1
|
Polyelectrolyte Functionalisation of Track Etched Membranes: Towards Charge-Tuneable Adsorber Materials. MEMBRANES 2021; 11:membranes11070509. [PMID: 34357159 PMCID: PMC8304886 DOI: 10.3390/membranes11070509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/04/2022]
Abstract
Porous adsorber membranes are promising materials for the removal of charged pollutants, such as heavy metal ions or organic dyes as model substances for pharmaceuticals from water. Here, we present the surface grafting of polyethylene terephthalate (PET) track-etched membranes having well defined cylindrical pores of 0.2 or 1 µm diameter with two polyelectrolytes, poly(2-acrylamido glycolic acid) (PAGA) and poly(N-acetyl dehydroalanine) (PNADha). The polyelectrolyte functionalised membranes were characterised by changes in wettability and hydraulic permeability in response to the external stimuli pH and the presence of Cu2+ ions. The response of the membranes proved to be consistent with functionalisation inside the pores, and the change of grafted polyelectrolyte macro-conformation was due to the reversible protonation or binding of Cu2+ ions. Moreover, the adsorption of the model dye methylene blue was studied and quantified. PAGA-grafted membranes showed an adsorption behavior following the Langmuir model for methylene blue.
Collapse
|
2
|
Assessment of pH Responsive Delivery of Methotrexate Based on PHEMA-st-PEG-DA Nanohydrogels. Macromol Res 2021. [DOI: 10.1007/s13233-021-9007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Wolfel A, Alvarez Igarzabal CI, Romero MR. Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Farjadian F, Ghasemi S, Andami Z, Tamami B. Thermo-responsive nanocarrier based on poly(N-isopropylacrylamide) serving as a smart doxorubicin delivery system. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00785-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Bisheh MG, Ghorbani M, Peyravi M, Jahanshahi M. Static and dynamic filtration of nickel and lead ions by adsorptive membrane induced by POP via layer by layer technique. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Roointan A, Farzanfar J, Mohammadi-Samani S, Behzad-Behbahani A, Farjadian F. Smart pH responsive drug delivery system based on poly(HEMA-co-DMAEMA) nanohydrogel. Int J Pharm 2018; 552:301-311. [PMID: 30291961 DOI: 10.1016/j.ijpharm.2018.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/29/2022]
Abstract
The advent of smart nanohydrogel has revealed new opportunities for scientists to develop the most efficient anti-cancer vehicles with safe and biocompatible profile. In this experiment, using reversible addition-fragmentation chain transfer polymerization method as a novel, safe and smart pH responsive formulation of poly (hydroxyethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) and poly (ethylene glycol)-diacrylate as cross-linker were synthesized. The synthesized structure was confirmed by Fourier-transform infrared spectroscopy and proton nuclear magnetic resonance methods. The pH responsive behavior of the synthesized particles was checked by size measurement in two different pH values (5.5 and 7.4) by dynamic light scattering and transmission electron microscopy. The prepared structure had nanometer sizes of 180 in medium with pH of 7.4, when it encountered acidic medium (e.g. pH 5.5), the particles swelled to about 400 nm. The efficiency of the prepared pH responsive nanohydrogels was tested as a drug delivery system. An anti-cancer drug, doxorubicin successfully interacted with this material. The release profiles of nanoparticles carrying drug molecules were checked in two different simulated pH of healthy organs (7.4) and tumor site (5.5). Despite lower release in pH of 7.4 (∼20%), an increased drug release of 80% was obtained in pH of 5.5. The in vitro toxicity assay, apoptosis evaluation and uptake experiments were performed on breast cancer cell line (MCF-7), which showed a time dependency cellular entrance, an enhanced cytotoxicity and apoptosis induction by the doxorubicin loaded nanoparticles. Hemolysis assays confirmed the safety and hemocompatibility of the developed nanohydrogel. The suitable size (<200 nm), pH responsive behavior, anti-proliferative activity and apoptosis induction in cancer cells and hemocompatibility were the noticeable features of the developed doxorubicin adsorbed nanoparticle, which introduced this formulation as an ideal vehicle in anti-cancer drug delivery.
