1
|
Prossnitz AN, Pun SH. Modulating Boronic Ester Stability in Block Copolymer Micelles via the Neighbor Effect of Copolymerized Tertiary Amines for Controlled Release of Polyphenolic Drugs. ACS Macro Lett 2022; 11:276-283. [PMID: 35575376 DOI: 10.1021/acsmacrolett.1c00751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The traceless and pH-sensitive properties of boronic esters are attractive for the synthesis of polymer-drug conjugates, but current platforms suffer from both low stability under physiologically relevant conditions and synthetically demanding optimization to tune drug release profiles. We hypothesized that the high catechol affinity and stability of Wulff-type boronic acids could be mimicked by copolymerization of phenyl boronic acid with a tertiary amine and subsequent micellization. This strategy yielded a versatile platform for the preparation of reversible polymer-drug conjugates, which more than doubled the oxidative stability of encapsulated polyphenolic drug cargo at physiologically relevant pH and enabled simple and incremental tuning of drug release kinetics. Moreover, we validated, with 19F NMR, that these copolymers exhibit uniquely high catechol affinity that could not be replicated by combinations of similarly functionalized small molecules. Overall, this report demonstrates that copolymerization of boronic acid and tertiary amine monomers is a powerful and modular approach to improving boronic ester chemistry for drug delivery applications.
Collapse
Affiliation(s)
- Alexander N. Prossnitz
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Gong Y, Chen M, Tan Y, Shen J, Jin Q, Deng W, Sun J, Wang C, Liu Z, Chen Q. Injectable Reactive Oxygen Species-Responsive SN38 Prodrug Scaffold with Checkpoint Inhibitors for Combined Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50248-50259. [PMID: 33135879 DOI: 10.1021/acsami.0c13943] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemotherapeutic agents have been widely used for cancer treatment in clinics. Aside from their direct cytotoxicity to cancer cells, some of them could activate the immune system of the host, contributing to the enhanced antitumor activity. Here, the reactive oxygen species (ROS)-responsive hydrogel, covalently cross-linked by phenylboronic acid-modified 7-ethyl-10-hydroxycamptothecin (SN38-SA-BA) with poly(vinyl alcohol) (PVA), is fabricated for topical delivery of anti-programmed cell death protein ligand 1 antibodies (aPDL1). In the presence of endogenous ROS, SN38-SA-BA will be oxidized and hydrolyzed, leading to the degradation of hydrogel and the release of initial free SN38 and encapsulated aPDL1. It is demonstrated that SN38 could elicit specific immune responses by triggering immunogenic cell death (ICD) of cancer cells, a distinct cell death pathway featured with the release of immunostimulatory damage-associated molecular patterns (DAMPs). Meanwhile, the released aPDL1 could bind to programmed cell death protein ligand 1 (PDL1) expressed on cancer cells to augment antitumor T cell responses. Thus, the ROS-responsive prodrug hydrogel loaded with aPDL1 could induce effective innate and adaptive antitumor immune responses after local injection, significantly inhibiting or even eliminating those tumors.
Collapse
Affiliation(s)
- Yimou Gong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Yanjun Tan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qiutong Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wutong Deng
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Jian Sun
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
3
|
Zhou W, Yang G, Ni X, Diao S, Xie C, Fan Q. Recent Advances in Crosslinked Nanogel for Multimodal Imaging and Cancer Therapy. Polymers (Basel) 2020; 12:E1902. [PMID: 32846923 PMCID: PMC7563556 DOI: 10.3390/polym12091902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Nanomaterials have been widely applied in the field of cancer imaging and therapy. However, conventional nanoparticles including micelles and liposomes may suffer the issue of dissociation in the circulation. In contrast, crosslinked nanogels the structures of which are covalently crosslinked have better physiological stability than micelles and liposomes, making them more suitable for cancer theranostics. In this review, we summarize recent advances in crosslinked nanogels for cancer imaging and therapy. The applications of nanogels in drug and gene delivery as well as development of novel cancer therapeutic methods are first introduced, followed by the introduction of applications in optical and multimodal imaging, and imaging-guided cancer therapy. The conclusion and future direction in this field are discussed at the end of this review.
Collapse
Affiliation(s)
| | | | | | | | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.Z.); (G.Y.); (X.N.); (S.D.)
