1
|
Yin M, Wang L, Liu Y, Chen J, Gao H, Xu J, Guo Y, Cui X, Yu G, Cai C. GSH-Responsive GalNAc-Conjugated Glycopolymer for Targeted Survivin siRNA Delivery in Hepatocellular Carcinoma Therapy. ACS Macro Lett 2025:589-596. [PMID: 40269699 DOI: 10.1021/acsmacrolett.5c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Gene interference therapy has made significant progress in the treatment of various diseases by targeting specific pathogenic genes and down-regulating the production of harmful proteins. This approach enables the precise modulation of gene expression, offering potential therapeutic benefits for conditions driven by genetic mutations or abnormal protein accumulation. Survivin, an apoptosis-inhibiting protein, plays a critical role in regulating tumor cell proliferation and preventing programmed cell death. Its overexpression in liver cancer cells is strongly associated with poor prognosis and accelerated tumor progression. RNA interference (RNAi) therapy can effectively suppress the expression of Survivin in liver cancer, inhibiting tumor cell proliferation and promoting apoptosis. In this study, four distinct GalNAc-conjugated glycopolymer siRNA delivery systems were developed. By leveraging the efficient liver-targeting capability of the GalNAc moiety, Survivin-siRNA was specifically delivered to liver cancer cells through either covalent coupling or electrostatic adsorption. In vitro experiments demonstrated the excellent gene silencing effect of these siRNA complexes, highlighting their potential as a promising therapeutic strategy for liver cancer.
Collapse
Affiliation(s)
- Mengfei Yin
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Lihao Wang
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yang Liu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jingjing Chen
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongming Gao
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jinlong Xu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Yuxin Guo
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Xinying Cui
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Guangli Yu
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chao Cai
- Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Rudra S, Mondal S, Chakraborty M, Swamy MJ, Jana T. Galactose Glycopolymer- Grafted Silica Nanoparticles: Synthesis and Binding Studies with Lectin. ACS APPLIED BIO MATERIALS 2024; 7:5689-5701. [PMID: 39116418 DOI: 10.1021/acsabm.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Weak binding of carbohydrates with protein receptors possesses serious drawbacks in the advancement of therapeutics; however, the development of strategies for multipoint interactions between carbohydrates and protein can overcome these challenges. One such method is developed in this work where glycopolymer-grafted silica nanoparticles with a large number of carbohydrate units are prepared for the interactions with multiple binding sites of the protein. First, a glycomonomer, β-d-galactose-hydroxyethyl methacrylate (β-GEMA), was synthesized in a two-step process by coupling β-d-galactose pentaacetate and hydroxyethyl methacrylate (HEMA), followed by deacetylation for the preparation of poly(β-GEMA) glycopolymers (GPs). Further, the poly(β-GEMA) chains were grafted onto the silica nanoparticle (SiNP) surface by utilizing the "grafting-from" strategy of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare p(β-GEMA)-grafted SiNPs (GNPs). Five different chain lengths ranging from 10 to 40 kDa of the GPs and the GNPs were prepared, and various characterization techniques confirmed the formation of GPs and grafting of the GPs on the SiNP surface. The particle size of GNPs and the number of GPs grafted on the SiNP surface showed a strong dependence on the chain length of the GPs. Further, the GNPs were subjected to a binding study with β-galactose-specific protein peanut agglutinin (PNA). A much stronger binding in the case of GNPs was observed with an association constant ∼320 times and ∼53 times than that of the monomeric methyl-β-d-galactopyranoside and the GPs, respectively. Additionally, the binding of the PNA with GNPs and GPs was also studied with varying chain lengths to understand the effects of the chain length on the binding affinity. A clear increase in binding constants was observed in the case of GNPs with increasing chain length of grafted GPs, attributed to the enhanced enthalpic and entropic contributions. This work holds its uniqueness in these improved interactions between carbohydrates and proteins, which can be used for carbohydrate-based targeted therapeutics.
Collapse
Affiliation(s)
- Somdatta Rudra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
3
|
Zare I, Zirak Hassan Kiadeh S, Varol A, Ören Varol T, Varol M, Sezen S, Zarepour A, Mostafavi E, Zahed Nasab S, Rahi A, Khosravi A, Zarrabi A. Glycosylated nanoplatforms: From glycosylation strategies to implications and opportunities for cancer theranostics. J Control Release 2024; 371:158-178. [PMID: 38782062 DOI: 10.1016/j.jconrel.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Glycosylated nanoplatforms have emerged as promising tools in the field of cancer theranostics, integrating both therapeutic and diagnostic functionalities. These nanoscale platforms are composed of different materials such as lipids, polymers, carbons, and metals that can be modified with glycosyl moieties to enhance their targeting capabilities towards cancer cells. This review provides an overview of different modification strategies employed to introduce glycosylation onto nanoplatforms, including chemical conjugation, enzymatic methods, and bio-orthogonal reactions. Furthermore, the potential applications of glycosylated nanoplatforms in cancer theranostics are discussed, focusing on their roles in drug delivery, imaging, and combination therapy. The ability of these nanoplatforms to selectively target cancer cells through specific interactions with overexpressed glycan receptors is highlighted, emphasizing their potential for enhancing efficacy and reducing the side effects compared to conventional therapies. In addition, the incorporation of diagnostic components onto the glycosylated nanoplatforms provided the capability of simultaneous imaging and therapy and facilitated the real-time monitoring of treatment response. Finally, challenges and future perspectives in the development and translation of glycosylated nanoplatforms for clinical applications are addressed, including scalability, biocompatibility, and regulatory considerations. Overall, this review underscores the significant progress made in the field of glycosylated nanoplatforms and their potential to revolutionize cancer theranostics.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz 7178795844, Iran
| | - Shahrzad Zirak Hassan Kiadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Tuğba Ören Varol
- Department of Chemistry, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkiye
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkiye
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkiye; Nanotechnology Research and Application Center, Sabanci University, Tuzla, 34956 Istanbul, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Amid Rahi
- Pathology and Stem cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
4
|
Indla NR, Maruthi Y, Rawat R, Sandeep Kumar T, Ramesh Reddy N, Sharma M, Aminabhavi TM, Kakarla RR, Sainath AVS. Synthesis and biological properties of novel glucose-based fluoro segmented macromolecular architectures. Int J Biol Macromol 2024; 268:131724. [PMID: 38653427 DOI: 10.1016/j.ijbiomac.2024.131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The emergence of novel well-defined biological macromolecular architectures containing fluorine moieties displaying superior functionalities can satisfactorily address many biomedical challenges. In this research, ABA- and AB-type glucose-based biological macromolecules were synthesized using acryl-2,3,4,6-tetra-O-acetyl-D-glucopyranoside with pentafluorophenyl (FPM), pentafluorobenzyl (FBM), phenyl (PM) and benzyl (BM) methacrylate-based macro-RAFT agents following RAFT polymerization. The macro-RAFT agents and the corresponding copolymers were characterized by 19F, 1H, and 13C NMR and FTIR spectroscopic techniques to understand the chemical structure, molecular weight by size-exclusion chromatography, thermal analysis by TGA and DSC. Thermal stability (Td5%) of the FPM and FBM fluoro-based polymers was observed in the range of 219-267 °C, while the non-fluoro PM and BM polymers exhibited in the range of 216-264 °C. Among the macro-RAFT agents, PFPM (107 °C, ΔH: 0.613 J/g) and PPM (103 °C, ΔH: 0.455 J/g) showed higher Tm values, while among the block copolymers, PFBM-b-PG (123 °C, ΔH: 0.412 J/g) and PG-b-PFPM-b-PG (126 °C, ΔH: 0.525 J/g) exhibited higher Tm values. PFBMT and PPM macro-RAFT agents, PPM-b-PG and PG-b-PPM-b-PG copolymer spin-coated films showed the highest hydrophobicity (120°) among the synthesized polymers. The block copolymers exhibited self-assembled segregation by using relatively hydrophobic segments as the core and hydrophilic moieties as the corona. Synthesized biological macromolecules exhibit maximum antibacterial activity towards S. aureus than E. coli bacteria. Fluorophenyl (PFPM) and non-fluorobenzyl-based (PBMT) macro-RAFT agents exhibit low IC50 values, suggesting high cytotoxicity. All the triblock copolymers exhibit lesser cytotoxicity than the di-block polymers.
