzymatic polymerization was developed to construct a ROS-responsive polycarbonate served as biocompatible drug vehicle.![]()
Collapse
Affiliation(s)
- Xian-Ling Yang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiu Xing
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Jun Li
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
6
|
Sang X, Yang Q, Shi G, Zhang L, Wang D, Ni C. Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:727-733. [PMID: 30033307 DOI: 10.1016/j.msec.2018.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
Abstract
Stimuli-responsive polymeric micelles were prepared through self-assembly of amphiphilic copolymers poly(ethylene glycol)-poly(γ-benzyl l-glutamate), followed by a core-crosslinking reaction using cystamine as the crosslinking agent. The crosslinked micelles with spherical morphologies in nanometer size showed enhanced stability against dilution and concentrated salt solutions compared to the micelles before crosslinking. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through electrostatic interactions between carboxylic acid and DOX. In vitro drug release under pH and redox conditions was investigated. Furthermore, the cytotoxicity of micelles was evaluated before and after drug loading. The endocytosis of DOX-loaded micelles and the intracellular drug release were studied. DOX-loaded micelles exhibited accelerated drug release behaviors in an acidic and reductive environment, and showed an inhibited premature release behavior as compared to the noncrosslinked micelles. Considering their enhanced stability, pH and redox dual triggered responsive characteristics, the polymeric micelles can serve as potential systems for controlled drug delivery.
Collapse
Affiliation(s)
- Xinxin Sang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qiyi Yang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Gang Shi
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Liping Zhang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dawei Wang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Caihua Ni
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Li Y, Leng M, Cai M, Huang L, Chen Y, Luo X. pH responsive micelles based on copolymers mPEG-PCL-PDEA: The relationship between composition and properties. Colloids Surf B Biointerfaces 2017; 154:397-407. [DOI: 10.1016/j.colsurfb.2017.03.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/03/2017] [Accepted: 03/22/2017] [Indexed: 01/05/2023]
|
8
|
Wang Q, Hu C, Zoghbi A, Huang J, Xia Q. Oil-in-oil-in-water pre-double emulsions stabilized by nonionic surfactants and silica particles: A new approach for topical application of rutin. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Xu F, Li H, Luo YL, Tang W. Redox-Responsive Self-Assembly Micelles from Poly(N-acryloylmorpholine-block-2-acryloyloxyethyl ferrocenecarboxylate) Amphiphilic Block Copolymers as Drug Release Carriers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5181-5192. [PMID: 28097871 DOI: 10.1021/acsami.6b16017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Novel well-defined redox-responsive ferrocene-containing amphiphilic block copolymers (PACMO-b-PAEFC) were synthesized by ATRP, with poly(N-acryloylmorpholine) (PACMO) as hydrophilic blocks and poly(2-acryloyloxyethyl ferrocenecarboxylate) (PAEFC) as hydrophobic blocks. The copolymers were characterized by FT-IR and 1H NMR spectroscopies and gel permeation chromatography, and the crystalline behavior was determined by X-ray diffraction and small-angle X-ray scattering. The results showed that the size of the lamellar crystals and crystallinity vary with the systematic compositions while the periodic structure of the lamellar stacks has no obvious change. These block copolymers could self-assemble and form globular nanoscaled core-shell micellar aggregates in aqueous solution. The reductive ferrocene groups could be changed into hydrophilic ferrocenium via mild oxidation, whereas the polymer micelles at the oxidation state could reversibly recover from their original states upon reduction by vitamin C. The tunable redox response was investigated and verified by transmission electron microscopy, ultraviolet-visible spectroscopy, cyclic voltammetry, and dynamic light scattering measurements. The copolymer micelles were used to entrap anticancer drug paclitaxel (PTX), with high drug encapsulation efficiency of 61.4%, while the PTX-loaded drug formulation exhibited oxidation-controlled drug release, and the release rate could be mediated by the kinds and concentrations of oxidants. MTT assay was performed to disclose the biocompatibility and security of the copolymer micelles and to assess anticancer efficiency of the PTX-loaded nanomicelles. The developed copolymer nanomicelles with reversible redox response are anticipated to have potential in targeted drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - He Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Wei Tang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| |
Collapse
|
10
|