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China; (W.Z.); (G.Y.); (X.N.); (S.D.)
| |
Collapse
|
4
|
Pothanagandhi N, Vijayakrishna K. RAFT derived chiral and achiral poly(ionic liquids) resins: Synthesis and application in organocatalysis. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Malca MY, Ferko PO, Friščić T, Moores A. Solid-state mechanochemical ω-functionalization of poly(ethylene glycol). Beilstein J Org Chem 2017; 13:1963-1968. [PMID: 29062415 PMCID: PMC5629410 DOI: 10.3762/bjoc.13.191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Poly(ethylene glycol) (PEG) is a linear polymer with a wide range of applications in chemical manufacturing, drug development and nanotechnology. PEG derivatives are being increasingly used to covalently modify small molecule and peptide drugs, as well as bioactive nanomaterials in order to improve solubility in biological serum, reduce immunogenicity, and enhance pharmacokinetic profiles. Herein we present the development of mechanochemical procedures for PEG functionalization without the need for bulk solvents, offering a cleaner and more sustainable alternative to existing solution-based PEG procedures. The herein presented mechanochemical procedures enable rapid and solvent-free derivatization of PEG with tosyl, bromide, thiol, carboxylic acid or amine functionalities in good to quantitative yields and with no polymer chain oligomerization, proving the versatility of the method.
Collapse
Affiliation(s)
- Michael Y Malca
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Pierre-Olivier Ferko
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Audrey Moores
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
6
|
Gopinath A, Sathiyaraj S, Sultan Nasar A. Star poly(4-vinylpyridine)s using dendritic ATRP initiators: Synthesis, electrolyte property and performance in dye sensitized solar cell. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1274-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Patil NG, Basutkar NB, Ambade AV. Copper and silver nanoparticles stabilized by bistriazole-based dendritic amphiphile micelles for 4-nitrophenol reduction. NEW J CHEM 2017. [DOI: 10.1039/c7nj00605e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Copper and silver nanoparticles stabilized on dendritic amphiphiles catalyzed 4-nitrophenol reduction at the ppm level, with particle size influencing catalytic efficiency.
Collapse
Affiliation(s)
- Naganath G. Patil
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune-411008
- India
| | - Nitin B. Basutkar
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune-411008
- India
| | - Ashootosh V. Ambade
- Polymer Science and Engineering Division
- CSIR-National Chemical Laboratory
- Dr Homi Bhabha Road
- Pune-411008
- India
| |
Collapse
|
8
|
Cheng DB, Yang PP, Cong Y, Liu FH, Qiao ZY, Wang H. One-pot synthesis of pH-responsive hyperbranched polymer–peptide conjugates with enhanced stability and loading efficiency for combined cancer therapy. Polym Chem 2017. [DOI: 10.1039/c7py00101k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles as drug-delivery systems have received significant attention due to their merits such as prolonged circulation time and passive targeting of a tumor site.
Collapse
Affiliation(s)
- Dong-Bing Cheng
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Yong Cong
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Fu-Hua Liu
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- Laboratory for Biological Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing
- China
| |
Collapse
|
9
|
Guo Y, Zhao Y, Wang T, Li R, Han M, Dong Z, Zhu C, Wang X. Hydroxycamptothecin Nanorods Prepared by Fluorescently Labeled Oligoethylene Glycols (OEG) Codendrimer: Antitumor Efficacy in Vitro and in Vivo. Bioconjug Chem 2016; 28:390-399. [DOI: 10.1021/acs.bioconjchem.6b00536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yifei Guo
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Yanna Zhao
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Ting Wang
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Ran Li
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Chunyan Zhu
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal
Plant
Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road,
Haidian District, Beijing 100193, China
| |
Collapse
|
10
|
Wang C, Wang J, Chen X, Zheng X, Xie Z, Chen L, Chen X. Phenylboronic Acid-Cross-Linked Nanoparticles with Improved Stability as Dual Acid-Responsive Drug Carriers. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Chunran Wang
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Jinze Wang
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Xiaofei Chen
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Xu Zheng
- Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Zhigang Xie
- Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Li Chen
- Department of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
11
|
Nasar AS, Veerapandian S. Dendritic-Linear Hybrid Multiarm Star Polymers: A Straightforward Synthesis of Polymer as Molecular Nanoparticles. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Selvaraj Veerapandian
- Department of Polymer Science; University of Madras, Guindy Campus; Chennai 600025 India
| |
Collapse
|
12
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|