Collapse
Affiliation(s)
- Nagamalleswara Rao Indla
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yeggada Maruthi
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Reetika Rawat
- Banasthali Vidyapith, Department of Pharm, Banasthali 304022, Rajasthan, India
| | - T Sandeep Kumar
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - N Ramesh Reddy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Manu Sharma
- Banasthali Vidyapith, Department of Pharm, Banasthali 304022, Rajasthan, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; Korea University, Seoul, Republic of Korea.
| | - Raghava Reddy Kakarla
- School Chemical Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Annadanam V Sesha Sainath
- Fluoro-Agrochemicals, Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Bideplán-Moyano C, Lo Fiego MJ, Calmels JJ, Alonso B, Radivoy G, Ruiz-Molina D, Mancebo-Aracil J, Nador F. Design and synthesis of unnatural coordination glycopolymer particles (CGPs): unleashing the potential of catechol-saccharide derivatives. RSC Adv 2023; 13:27491-27500. [PMID: 37711379 PMCID: PMC10499112 DOI: 10.1039/d3ra05316d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Our study unveils an innovative methodology that merges catechols with mono- and disaccharides, yielding a diverse array of compounds. This strategic fusion achieves robust yields and introduces ligands with a dual nature: encompassing both the chelating attributes of catechols and the recognition capabilities of carbohydrates. This synergistic design led us to couple one of the novel ligands with an Fe(iii) salt, resulting in the creation of Coordination Glycopolymer Particles (CGPs). These CGPs demonstrate remarkable qualities, boasting outstanding dispersion in both aqueous media and Phosphate Buffered Saline (PBS) solution (pH ∼7.4) at higher concentrations (0.26 mg μL-1). Displaying an average Z-size of approximately 55 nm and favourable polydispersity indices (<0.25), these particles exhibit exceptional stability, maintaining their integrity over prolonged periods and temperature variations. Notably, they retain their superior dispersion and stability even when subjected to freezing or heating to 40 °C, making them exceptionally viable for driving biological assays. In contrast to established methods for synthesizing grafted glycopolymers, where typically a glycopolymer is doped with catechol derivatives to create synergy between chelating properties and those inherent to the saccharide, our approach provides a more efficient and versatile pathway for generating CGPs. This involves combining catechols and carbohydrates within a single molecule, enabling the fine-tuning of organic structure from a monomer design step and subsequently transferring these properties to the polymer.
Collapse
Affiliation(s)
- Celina Bideplán-Moyano
- Instituto de Química del Sur (INQUISUR-CONICET) - NANOSYN, Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
| | - Marcos J Lo Fiego
- Instituto de Química del Sur (INQUISUR-CONICET) - GIQOS. Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
| | - Juan José Calmels
- Instituto de Química del Sur (INQUISUR-CONICET) - NANOSYN, Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
| | - Belén Alonso
- Instituto de Química del Sur (INQUISUR-CONICET) - NANOSYN, Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
| | - Gabriel Radivoy
- Instituto de Química del Sur (INQUISUR-CONICET) - NANOSYN, Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) Campus UAB Bellaterra 08193 Barcelona Spain
| | - Juan Mancebo-Aracil
- Instituto de Química del Sur (INQUISUR-CONICET) - NANOSYN, Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
| | - Fabiana Nador
- Instituto de Química del Sur (INQUISUR-CONICET) - NANOSYN, Departamento de Química, Universidad Nacional del Sur (UNS) Av. Alem 1253, 8000 Bahía Blanca Buenos Aires Argentina
| |
Collapse
|
6
|
Pesenti T, Domingo-Lopez D, Gillon E, Ibrahim N, Messaoudi S, Imberty A, Nicolas J. Degradable Glycopolyester-like Nanoparticles by Radical Ring-Opening Polymerization. Biomacromolecules 2022; 23:4015-4028. [PMID: 35971824 DOI: 10.1021/acs.biomac.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A small library of degradable polyester-like glycopolymers was successfully prepared by the combination of radical ring-opening copolymerization of 2-methylene-1,3-dioxepane as a cyclic ketene acetal (CKA) with vinyl ether (VE) derivatives and a Pd-catalyzed thioglycoconjugation. The resulting thioglycopolymers were formulated into self-stabilized thioglyconanoparticles, which were stable up to 4 months and were enzymatically degraded. Nanoparticles and their degradation products exhibited a good cytocompatibility on two healthy cell lines. Interactions between thioglyconanoparticles and lectins were investigated and highlighted the presence of both specific carbohydrate/lectin interactions and nonspecific hydrophobic interactions. Fluorescent thioglyconanoparticles were also prepared either by encapsulation of Nile red or by the functionalization of the polymer backbone with rhodamine B. Such nanoparticles were used to prove the cell internalization of the thioglyconanoparticles by lung adenocarcinoma (A549) cells, which underlined the great potential of P(CKA-co-VE) copolymers for biomedical applications.
Collapse
Affiliation(s)
- Théo Pesenti
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Daniel Domingo-Lopez
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Nada Ibrahim
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92296 Châtenay-Malabry, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
7
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gu C, Shan F, Zheng L, Zhou Y, Hu J, Chen G. Towards a protein-selective Raman enhancement by a glycopolymer-based composite surface. J Mater Chem B 2022; 10:1434-1441. [PMID: 35168248 DOI: 10.1039/d1tb02746h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS), which is based on the surface plasmon resonance (LSPR) of noble metal nanostructures, is widely used in the biological field due to its advantages of non-damaging samples and detection up to the molecular level. For biological SERS detection, preparation of substrates with biocompatibility and specific adsorption, leading to selective enhancement of the target biomolecules, are important design strategies. Utilizing the specific interaction between a carbohydrate and protein, a glycopolymer-based composite surface is fabricated to realize specific SERS detection of proteins. Herein, we use N-3,4-dihydroxybenzeneethyl methacrylamide (DMA), 2-deoxy-2-(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) as monomers in a sunlight-induced RAFT polymerization to synthesize a dopamine-containing glycopolymer. The glycopolymers are used to prepare a SERS substrate. The composite surface shows specific protein adsorption capacity, and the selective Raman enhancement of specific proteins was successfully achieved between the two different proteins Con A and BSA. This provides a feasible approach to design a SERS surface for protein detection and the study of the interaction between sugar and proteins.