Liu C, Guan Y, Su Y, Zhao L, Meng F, Yao Y, Luo J. Surface charge switchable and core cross-linked polyurethane micelles as a reduction-triggered drug delivery system for cancer therapy. RSC Adv 2017. [DOI: 10.1039/c7ra00346c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The core cross-linked polyurethane micelles with redox sensitive and pH-responsive surface charge switchable properties were prepared by using diisocyanates as crosslinkers and studied as anticancer drug carriers.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Chengdu
- China
| | - Yayuan Guan
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Chengdu
- China
| | - Yuling Su
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Chengdu
- China
| | - Lili Zhao
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Chengdu
- China
| | - Fancui Meng
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Chengdu
- China
| | - Yongchao Yao
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Chengdu
- China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Chengdu
- China
| |
Collapse
|
11
|
Sheng J, Wang Y, Xiong L, Luo Q, Li X, Shen Z, Zhu W. Injectable doxorubicin-loaded hydrogels based on dendron-like β-cyclodextrin–poly(ethylene glycol) conjugates. Polym Chem 2017. [DOI: 10.1039/c6py02243j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendron-like CD–PEG conjugates with multiple acrylates were synthesized facilely, which can incorporate adamantane-modified doxorubicin and further be crosslinked by POEGMS, to give injectable doxorubicin-loaded hydrogels.
Collapse
Affiliation(s)
- Jian Sheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Lu Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
12
|
Washington KE, Kularatne RN, Karmegam V, Biewer MC, Stefan MC. Recent advances in aliphatic polyesters for drug delivery applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/30/2016] [Accepted: 10/31/2016] [Indexed: 01/24/2023]
Affiliation(s)
| | | | - Vasanthy Karmegam
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Michael C. Biewer
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| | - Mihaela C. Stefan
- Department of Chemistry University of Texas at Dallas Richardson TX USA
| |
Collapse
|
13
|
Wang Q, Hu C, Qian A, Liu T, Zhang H, Zhang Y, Xia Q. Enhanced oral bioavailability of quercetin by a new non‐aqueous self‐double‐emulsifying drug delivery system. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Qiang Wang
- School of Biological Science and Medical EngineeringState Key Laboratory of BioelectronicsSoutheast UniversityNanjingP. R. China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhouP. R. China
| | - Caibiao Hu
- School of Biological Science and Medical EngineeringState Key Laboratory of BioelectronicsSoutheast UniversityNanjingP. R. China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhouP. R. China
| | - Airui Qian
- School of Biological Science and Medical EngineeringState Key Laboratory of BioelectronicsSoutheast UniversityNanjingP. R. China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhouP. R. China
| | - Tian Liu
- Department of PharmacyCollege of MedicineXi'an Jiaotong UniversityXi'anP. R. China
| | - Hong Zhang
- School of Biological Science and Medical EngineeringState Key Laboratory of BioelectronicsSoutheast UniversityNanjingP. R. China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhouP. R. China
| | - Yali Zhang
- School of Biological Science and Medical EngineeringState Key Laboratory of BioelectronicsSoutheast UniversityNanjingP. R. China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhouP. R. China
| | - Qiang Xia
- School of Biological Science and Medical EngineeringState Key Laboratory of BioelectronicsSoutheast UniversityNanjingP. R. China
- Collaborative Innovation Center of Suzhou Nano Science and TechnologySuzhouP. R. China
| |
Collapse
|
14
|
Cheng X, Jin Y, Qi R, Fan W, Li H, Sun X, Lai S. Dual pH and oxidation-responsive nanogels crosslinked by diselenide bonds for controlled drug delivery. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Gao L, Sun Q, Wang Y, Zhu W, Li X, Luo Q, Li X, Shen Z. Injectable poly(ethylene glycol) hydrogels for sustained doxorubicin release. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qiang Sun
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province; Hangzhou 310027 China
| | - Xiaojun Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Qiaojie Luo
- The First Affiliated Hospital, College of Medicine; Zhejiang University; Hangzhou 310003 China
| | - Xiaodong Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
16
|
Xiong L, Luo Q, Wang Y, Li X, Shen Z, Zhu W. An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug. Chem Commun (Camb) 2016; 51:14644-7. [PMID: 26290273 DOI: 10.1039/c5cc06025g] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We reported a novel injectable doxorubicin-loaded hydrogel based on host-guest interaction and Schiff's base reaction. A supramolecular polymeric prodrug was prepared through the inclusion of adamantane-modified doxorubicin into the β-cyclodextrin cavity on the polyaldehyde dextran chain, which was in situ crosslinked by carboxymethyl chitosan.