Collapse
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Farzanfar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Qin Y, Yang H, Xu Z, Li F. Surface Modification of Polyacrylonitrile Membrane by Chemical Reaction and Physical Coating: Comparison between Static and Pore-Flowing Procedures. ACS OMEGA 2018; 3:4231-4241. [PMID: 31458656 PMCID: PMC6641343 DOI: 10.1021/acsomega.7b02094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/02/2018] [Indexed: 05/29/2023]
Abstract
The influences of static and pore-flowing procedures on the surface modification of a polyacrylonitrile (PAN) ultrafiltration membrane through chemical reaction and physical coating were investigated in detail. For chemical modification by ethanolamine, a membrane modified by the pore-flowing procedure showed a higher flux and different morphology. The reasons were explained by two effects: the pore-flowing resistance to the random thermal motion of PAN at high temperatures and different reaction kinetics related to the reactant concentration profile on the interface between the membrane and reaction solution and the kinetic property of the fluid (driving force and miscibility) and reaction (time and rate). For physical coating modification, a dense and flat layer via a loose and random layer was formed during the pore-flowing process and static process, which changed the flux and antifouling property of the membrane. The membrane prepared by dead-end filtration showed the best trade-off between the flux and antifouling property. Overall, the procedure kinetics plays an important role in the optimization of membrane modification.
Collapse
|
8
|
Affiliation(s)
- Anh Vu
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
9
|
Farjadian F, Ghasemi S, Heidari R, Mohammadi-Samani S. In vitro and in vivo assessment of EDTA-modified silica nano-spheres with supreme capacity of iron capture as a novel antidote agent. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:745-753. [PMID: 27793790 DOI: 10.1016/j.nano.2016.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 12/24/2022]
Abstract
Mesoporous silica nanoparticles having structure of MCM-41 category with amine and EDTA functional groups in the pores were prepared using a co-condensation reaction. The synthetic steps eventuated in the mesoporous silica nanoparticles with spherical sizes lower than 50nm supposed to have high surface area. The nanoparticles' structure and functionality were characterized by FTIR spectroscopy and CHN analysis and the topography were examined by SEM and TEM and hydrodynamic sizes were demonstrated by DLS. The crystallinity and mesoporous pattern were figured out by XRD technique. Then the efficiency of these materials was tested in vitro and in vivo in adsorbing ferrous sulfate which is a supplement normally prescribed in treating iron deficiency and its overdose is potentially lethal, especially in young children. In vivo experiments illustrated that both nanoparticles could efficiently be administrated as an antidote agent against iron overdose, but EDTA-MSN nanoparticles were superior to NH2-MSN nanoparticles.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran.
| | - Sahar Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583-Shiraz, Iran.
| |
Collapse
|
10
|
Synthesis of thermosensitive magnetic nanocarrier for controlled sorafenib delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:42-50. [DOI: 10.1016/j.msec.2016.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/06/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
|
11
|
Liu Z, Wickramasinghe SR, Qian X. Membrane chromatography for protein purifications from ligand design to functionalization. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1223133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zizhao Liu
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
12
|
Wijeratne S, Liu W, Dong J, Ning W, Ratnayake ND, Walker KD, Bruening ML. Layer-by-Layer Deposition with Polymers Containing Nitrilotriacetate, A Convenient Route to Fabricate Metal- and Protein-Binding Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10164-10173. [PMID: 27042860 DOI: 10.1021/acsami.6b00896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper describes a convenient synthesis of nitrilotriacetate (NTA)-containing polymers and subsequent layer-by-layer adsorption of these polymers on flat surfaces and in membrane pores. The resulting films form NTA-metal-ion complexes and capture 2-3 mmol of metal ions per mL of film. Moreover, these coatings bind multilayers of polyhistidine-tagged proteins through association with NTA-metal-ion complexes. Inclusion of acrylic acid repeat units in NTA-containing copolymers promotes swelling to increase protein binding in films on Au-coated wafers. Adsorption of NTA-containing films in porous nylon membranes gives materials that capture ∼46 mg of His-tagged ubiquitin per mL. However, the binding capacity decreases with the protein molecular weight. Due to the high affinity of NTA for metal ions, the modified membranes show modest leaching of Ni(2+) in binding and rinsing buffers. Adsorption of NTA-containing polymers is a simple method to create metal- and protein-binding films and may, with future enhancement of stability, facilitate development of disposable membranes that rapidly purify tagged proteins.
Collapse
Affiliation(s)
- Salinda Wijeratne
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Weijing Liu
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Jinlan Dong
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Wenjing Ning
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | | | - Kevin D Walker
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Merlin L Bruening
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Dai J, Liu XH, Xiao YJ, Yang JH, Qi PK, Wang J, Wang Y, Zhou ZW. High hydrophilicity and excellent adsorption ability of a stretched polypropylene/graphene oxide composite membrane achieved by plasma assisted surface modification. RSC Adv 2015. [DOI: 10.1039/c5ra10310j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through a plasma treatment, a PP-based composite membrane with a high hydrophilicity and an excellent adsorption ability was developed.
Collapse
Affiliation(s)
- Jian Dai
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Xiao-hao Liu
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Yan-jun Xiao
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Jing-hui Yang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Peng-kai Qi
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Jin Wang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Yong Wang
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| | - Zuo-wan Zhou
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education of China
- Chengdu 610031
| |
Collapse
|