Collapse
Affiliation(s)
- Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|
9
|
Jung K, Corrigan N, Wong EHH, Boyer C. Bioactive Synthetic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105063. [PMID: 34611948 DOI: 10.1002/adma.202105063] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.
Collapse
Affiliation(s)
- Kenward Jung
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), Australian Centre for Nanomedicine (ACN), and School of Chemical Engineering, University of New South Wales (UNSW) Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Li Y, Ariotti N, Aghaei B, Pandzic E, Ganda S, Willcox M, Sanchez‐Felix M, Stenzel M. Inhibition of
S. aureus
Infection of Human Umbilical Vein Endothelial Cells (HUVECs) by Trehalose‐ and Glucose‐Functionalized Gold Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yimeng Li
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Nicholas Ariotti
- Electron Microscope Unit Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Behnaz Aghaei
- Inventia Life Science Pty Ltd Sydney NSW 2015 Australia
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney NSW 2052 Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia
| | - Sylvia Ganda
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | - Mark Willcox
- School of Optometry and Vision Science University of New South Wales Sydney NSW 2052 Australia
| | | | - Martina Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
11
|
Li Y, Ariotti N, Aghaei B, Pandzic E, Ganda S, Willcox M, Sanchez-Felix M, Stenzel MH. Inhibition of S. aureus-Infection of HUVECs by Trehalose and Glucose-functionalized Gold Nanoparticles. Angew Chem Int Ed Engl 2021; 60:22652-22658. [PMID: 34387412 DOI: 10.1002/anie.202106544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/19/2021] [Indexed: 11/10/2022]
Abstract
Microbial adhesion to host cells represents the initial step in the infection process. Several methods have been explored to inhibit microbial adhesion including the use of glycopolymers based on mannose, galactose, sialic acid and glucose. These sugar receptors are however abundant in the body and they are not unique to bacteria. Trehalose in contrast is a unique disaccharide that is wildly expressed by microbes. This carbohydrate has not yet been explored as an anti-adhesive. Herein, gold nanoparticles (AuNPs) coated with trehalose-based polymers were prepared and compared to glucose-functionalized AuNPs and examined for their ability to prevent binding to endothelial cells. Acting as anti-adhesive, trehalose-functionalized nanoparticles decreased the binding of S. aureus to HUVEC cells, while outperforming the control nanoparticles. Microscopy revealed that trehalose coated nanoparticle bound strongly to S. aureus compared to the controls. In conclusion, nanoparticles based on trehalose could be a non-toxic alternative to inhibit S. aureus infection.
Collapse
Affiliation(s)
- Yimeng Li
- University of New South Wales - Kensington Campus: University of New South Wales, School of Chemistry, AUSTRALIA
| | - Nicholas Ariotti
- University of New South Wales - Kensington Campus: University of New South Wales, Mark Wainwright Analytical Centre, AUSTRALIA
| | - Behnaz Aghaei
- UNSW: University of New South Wales, school of Chemistry, AUSTRALIA
| | - Elvis Pandzic
- UNSW: University of New South Wales, school of chemistry, AUSTRALIA
| | - Sylvia Ganda
- UNSW: University of New South Wales, School of Chemistry, AUSTRALIA
| | - Mark Willcox
- UNSW: University of New South Wales, School of Optometry and Vision Science, AUSTRALIA
| | | | - Martina Heide Stenzel
- University of New South Wales Institute of Languages: UNSW Global Pty Limited, School of Chemical Sciences and Engineering, Applied Science Building, 2052, Sydney, AUSTRALIA
| |
Collapse
|
12
|
Tavares MR, Pechar M, Chytil P, Etrych T. Polymer-Based Drug-Free Therapeutics for Anticancer, Anti-Inflammatory, and Antibacterial Treatment. Macromol Biosci 2021; 21:e2100135. [PMID: 34008348 DOI: 10.1002/mabi.202100135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Indexed: 01/09/2023]
Abstract
This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| |
Collapse
|
13
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco-Inside Nano-Assemblies through RAFT Dispersion Polymerization of Galactose-Decorated Monomer. Angew Chem Int Ed Engl 2021; 60:11098-11103. [PMID: 33565244 PMCID: PMC8252037 DOI: 10.1002/anie.202015692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/31/2021] [Indexed: 01/15/2023]
Abstract
Glyco-assemblies derived from amphiphilic sugar-decorated block copolymers (ASBCs) have emerged prominently due to their wide application, for example, in biomedicine and as drug carriers. However, to efficiently construct these glyco-assemblies is still a challenge. Herein, we report an efficient technology for the synthesis of glyco-inside nano-assemblies by utilizing RAFT polymerization of a galactose-decorated methacrylate for polymerization-induced self-assembly (PISA). Using this approach, a series of highly ordered glyco-inside nano-assemblies containing intermediate morphologies were fabricated by adjusting the length of the hydrophobic glycoblock and the polymerization solids content. A specific morphology of complex vesicles was captured during the PISA process and the formation mechanism is explained by the morphology of its precursor and intermediate. Thus, this method establishes a powerful route to fabricate glyco-assemblies with tunable morphologies and variable sizes, which is significant to enable the large-scale fabrication and wide application of glyco-assemblies.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| | - Thomas Bick
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Johannes Martin
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Petra Wendler
- Department of BiochemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Alexander Böker
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
- Chair of Polymer Materials and Polymer TechnologiesInstitute of ChemistryUniversity of PotsdamKarl-Liebknecht-Str. 24–2514476Potsdam-GolmGermany
| | - Ulrich Glebe
- Department of Life Science and BioprocessesFraunhofer Institute for Applied Polymer Research IAPGeiselbergstr. 6914476Potsdam-GolmGermany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular BiophysicsInstitute of BiophysicsHebei University of TechnologyTianjin300401P. R. China
| |
Collapse
|
14
|
Qiu L, Zhang H, Bick T, Martin J, Wendler P, Böker A, Glebe U, Xing C. Construction of Highly Ordered Glyco‐Inside Nano‐Assemblies through RAFT Dispersion Polymerization of Galactose‐Decorated Monomer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Haoran Zhang
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| | - Thomas Bick
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Johannes Martin
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Petra Wendler
- Department of Biochemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl-Liebknecht-Str. 24–25 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Department of Life Science and Bioprocesses Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics Institute of Biophysics Hebei University of Technology Tianjin 300401 P. R. China
| |
Collapse
|
15
|
|
16
|
Wang B, Shang C, Miao Z, Guo S, Zhang Q. Lactose-containing glycopolymer grafted onto magnetic titanium dioxide nanomaterials for targeted capture and photocatalytic killing of pathogenic bacteria. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Todorova Z, Tumurbaatar O, Todorova J, Ugrinova I, Koseva N. Phosphorus-containing star-shaped polymer conjugates for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Song Y, Chen Y, Li P, Dong CM. Photoresponsive Polypeptide-Glycosylated Dendron Amphiphiles: UV-Triggered Polymersomes, OVA Release, and In Vitro Enhanced Uptake and Immune Response. Biomacromolecules 2020; 21:5345-5357. [DOI: 10.1021/acs.biomac.0c01465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yingying Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pan Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
19
|
Chan Y, Ng SW, Mehta M, Gupta G, Chellappan DK, Dua K. Sugar-based nanoparticles for respiratory diseases: a new paradigm in the nanoworld. Future Med Chem 2020; 12:1887-1890. [PMID: 33054387 DOI: 10.4155/fmc-2020-0206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/26/2020] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Sin Wi Ng
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, Newcastle, NSW 2305, Australia
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
20
|
Functional Glycopolypeptides: Synthesis and Biomedical Applications. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6052078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Employing natural-based renewable sugar and saccharide resources to construct functional biopolymer mimics is a promising research frontier for green chemistry and sustainable biotechnology. As the mimics/analogues of natural glycoproteins, synthetic glycopolypeptides attracted great attention in the field of biomaterials and nanobiotechnology. This review describes the synthetic strategies and methods of glycopolypeptides and their analogues, the functional self-assemblies of the synthesized glycopolypeptides, and their biological applications such as biomolecular recognition, drug/gene delivery, and cell adhesion and targeting, as well as cell culture and tissue engineering. Future outlook of the synthetic glycopolypeptides was also discussed.