Collapse
Affiliation(s)
- Lu Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
17
|
Gao L, Li X, Wang Y, Zhu W, Shen Z, Li X. Injectable thiol-epoxy “click” hydrogels. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Xiaojun Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
- Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province; Hangzhou 310027 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Xiaodong Li
- Affiliated Stomatology Hospital, School of Medicine; Zhejiang University; Hangzhou 310006 People's Republic of China
| |
Collapse
|
18
|
Wang X, Zhang J, Cheng R, Meng F, Deng C, Zhong Z. Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent. Biomacromolecules 2016; 17:882-90. [PMID: 26810050 DOI: 10.1021/acs.biomac.5b01578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reductively degradable biopolymers have emerged as a unique class of smart biomedical materials. Here, a functional coupling agent, cystamine diisocyanate (CDI), was designed to offer a facile access to reductively degradable biopolymers via polycondensation with various diols. CDI was readily obtained with a decent yield of 46% by reacting cystamine dihydrochloride with triphosgene. The polycondensation of oligo(ethylene glycol) diol (Mn = 0.4 or 1.5 kg/mol) or oligo(ε-caprolactone) diol (Mn = 0.53 kg/mol) with CDI in N,N-dimethylformamide at 60 °C using dibutyltin dilaurate as a catalyst afforded reductively degradable poly(ethylene glycol) (SSPEG, Mn = 6.2-76.8 kg/mol) or poly(ε-caprolactone) (SSPCL, Mn = 6.8-16.3 kg/mol), in which molecular weights were well controlled by diol/CDI molar ratios. Moreover, PEG-SSPCL-PEG triblock copolymers could be readily prepared by reacting dihydroxyl-terminated SSPCL with PEG-isocyanate derivative. PEG-SSPCL-PEG with an Mn of 5.0-16.3-5.0 kg/mol formed small-sized micelles with an average diameter of about 85 nm in PB buffer. The in vitro release studies using doxorubicin (DOX) as a model drug showed that, in sharp contrast to reduction-insensitive PEG-PCL(HDI)-PEG controls, drug release from PEG-SSPCL-PEG micelles was fast and nearly complete in 24 h under a reductive condition containing 10 mM glutathione. The confocal microscopy experiments in drug-resistant MCF-7 cells (MCF-7/ADR) displayed efficient cytoplasmic DOX release from PEG-SSPCL-PEG micelles. MTT assays revealed that DOX-loaded PEG-SSPCL-PEG micelles were much more potent against MCF-7/ADR cells than reduction-insensitive PEG-PCL(HDI)-PEG controls (IC50: 6.3 vs 55.4 μg/mL). It should further be noted that blank PEG-SSPCL-PEG micelles were noncytotoxic up to a tested concentration of 1 mg/mL. Hence, cystamine diisocyanate appears to be an innovative coupling agent that facilitates versatile synthesis of biocompatible and reductively degradable biopolymers.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Jian Zhang
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou, 215123, People's Republic of China
| |
Collapse
|
19
|
Gao L, Chen Y, Luo Q, Wang Y, Li X, Shen Z, Zhu W. Injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation. RSC Adv 2016; 6:94661-94668. [DOI: 10.1039/c6ra20691c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Novel injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation properties were prepared, which show significant cytotoxicity to HepG2 cells, and could be a potential candidate for intratumor drug delivery.