Collapse
|
21
|
Beyer VP, Monaco A, Napier R, Yilmaz G, Becer CR. Bottlebrush Glycopolymers from 2-Oxazolines and Acrylamides for Targeting Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin and Mannose-Binding Lectin. Biomacromolecules 2020; 21:2298-2308. [PMID: 32320219 DOI: 10.1021/acs.biomac.0c00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lectins are omnipresent carbohydrate binding proteins that are involved in a multitude of biological processes. Unearthing their binding properties is a powerful tool toward the understanding and modification of their functions in biological applications. Herein, we present the synthesis of glycopolymers with a brush architecture via a "grafting from" methodology. The use of a versatile 2-oxazoline inimer was demonstrated to open avenues for a wide range of 2-oxazoline/acrylamide bottle brush polymers utilizing aqueous Cu-mediated reversible deactivation radical polymerization (Cu-RDRP). The polymers in the obtained library were assessed for their thermal properties in aqueous solution and their binding toward the C-type animal lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and mannose-binding lectin (MBL) via surface plasmon resonance spectrometry. The encapsulation properties of a hydrophobic drug-mimicking compound demonstrated the potential use of glyco brush copolymers in biological applications.
Collapse
Affiliation(s)
- Valentin P Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Saha S, Klein-Hitpaß M, Vallet C, Knauer SK, Schmuck C, Voskuhl J, Giese M. Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-Controlled Guest Release. Biomacromolecules 2020; 21:2356-2364. [DOI: 10.1021/acs.biomac.0c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Subrata Saha
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Marcel Klein-Hitpaß
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, D-45117 Essen, Germany
| | - Shirley K. Knauer
- Department of Molecular Biology II, Centre of Medical Biotechnology (ZMB), University of Duisburg-Essen, D-45117 Essen, Germany
| | - Carsten Schmuck
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Jens Voskuhl
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| | - Michael Giese
- Organic Chemistry and Cenide, University of Duisburg-Essen, Universitätsstrasse 7, D-45117 Essen, Germany
| |
Collapse
|
23
|
Zheng Y, Zhang Y, Wu H, Shao D, Shen F, Cai H, Quan J. Galactose-functionalized GlycoAuNR as a photothermal conversion complex: Its binding to lectin RCA 120 and hepatoma-targeting therapy. J Biomater Appl 2020; 34:1300-1314. [PMID: 32046572 DOI: 10.1177/0885328220903950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yongli Zheng
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Yina Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Hua Wu
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Switzerland
| | - Dongjie Shao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Fawei Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Hao Cai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Jing Quan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China.,State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, China
| |
Collapse
|
24
|
Dong H, Terrell JL, Jahnke JP, Zu TNK, Hurley MM, Stratis-Cullum DN. Biofunctionalized Cellulose Nanofibrils Capable of Capture and Antiadhesion of Fimbriated Escherichia coli. ACS APPLIED BIO MATERIALS 2019; 2:2937-2945. [DOI: 10.1021/acsabm.9b00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hong Dong
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Jessica L. Terrell
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Justin P. Jahnke
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Theresah N. K. Zu
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Margaret M. Hurley
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Dimitra N. Stratis-Cullum
- Biotechnology Branch, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| |
Collapse
|
25
|
Nguyen DT, Dinh VT, Dang LH, Nguyen DN, Giang BL, Nguyen CT, Nguyen TBT, Thu LV, Tran NQ. Dual Interactions of Amphiphilic Gelatin Copolymer and Nanocurcumin Improving the Delivery Efficiency of the Nanogels. Polymers (Basel) 2019; 11:E814. [PMID: 31067644 PMCID: PMC6571557 DOI: 10.3390/polym11050814] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023] Open
Abstract
Herein, a new process to manufacture multicore micelles nanoparticles reinforced with co-assembly via hydrophobic interaction and electrostatic interaction under the help of ultrasonication was developed. The precise co-assembly between negative/hydrophobic drug and positive charged amphiphilic copolymer based pluronic platform allows the formation of complex micelles structures as the multicore motif with predefined functions. In this study, curcumin was selected as a drug model while positively charged copolymer was based on a pluronic-conjugated gelatin with different hydrophobicity length of Pluronic F87 and Pluronic F127. Under impact of dual hydrophobic and electrostatic interactions, the nCur-encapsulated core-shell micelles formed ranging from 40 nm to 70 nm and 40-100 nm by transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS), respectively. It is found that the structures emerged depended on the relative lengths of the hydrophobic blocks in pluronic. Regarding g2(τ) behavior from DLS measurement, the nanogels showed a high stability in spherical form. Surprisingly, the release profiles showed a sustainable behavior of Cur from this system for drug delivery approaches. In vitro study exhibited that nCur-encapsulated complex micelles increased inhibitory activity against cancer cells growth with IC50 is 4.02 ± 0.11 mg/L (10.92 ± 0.3 µM) which is higher than of free curcumin at 9.40 ± 0.17 mg/L (25.54 ± 0.18 µM). The results obtained can provide the new method to generate the hierarchical assembly of copolymers with incorporated loading with the same property.
Collapse
Affiliation(s)
- Dinh Trung Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Van Thoai Dinh
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Le Hang Dang
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| | - Dang Nam Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
| | - Bach Long Giang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, VietNam.
| | - Cong Truc Nguyen
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
| | - Thi Bich Tram Nguyen
- Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City 590000, Vietnam.
| | - Le Van Thu
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| | - Ngoc Quyen Tran
- Institute of Research and Development, Duy Tan University, Da Nang City 550000, Vietnam.
- Institute of Applied Materials Science, VAST, TL29, ThanhLoc Ward, Dist. 12, Ho Chi Minh City 700000, Vietnam.
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
26
|
Martin L, Gurnani P, Zhang J, Hartlieb M, Cameron NR, Eissa AM, Perrier S. Polydimethylsiloxane-Based Giant Glycosylated Polymersomes with Tunable Bacterial Affinity. Biomacromolecules 2019; 20:1297-1307. [PMID: 30694656 DOI: 10.1021/acs.biomac.8b01709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A synthetic cell mimic in the form of giant glycosylated polymersomes (GGPs) comprised of a novel amphiphilic diblock copolymer is reported. A synthetic approach involving a poly(dimethylsiloxane) (PDMS) macro-chain transfer agent (macroCTA) and postpolymerization modification was used to marry the hydrophobic and highly flexible properties of PDMS with the biological activity of glycopolymers. 2-Bromoethyl acrylate (BEA) was first polymerized using a PDMS macroCTA ( Mn,th ≈ 4900 g·mol-1, Đ = 1.1) to prepare well-defined PDMS- b-pBEA diblock copolymers ( Đ = 1.1) that were then substituted with 1-thio-β-d-glucose or 1-thio-β-d-galactose under facile conditions to yield PDMS- b-glycopolymers. Compositions possessing ≈25% of the glycopolymer block (by mass) were able to adopt a vesicular morphology in aqueous solution (≈210 nm in diameter), as indicated by TEM and light scattering techniques. The resulting carbohydrate-decorated polymersomes exhibited selective binding with the lectin concanavalin A (Con A), as demonstrated by turbidimetric experiments. Self-assembly of the same diblock copolymer compositions using an electroformation method yielded GGPs (ranging from 2-20 μm in diameter). Interaction of these cell-sized polymersomes with fimH positive E. coli was then studied via confocal microscopy. The glucose-decorated GGPs were found to cluster upon addition of the bacteria, while galactose-decorated GGPs could successfully interact with (and possibly immobilize) the bacteria without the onset of clustering. This demonstrates an opportunity to modulate the response of these synthetic cell mimics (protocells) toward biological entities through exploitation of selective ligand-receptor interactions, which may be readily tuned through a considered choice of carbohydrate functionality.
Collapse
Affiliation(s)
| | | | | | | | - Neil R Cameron
- Department of Materials Science and Engineering , Monash University , Clayton , VIC 3800 , Australia
| | - Ahmed M Eissa
- Department of Polymers, Chemical Industries Research Division , National Research Centre (NRC) , El-Bohouth Street , Dokki , 12622 , Cairo , Egypt
| | - Sébastien Perrier
- Faculty of Pharmacy and Pharmaceutical Sciences , Monash University , Clayton , VIC 3052 , Australia
| |
Collapse
|
27
|
Abdalla I, Xu J, Wang D, Tong H, Sun B, Ding B, Jiang X, Zhu M. Investigation of pH-responsive block glycopolymers with different structures for the delivery of doxorubicin. RSC Adv 2019; 9:1814-1821. [PMID: 35516136 PMCID: PMC9059706 DOI: 10.1039/c8ra09475f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
To understand the influence of the construction of pH-responsive glycopolymer carriers on loading and release behaviors of the drug, three types of block glycopolymers with similar compositions but different constructions, PEG-b-P(DEA-co-GAMA), PEG-b-PDEA-b-PGAMA and PEG-b-PGAMA-b-PDEA, were successfully synthesized via atom transfer radical polymerization (ATRP) method. The compositions and structures of the three glycopolymers were characterized using 1H NMR (nuclear magnetic resonance) and GPC (gel permeation chromatography), while the morphology and size of aggregates from pH-sensitive block glycopolymers were measured using TEM (transmission electron microscopy) and DLS (dynamic light scattering). The results indicated that the micelles prepared from PEG-b-PGAMA-b-PDEA had a more compact shell structure. The drug-loaded micelles were prepared using the diafiltration method at pH 10, and the loading content and loading efficiency were analyzed using a UV-visible spectrophotometer. DOX-loaded micelles formed by PEG-b-PGAMA-b-PDEA with the more compact shell construction showed the highest loading content and loading efficiency (12.0 wt% and 58.0%) compared with the other two micelles. Moreover, the DOX release tests of these micelles were carried out under two PBS conditions (pH 7.4 and pH 5.5), and the DOX release amount in a certain time was analyzed using a UV-visible spectrophotometer. The results showed that the more compact shell construction of the three layered micelle obstructed the diffusion of a proton into the PDEA core at pH 5.5 and delayed the drug from releasing under both conditions. Moreover the two-layered micelle with a PDEA and PGAMA mixed core showed a relatively high release amount owing to the porous core permitting unimpeded releasing at pH 7.4 and promoted the protonation of PDEA at pH 5.5. Insights gained from this study show that the structure of block copolymers, leading to different constructions of micelles, could adjust the drug loading and release behavior to certain extent, thus it may contribute to improving the design of desirable drug delivery systems.
Collapse
Affiliation(s)
- Ibrahim Abdalla
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| | - Jiaming Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Danyue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Han Tong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Bin Ding
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology, Donghua University Shanghai 200051 China
| | - Xiaoze Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| |
Collapse
|
28
|
Pramudya I, Chung H. Recent progress of glycopolymer synthesis for biomedical applications. Biomater Sci 2019; 7:4848-4872. [DOI: 10.1039/c9bm01385g] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycopolymers are an important class of biomaterials which include carbohydrate moieties in their polymer structure.