Collapse
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Yadong Chen
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
20
|
Xia Y, He H, Liu X, Hu D, Yin L, Lu Y, Xu W. Redox-responsive, core-crosslinked degradable micelles for controlled drug release. Polym Chem 2016. [DOI: 10.1039/c6py01423b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed novel redox-responsive, core-crosslinked micelles (CCLMs) via a simple, one-step click chemistry reaction.
Collapse
Affiliation(s)
- Yingchun Xia
- Institute of Polymer Science
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Hua He
- College of Nano Science & Technology
- Soochow University
- Soochow 215123
- China
| | - Xiangyu Liu
- Institute of Polymer Science
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Ding Hu
- Institute of Polymer Science
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Lichen Yin
- College of Nano Science & Technology
- Soochow University
- Soochow 215123
- China
| | - Yanbing Lu
- Institute of Polymer Science
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082
- China
| | - Weijian Xu
- Institute of Polymer Science
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
21
|
Du H, Wang Y, Yao X, Luo Q, Zhu W, Li X, Shen Z. Injectable cationic hydrogels with high antibacterial activity and low toxicity. Polym Chem 2016. [DOI: 10.1039/c6py01346e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We prepared injectable cationic hydrogels with strong antibacterial activity and remarkably low toxicity by in situ thiol–ene “click” reaction between dimethacrylate terminated poly(hexamethylene guanidine) (PHMGDMA) and poly[oligo(ethylene) glycol mercaptosuccinate] (POEGMS) under physiological conditions.
Collapse
Affiliation(s)
- Hong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xuxia Yao
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
22
|
Yi X, Zhang Q, Dong H, Zhao D, Xu JQ, Zhuo R, Li F. One-pot synthesis of crosslinked amphiphilic polycarbonates as stable but reduction-sensitive carriers for doxorubicin delivery. NANOTECHNOLOGY 2015; 26:395602. [PMID: 26357961 DOI: 10.1088/0957-4484/26/39/395602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, we first synthesized a novel disulfide-coupled bis-(cyclic carbonate) (TDCSS) monomer. After ring-opening co-polymerization (ROP) of TDCSS and trimethylene carbonate (TMC) initiated by mono-methoxyl poly(ethylene glycol), the crosslinked reduction-sensitive copolymer PEG-P(TMC-co-TDCSS) was obtained via a facile one-step procedure for efficient delivery of doxorubicin (DOX) into cancer cells. To serve as controls, PEG-P(TMC-co-TDCCC), which has an analogous structure without disulfide bond, and a linear polymer PEG-PTMC were also prepared. The copolymers could self-assemble to form nano-sized micelles in an aqueous solution. As compared to PEG-PTMC, crosslinked PEG-P(TMC-co-TDCSS) and PEG-P(TMC-co-TDCCC) showed lower CMC values and thus induced a much better micelle-forming ability. In vitro release studies revealed that the drug release behavior of DOX-loaded PEG-P(TMC-co-TDCSS) micelles, which could be accelerated in the presence of 10 mM dithiothreitol (DTT), showed a similar trend in the absence of DTT compared to DOX-loaded PEG-P(TMC-co-TDCCC) micelles. Furthermore, confocal laser scanning microscopy (CLSM) indicated that DOX-loaded PEG-P(TMC-co-TDCSS) micelles were efficiently internalized into HeLa cells, releasing DOX into the cytoplasm after which the drug finally entered the nuclei, while MTT assays also demonstrated potent cytotoxic activity against HeLa cells. DOX was mainly located in the cytoplasm for reduction-insensitive PEG-P(TMC-co-TDCCC) and PEG-PTMC controls.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
Huang Y, Sun R, Luo Q, Wang Y, Zhang K, Deng X, Zhu W, Li X, Shen Z. In situ
fabrication of paclitaxel-loaded core-crosslinked micelles via thiol-ene “click” chemistry for reduction-responsive drug release. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying Huang
- Department of Geriatric Dentistry; School and Hospital of Stomatology, Peking University; Beijing 100081 People's Republic of China
| | - Rui Sun
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Ying Wang
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Kai Zhang
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
- Zhoushan Stomatology Hospital; Zhoushan 316000 People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry; School and Hospital of Stomatology, Peking University; Beijing 100081 People's Republic of China
| | - Weipu Zhu
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Zhiquan Shen
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
24
|
Gao L, Zha G, Wang Y, Luo Q, Zhu W, Shen Z, Li X. An injectable drug-loaded hydrogel using a “clickable” amphiphilic triblock copolymer as a precursor. Polym Chem 2015; 6:8240-8243. [DOI: 10.1039/c5py01383f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
A PCL-POEGM-PCL amphiphilic triblock copolymer was facilely synthesized in “one pot”, which can disperse hydrophobic drugs in aqueous solution and be crosslinked by poly[oligo(ethylene glycol)mercaptosuccinate] (POEGMS) under physiological conditions.