Collapse
Affiliation(s)
- Irawan Pramudya
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
29
|
Lu M, Khine YY, Chen F, Cao C, Garvey CJ, Lu H, Stenzel MH. Sugar Concentration and Arrangement on the Surface of Glycopolymer Micelles Affect the Interaction with Cancer Cells. Biomacromolecules 2018; 20:273-284. [DOI: 10.1021/acs.biomac.8b01406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mingxia Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Yee Yee Khine
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
- Australia Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Christopher J. Garvey
- Australia Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
30
|
Mahadevegowda SH, Hou S, Ma J, Keogh D, Zhang J, Mallick A, Liu XW, Duan H, Chan-Park MB. Raman-encoded, multivalent glycan-nanoconjugates for traceable specific binding and killing of bacteria. Biomater Sci 2018; 6:1339-1346. [PMID: 29644358 DOI: 10.1039/c8bm00139a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycan recognition plays key roles in cell-cell and host-pathogen interactions, stimulating widespread interest in developing multivalent glycoconjugates with superior binding affinity for biological and medical uses. Here, we explore the use of Raman-encoded silver coated gold nanorods (GNRs) as scaffolds to form multivalent glycoconjugates. The plasmonic scaffolds afford high-loading of glycan density and their optical properties offer the possibilities of monitoring and quantitative analysis of glycan recognition. Using E. coli strains with tailored on/off of the FimH receptors, we have demonstrated that Raman-encoded GNRs not only allow for real-time imaging and spectroscopic detection of specific binding of the glycan-GNR conjugates with bacteria of interest, but also cause rapid eradication of the bacteria due to the efficient photothermal conversion of GNRs in the near-infrared spectral window. We envision that optically active plasmonic glycoconjugates hold great potential for screening multivalent glycan ligands for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Surendra H Mahadevegowda
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Jielin Ma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Damien Keogh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Jianhua Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Asadulla Mallick
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
31
|
Quan J, Shen FW, Cai H, Zhang YN, Wu H. Galactose-Functionalized Double-Hydrophilic Block Glycopolymers and Their Thermoresponsive Self-Assembly Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10721-10731. [PMID: 30113172 DOI: 10.1021/acs.langmuir.8b01516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycopolymers with large galactose units are attractive in biological processes because of their ability to selectively recognize lectin proteins. Recently, thermoresponsive double-hydrophilic block glycopolymers (TDHBGs) have been designed, which allow sugar residues to expose or hide via the lower critical solution temperature (LCST)-type phase transition. In this work, we first synthesize a new type of TDHBGs, composed of a thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) block and a galactose-functionalized, poly(6- O-vinyladipoyl-d-galactose) (POVNG) block. The LCST can be tuned by varying the size of the POVNG block. Then, we have systematically investigated their thermoresponsive self-assembly behavior, using static and dynamic light scattering techniques, combined with transmission electron microscopy (TEM) imaging. It is found that the TDHBGs possess both micellization and LCST-type transition, and there exist strong interactions between them, depending on the concentration and structure of the TDHBGs. It is particularly interesting that for the same type of TDHBGs under different conditions, such interactions result in rich morphologies of the formed micelles (or nanoparticles) such as spheres, hollow spheres, prolate ellipsoids, crystal-like, and so on, thus potentially enriching their biological applications by noting that they are hepatoma-targeting glycopolymers.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Fa-Wei Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hao Cai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Yi-Na Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hua Wu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
32
|
Sun P, Deng H, Zhou L, Wu Y, Jin X, Tong G, Yu X. “Bottom-Up” Fabrication of BODIPY-Functionalized Fluorescent Hyperbranched Glycopolymers for Hepatoma-Targeted Imaging. Macromol Biosci 2018; 18:e1700381. [DOI: 10.1002/mabi.201700381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/02/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pei Sun
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road 200240 Shanghai China
| | - Hongping Deng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road 200240 Shanghai China
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road 200240 Shanghai China
| | - Yan Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road 200240 Shanghai China
| | - Xin Jin
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road 200240 Shanghai China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; 800 Dongchuan Road 200240 Shanghai China
| | - Xuemei Yu
- Department of Endocrinology and Metabolism; Diabetes Ward; Fengxian Central Hospital; 200240 Shanghai China
| |
Collapse
|
33
|
Gormley AJ, Yeow J, Ng G, Conway Ó, Boyer C, Chapman R. An Oxygen-Tolerant PET-RAFT Polymerization for Screening Structure-Activity Relationships. Angew Chem Int Ed Engl 2018; 57:1557-1562. [PMID: 29316089 PMCID: PMC9641662 DOI: 10.1002/anie.201711044] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Indexed: 12/23/2022]
Abstract
The complexity of polymer-protein interactions makes rational design of the best polymer architecture for any given biointerface extremely challenging, and the high throughput synthesis and screening of polymers has emerged as an attractive alternative. A porphyrin-catalysed photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerisation was adapted to enable high throughput synthesis of complex polymer architectures in dimethyl sulfoxide (DMSO) on low-volume well plates in the presence of air. The polymerisation system shows remarkable oxygen tolerance, and excellent control of functional 3- and 4-arm star polymers. We then apply this method to investigate the effect of polymer structure on protein binding, in this case to the lectin concanavalin A (ConA). Such an approach could be applied to screen the structure-activity relationships for any number of polymer-protein interactions.
Collapse
Affiliation(s)
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney (Australia)
| | - Gervase Ng
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney (Australia)
| | - Órla Conway
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW, Sydney (Australia)
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney (Australia)
| | - Robert Chapman
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW, Sydney (Australia)
| |
Collapse
|
34
|
Wen M, Liu M, Xue W, Yang K, Chen G, Zhang W. Simple and Green Strategy for the Synthesis of "Pathogen-Mimetic" Glycoadjuvant@AuNPs by Combination of Photoinduced RAFT and Bioinspired Dopamine Chemistry. ACS Macro Lett 2018; 7:70-74. [PMID: 35610919 DOI: 10.1021/acsmacrolett.7b00837] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immune responses recognizing pathogen associated molecular patterns (PAMPs) play a crucial role in adaptive immunity. Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) contribute to antigen capture, uptake, presentation and activation of immune responses. In this contribution, metal-free reversible addition-fragmentation chain transfer (RAFT) polymerization of N-3,4-dihydroxybenzenethyl methacrylamide (DMA) and 2-(methacrylamido) glucopyranose (MAG) under sunlight irradiation using 2-cyanoprop-2-yl-α-dithionaphthalate (CPDN) as iniferter agent, can be employed to fabricate the multivalent glycopolymer containing bioresponsive sugar group and multifunctional catechol functionalities. The polymerization behavior is investigated and it presents controlled features. Moreover, bioinspired dopamine chemistry can be successfully utilized to form in situ glycopolymer-coated gold nanoparticles (AuNPs) without the need of additional reducing reagent, design "pathogen-mimetic" glycoadjuvant recognized by both CLRs and TLRs. The synthetic glycoadjuvant is found to enhance the adjuvant activity as "infected signals" in vitro.
Collapse
Affiliation(s)
- Ming Wen
- Center for Soft Condensed
Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, People’s Republic of China
- State
and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, People’s Republic of China
| | - Mengjie Liu
- Center for Soft Condensed
Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, People’s Republic of China
- State
and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, People’s Republic of China
| | - Wentao Xue
- Center for Soft Condensed
Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, People’s Republic of China
- State
and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, People’s Republic of China
| | - Kai Yang
- Center for Soft Condensed
Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, People’s Republic of China
- State
and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, People’s Republic of China
| | - Gaojian Chen
- Center for Soft Condensed
Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, People’s Republic of China
- State
and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, People’s Republic of China
| | - Weidong Zhang
- Center for Soft Condensed
Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, People’s Republic of China
- State
and Local Joint Engineering
Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
35
|
Gormley AJ, Yeow J, Ng G, Conway Ó, Boyer C, Chapman R. An Oxygen‐Tolerant PET‐RAFT Polymerization for Screening Structure–Activity Relationships. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Jonathan Yeow
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemical Engineering UNSW Sydney Australia
| | - Gervase Ng
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemical Engineering UNSW Sydney Australia
| | - Órla Conway
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemistry UNSW Sydney Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemical Engineering UNSW Sydney Australia
| | - Robert Chapman
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemistry UNSW Sydney Australia
| |
Collapse
|
36
|
Yilmaz G, Uzunova V, Hartweg M, Beyer V, Napier R, Becer CR. The effect of linker length on ConA and DC-SIGN binding of S-glucosyl functionalized poly(2-oxazoline)s. Polym Chem 2018. [DOI: 10.1039/c7py01939d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of poly(2-oxazoline) based glycopolymers with different linkers were prepared via thiol–ene click reaction and cationic ring opening reaction. The binding of these polymers to lectins were studied.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Department of Chemistry
- University of Warwick
- CV4 7AL, Coventry
- UK
- Department of Basic Sciences
| | | | - Manuel Hartweg
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| | - Valentin Beyer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| | | | - C. Remzi Becer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| |
Collapse
|
37
|
de Vries WC, Tesch M, Studer A, Ravoo BJ. Molecular Recognition and Immobilization of Ligand-Conjugated Redox-Responsive Polymer Nanocontainers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41760-41766. [PMID: 29140078 DOI: 10.1021/acsami.7b15516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present the preparation of ligand-conjugated redox-responsive polymer nanocontainers by the supramolecular decoration of cyclodextrin vesicles with a thin redox-cleavable polymer shell that displays molecular recognition units on its surface. Two widely different recognition motifs (mannose-Concanavalin A and biotin-streptavidin) are compared and the impact of ligand density on the nanocontainer surface as well as an additional functionalization with nonadhesive poly(ethylene glycol) is studied. Aggregation assays, dynamic light scattering, and a fluorometric quantification reveal that the molecular recognition of ligand-conjugated polymer nanocontainers by receptor proteins is strongly affected by the multivalency of interactions and the association strength of the recognition motif. Finally, microcontact printing is used to prepare streptavidin-patterned surfaces, and the specific immobilization of biotin-conjugated nanocontainers is demonstrated. As a prototype of a nanosensor, these tethered nanocontainers can sense a reductive environment and react by releasing a payload.
Collapse
Affiliation(s)
- Wilke C de Vries
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Matthias Tesch
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Armido Studer
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstr. 40, D-48149 Münster, Germany
| |
Collapse
|
38
|
Wuest KNR, Lu H, Thomas DS, Goldmann AS, Stenzel MH, Barner-Kowollik C. Fluorescent Glyco Single-Chain Nanoparticle-Decorated Nanodiamonds. ACS Macro Lett 2017; 6:1168-1174. [PMID: 35650937 DOI: 10.1021/acsmacrolett.7b00659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We introduce the light-induced collapse of single glycopolymer chains in water generating fluorescent glyco single-chain nanoparticles (SCNPs) and their subsequent functionalization onto nanodiamonds. The glycopolymer precursors are prepared by polymerizing an acetylated mannose-based methacrylate monomer followed by a deprotection and postpolymerization functionalization step, introducing profluorescent photoactive tetrazole groups and furan-protected maleimide moieties. Subsequent UV irradiation in highly diluted aqueous solution triggers intramolecular tetrazole-mediated cycloadditions, yielding glyco SCNPs featuring fluorescence as well as lectin binding properties. The obtained SCNPs are coated onto nanodiamonds by adsorption, and the obtained hybrid nanoparticles are in depth characterized in terms of size, functionality, and bioactivity. Different coating densities are achieved by altering the SCNP concentration. The prepared nanoparticles are nontoxic in mouse RAW 264.7 macrophages. Furthermore, the fluorescence of the SCNPs can be exploited to image the SCNP-coated nanodiamonds in macrophage cells via confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Kilian N. R. Wuest
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Hongxu Lu
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Donald S. Thomas
- Mark
Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Anja S. Goldmann
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design (CAMD), University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Christopher Barner-Kowollik
- Macromolecular
Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
39
|
Kutcherlapati SNR, Koyilapu R, Boddu UMR, Datta D, Perali RS, Swamy MJ, Jana T. Glycopolymer-Grafted Nanoparticles: Synthesis Using RAFT Polymerization and Binding Study with Lectin. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01265] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | - Debparna Datta
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | | - Musti J. Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
40
|
Hu X, Gao J, Luo Y, Wei T, Dong Y, Chen G, Chen H. One-Pot Multicomponent Synthesis of Glycopolymers through a Combination of Host-Guest Interaction, Thiol-ene, and Copper-Catalyzed Click Reaction in Water. Macromol Rapid Commun 2017; 38. [PMID: 28863243 DOI: 10.1002/marc.201700434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Indexed: 12/14/2022]
Abstract
There is a common phenomenon that the heterogeneity of natural oligosaccharides contains various sugar units, which can be used to enhance affinity and selectivity toward a specific receptor, so the synthesis of heterogeneous glycopolymers is always an important issue in the glycopolymer field. Herein, this study conducts a one-pot method to prepare polyrotaxane-based heteroglycopolymers anchored with different sugar units and fluorescent moieties via the combination of host-guest interaction, thiol-ene, and copper-catalyzed click chemistry in water. Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, gel permeation chromatography, X-ray diffraction, and Ellman's assay test are used in the paper to characterize the compounds. Quartz crystal microbalance-dissipation (QCD-D) experiments and bacterial adhesion assay are utilized to study the interactions of polyrotaxane-based heteroglycopolymers with Con A and Escherichia coli. The results reveal that polyrotaxanes (PRs) with mannose and glucose present better specificity toward Con A and E. coli than PRs with glucose due to synergistic effects.
Collapse
Affiliation(s)
- Xiang Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Jinbo Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Ting Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yishi Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
41
|
Sequence and Architectural Control in Glycopolymer Synthesis. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700212] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/21/2017] [Indexed: 01/10/2023]
|
42
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
43
|
Dykman LA, Khlebtsov NG. Biomedical Applications of Multifunctional Gold-Based Nanocomposites. BIOCHEMISTRY (MOSCOW) 2017; 81:1771-1789. [PMID: 28260496 DOI: 10.1134/s0006297916130125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Active application of gold nanoparticles for various diagnostic and therapeutic purposes started in recent decades due to the emergence of new data on their unique optical and physicochemical properties. In addition to colloidal gold conjugates, growth in the number of publications devoted to the synthesis and application of multifunctional nanocomposites has occurred in recent years. This review considers the application in biomedicine of multifunctional nanoparticles that can be produced in three different ways. The first method involves design of composite nanostructures with various components intended for either diagnostic or therapeutic functions. The second approach uses new bioconjugation techniques that allow functionalization of gold nanoparticles with various molecules, thus combining diagnostic and therapeutic functions in one medical procedure. Finally, the third method for production of multifunctional nanoparticles combines the first two approaches, in which a composite nanoparticle is additionally functionalized by molecules having different properties.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia
| | | |
Collapse
|
44
|
Zhang K, Jia YG, Tsai IH, Strandman S, Ren L, Hong L, Zhang G, Guan Y, Zhang Y, Zhu XX. "Bitter-Sweet" Polymeric Micelles Formed by Block Copolymers from Glucosamine and Cholic Acid. Biomacromolecules 2017; 18:778-786. [PMID: 28094989 DOI: 10.1021/acs.biomac.6b01640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural compounds glucosamine and cholic acid have been used to make acrylic monomers which are subsequently used to prepare amphiphilic block copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite the striking difference in polarity and solubility, three diblock copolymers consisting of glucosamine and cholic acid pendants with different hydrophilic and hydrophobic chain lengths have been synthesized without the use of protecting groups. They are shown to self-assemble into polymeric micelles with a "bitter" bile acid core and "sweet" sugar shell in aqueous solutions, as evidenced by dynamic light scattering and transmission electron microscopy. The critical micelle concentration varies with the hydrophobic/hydrophilic ratio, ranging from 0.62 to 1.31 mg/L. Longer chains of polymers induced the formation of larger micelles in range of 50-70 nm. These micelles can solubilize hydrophobic compounds such as Nile Red in aqueous solutions. Their loading capacity mainly depends upon the hydrophobic/hydrophilic ratio of the polymers, and may be also related to the length of the hydrophilic block. These polymeric micelles allowed for a 10-fold increase in the aqueous solubility of paclitaxel and showed no cytotoxicity below the concentration of 500 mg/L. Such properties make these polymeric micelles interesting reservoirs for hydrophobic molecules and drugs for biomedical applications.