Collapse
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Guangyu Zha
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310068
- P. R. China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiaojie Luo
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310068
- P. R. China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaodong Li
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310068
- P. R. China
| |
Collapse
|
25
|
Zhu W, Wang Y, Cai X, Zha G, Luo Q, Sun R, Li X, Shen Z. Reduction-triggered release of paclitaxel from in situ formed biodegradable core-cross-linked micelles. J Mater Chem B 2015; 3:3024-3031. [DOI: 10.1039/c4tb01834f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We provide a facile strategy to prepare redox-responsive core-crosslinked micelles for the controlled release of paclitaxel.
Collapse
Affiliation(s)
- Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xia Cai
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Guangyu Zha
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Rui Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
26
|
Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking. J Control Release 2014; 196:87-95. [DOI: 10.1016/j.jconrel.2014.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 02/02/2023]
|
27
|
Wei C, Chen M, Tao J, Wu X, Khan M, Liu D, Huang N, Li L. CdS nanorods assisted thermal oxidation of polythiol segments of PS-b-polythiols to produce core cross-linking micellar clusters. Polym Chem 2014. [DOI: 10.1039/c4py00946k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Wang Y, Luo Q, Sun R, Zha G, Li X, Shen Z, Zhu W. Acid-triggered drug release from micelles based on amphiphilic oligo(ethylene glycol)–doxorubicin alternative copolymers. J Mater Chem B 2014; 2:7612-7619. [DOI: 10.1039/c4tb01231c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We prepared pH-sensitive amphiphilic oligo(ethylene glycol)–doxorubicin alternative conjugates for the controlled release of doxorubicin.
Collapse
Affiliation(s)
- Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, P. R. China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006, P. R. China
| | - Rui Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, P. R. China
| | - Guangyu Zha
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006, P. R. China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006, P. R. China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, P. R. China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, P. R. China
| |
Collapse
|
29
|
Wang H, Zha G, Du H, Gao L, Li X, Shen Z, Zhu W. Facile fabrication of ultrathin antibacterial hydrogel films via layer-by-layer “click” chemistry. Polym Chem 2014. [DOI: 10.1039/c4py00900b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin antibacterial hydrogel films were prepared via layer-by-layer “click” chemistry.
Collapse
Affiliation(s)
- Huan Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Guangyu Zha
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006, China
| | - Hong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006, China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, China
| |
Collapse
|
30
|
Liu X, He J, Hu D, Niu Y, Xia X, Lu Y. Facile synthesis of a reduction-responsive amphiphilic triblock polymer via a selective thiol–disulfide exchange reaction. RSC Adv 2014. [DOI: 10.1039/c4ra07792j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A reduction-responsive amphiphilic triblock polymer was prepared via polycondensation between a dithiol and dipyridyl disulfide, followed by a selective thiol–disulfide exchange reaction.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Jingwen He
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Ding Hu
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Yile Niu
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Xinnian Xia
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082, China
| | - Yanbing Lu
- College of Chemistry & Chemical Engineering
- Hunan University
- Changsha 410082, China
| |
Collapse
|