Collapse
Affiliation(s)
- Kun Zhang
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Yong-Guang Jia
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - I-Huang Tsai
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Satu Strandman
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology , Guangzhou, China
| | - Liangzhi Hong
- School of Materials Science and Engineering, South China University of Technology , Guangzhou, China
| | - Guangzhao Zhang
- School of Materials Science and Engineering, South China University of Technology , Guangzhou, China
| | - Ying Guan
- Institute of Polymer Chemistry, Nankai University , Tianjin, China
| | - Yongjun Zhang
- Institute of Polymer Chemistry, Nankai University , Tianjin, China
| | - X X Zhu
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
45
|
Kempe K, Xiang SD, Wilson P, Rahim MA, Ju Y, Whittaker MR, Haddleton DM, Plebanski M, Caruso F, Davis TP. Engineered Hydrogen-Bonded Glycopolymer Capsules and Their Interactions with Antigen Presenting Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6444-6452. [PMID: 28186730 DOI: 10.1021/acsami.6b15459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hollow glycopolymer microcapsules were fabricated by hydrogen-bonded layer-by-layer (LbL) assembly, and their interactions with a set of antigen presenting cells (APCs), including dendritic cells (DCs), macrophages (MACs), and myeloid derived suppressor cells (MDSCs), were investigated. The glycopolymers were obtained by cascade postpolymerization modifications of poly(oligo(2-ethyl-2-oxazoline methacrylate)-stat-glycidyl methacrylate) involving the modification of the glycidyl groups with propargylamine and the subsequent attachment of mannose azide by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Multilayer assembly of the hydrogen-bonding pair (glycopolymer/poly(methacrylic acid) (PMA)) onto planar and particulate supports (SiO2 particles, d = 1.16 μm) yielded stable glycopolymer films upon cross-linking by CuAAC. The silica (SiO2) particle templates were removed yielding hollow monodisperse capsules, as demonstrated by fluorescence and scanning electron microscopy. Cellular uptake studies using flow cytometry revealed the preferential uptake of the capsules by DCs when compared to MACs or MDSCs. Mannosylated capsules showed a cytokine independent cis-upregulation of CD80 specifically on DCs and a trans-downregulation of PDL-1 on MDSCs. Thus, the glycopolymer capsules may have potential as vaccine carriers, as they are able to upregulate costimulatory molecules for immune cell stimulation on DCs and at the same time downregulate immune inhibitory receptors on suppressor APC such as MDSCs.
Collapse
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Sue D Xiang
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University , Melbourne, Victoria 3052, Australia
| | - Paul Wilson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Md Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - David M Haddleton
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University , Melbourne, Victoria 3052, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
- Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| |
Collapse
|
46
|
Fan F, Cai C, Gao L, Li J, Zhang P, Li G, Li C, Yu G. Microwave-assisted synthesis of glycopolymers by ring-opening metathesis polymerization (ROMP) in an emulsion system. Polym Chem 2017. [DOI: 10.1039/c7py01415e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Well-defined glycopolymers fabricated by microwave-accelerated emulsion polymerization offer promising prospects for deciphering glycan-dependent interactions.
Collapse
Affiliation(s)
- Fei Fan
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Chao Cai
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Lei Gao
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Jun Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Ping Zhang
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Guoyun Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Chunxia Li
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| | - Guangli Yu
- Key Laboratory of Marine Drugs
- Ministry of Education
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao 266003
| |
Collapse
|
47
|
Wang Z, Sheng R, Luo T, Sun J, Cao A. Synthesis and self-assembly of diblock glycopolypeptide analogues PMAgala-b-PBLG as multifunctional biomaterials for protein recognition, drug delivery and hepatoma cell targeting. Polym Chem 2017. [DOI: 10.1039/c6py01526c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PMAgala-b-PBLG glycopolypeptide analogues might serve as redox-responsive, highly biocompatible multifunctional biomaterial platforms for practical applications.
Collapse
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ruilong Sheng
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Jingjing Sun
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
48
|
Peng L, Li Z, Li X, Xue H, Zhang W, Chen G. Integrating Sugar and Dopamine into One Polymer: Controlled Synthesis and Robust Surface Modification. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600548] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/25/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Zhiyun Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Xiaohui Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Hui Xue
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science of Soochow University; Soochow University; Suzhou 215123 P. R. China
| |
Collapse
|
49
|
Shamim A, Barbeiro CS, Ali B, Stefani HA. Synthesis of Stannyl-Substitutedd-Glucal Derivatives via Palladium-Catalyzed Regioselective Hydrostannation and Their Synthetic Applications. ChemistrySelect 2016. [DOI: 10.1002/slct.201601232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anwar Shamim
- Instituto de Química; Universidade de São Paulo; São Paulo - SP Brasil
| | - Criatiane S. Barbeiro
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo - SP Brasil
| | - Bakhat Ali
- Department of Chemistry; University of Education D. G. Khan Campus; D. G. Khan 32200 Pakistan
| | - Hélio A. Stefani
- Instituto de Química; Universidade de São Paulo; São Paulo - SP Brasil
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas; Universidade de São Paulo; São Paulo - SP Brasil
| |
Collapse
|
50
|
Dykman LA, Khlebtsov NG. Multifunctional gold-based nanocomposites for theranostics. Biomaterials 2016; 108:13-34. [PMID: 27614818 DOI: 10.1016/j.biomaterials.2016.08.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 01/21/2023]
Abstract
Although Au-particle potential in nanobiotechnology has been recognized for the last 15 years, new insights into the unique properties of multifunctional nanostructures have just recently started to emerge. Multifunctional gold-based nanocomposites combine multiple modalities to improve the efficacy of the therapeutic and diagnostic treatment of cancer and other socially significant diseases. This review is focused on multifunctional gold-based theranostic nanocomposites, which can be fabricated by three main routes. The first route is to create composite (or hybrid) nanoparticles, whose components enable diagnostic and therapeutic functions. The second route is based on smart bioconjugation techniques to functionalize gold nanoparticles with a set of different molecules, enabling them to perform targeting, diagnostic, and therapeutic functions in a single treatment procedure. Finally, the third route for multifunctionalized composite nanoparticles is a combination of the first two and involves additional functionalization of hybrid nanoparticles with several molecules possessing different theranostic modalities. This last class of multifunctionalized composites also includes fluorescent atomic clusters with multiple functionalities.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia
| |
Collapse
|