1
|
Dangroo NA, Moussa Z, Alluhaibi MS, Alsimaree AA, Hawsawi MB, Alsantali RI, Singh J, Gupta N, S M B, Karunakar P, Mir JM, Rather MA, Ahmed SA. Novel C-3 and C-20 derived analogs of betulinic acid as potent cytotoxic agents: design, synthesis, in vitro and in silico studies. RSC Adv 2025; 15:15164-15177. [PMID: 40343306 PMCID: PMC12061048 DOI: 10.1039/d5ra01038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
In this report, novel derivatives of betulinic acid were designed and synthesized by targeting the C-3-OH group and C-20 olefinic bond in an endeavour to develop potent antitumor agents. These analogs were screened for their anticancer activity against six different human cancer cell lines including breast cancer MCF-7, lung cancer A549, colon cancer HCT-116, leukemia MOLT-4, prostate carcinoma cell PC-3 and pancreatic cancer cell Miapaca-2 by MTT assay. Many derivatives displayed better cytotoxicity than the parent compound BA. More significantly compounds 9b, 9e, 10 and 11a were found to have more promising activity than BA. Compound 11a was the most potent analog with IC50 values of 7.15 (MCF-7), 8.0 (A549), 3.13 (HCT-116), 13.88 (MOLT-4), 8.0 (PC-3) and 6.96 (MiaPaCa-2) μM. In addition to experimental investigations, in silico aspects were evaluated for the parent compound, BA and 11a derivative based on its potential bioactive behaviour. The representative compounds were optimized structurally using density functional theory (DFT). GaussView 6.1 graphical interface associated GAUSSIAN 09 (Revision C.01) software package was used for the calculations under 6-311g(d,p)/B3LYP formalism using under a SMD model (water as solvent) for the parent compound BA and 11a to explain the respective bioactive behaviour. This was followed by molecular docking studies suggesting that compound 11a binds efficiently with all the three proteins with the docking score of -7.2 kcal mol-1 in the case of matrix metalloproteinase-2 (PDB ID: 1HOV) and poly[ADP-ribose] polymerase-1 (PDB ID: 1UK0) and -6.7 kcal mol-1 in the case of TRAF2 (PDB ID: 2X7F). Further, molecular dynamics studies between 11a and the three proteins were carried out using Desmond Maestro v11.3 to study protein-ligand interactions and protein stability.
Collapse
Affiliation(s)
- Nisar A Dangroo
- Department of Chemistry, Islamic University of Science and Technology Awantipora J & K 192122 India
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P. O. Box 15551 Al Ain United Arab Emirates
| | - Mustafa S Alluhaibi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Chemistry, College of Science and Humanities, Shaqra University Shaqra Saudi Arabia
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | | | - Nidhi Gupta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala Haryana 133207 India
| | - Basavarajaiah S M
- PG Department of Chemistry, Vijaya College R. V. Road Bengaluru 560 004 Karnataka India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi) Kumaraswamy Layout Bangalore 560111 Karnataka India
| | - J M Mir
- Department of Chemistry, Islamic University of Science and Technology Awantipora J & K 192122 India
| | - Manzoor A Rather
- Department of Chemistry, Islamic University of Science and Technology Awantipora J & K 192122 India
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
2
|
Nie XK, Zhang SQ, Wang XY, Yang WT, Zhang X, Chen SJ, Cui X, Tang Z, Li GX. Catalytic Enantioselective Nucleophilic Desymmetrization at Phosphorus(V): A Three-Phase Strategy for Modular Preparation of Phosphoramidates. J Am Chem Soc 2025; 147:11010-11018. [PMID: 40107848 DOI: 10.1021/jacs.4c15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Chiral phosphoramidates characterized by at least a P-N bond without a P-C bond demonstrate a significant applicative value within nucleoside phosphoramidate prodrugs. Despite the availability of methodologies for the selective construction of diverse chiral organophosphorus entities, achieving P-stereocenters solely substituted by heteroatoms often relies on diastereomeric synthesis. Here, we present a catalytic enantioselective desymmetrization strategy using an electrophilic phosphorus reagent with three leaving groups as a substrate, enabling a three-phase nucleophilic attack with various alcohols and amines. By generating a broad range of possible substituent combinations around phosphorus atoms, this synthetic strategy may expedite the synthesis and screening of biologically active phosphoramidates.
Collapse
Affiliation(s)
- Xiao-Kang Nie
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xu-Yang Wang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Wan-Ting Yang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xia Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Shang-Jing Chen
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Favret JM, Dzyuba SV. Synthetic Approaches Toward Phosphorus-Containing BODIPY and Squaraine Dyes: Enhancing Versatility of Small-Molecule Fluorophores. Molecules 2024; 30:116. [PMID: 39795173 PMCID: PMC11721786 DOI: 10.3390/molecules30010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization. These modifications often influence key spectroscopic properties and molecular functionality by expanding their utility in bioimaging, sensing, photosensitization, and theranostic applications. By leveraging the tunable nature of phosphorus-containing moieties, these dyes hold immense promise for addressing current challenges in spectroscopy, imaging, and material designs while unlocking new opportunities for advanced functional systems in chemistry, biology, and medicine.
Collapse
Affiliation(s)
| | - Sergei V. Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA;
| |
Collapse
|
4
|
Bains W, Petkowski JJ, Seager S. Alternative Solvents for Life: Framework for Evaluation, Current Status, and Future Research. ASTROBIOLOGY 2024; 24:1231-1256. [PMID: 39623882 DOI: 10.1089/ast.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmically common and could be solvents for the chemistry of life. In this article, we present a new framework for the analysis of candidate solvents for life, and we deploy this framework to review substances that have been suggested as solvent candidates. We categorize each solvent candidate through the following four criteria: occurrence, solvation, solute stability, and solvent chemical functionality. Our semiquantitative approach addresses all the requirements for a solvent not only from the point of view of its chemical properties but also from the standpoint of its biochemical function. Only the protonating solvents fulfill all the chemical requirements to be a solvent for life, and of those only water and concentrated sulfuric acid are also likely to be abundant in a rocky planetary context. Among the nonprotonating solvents, liquid CO2 stands out as a planetary solvent, and its potential as a solvent for life should be explored. We conclude with a discussion of whether it is possible for a biochemistry to change solvents as an adaptation to radical changes in a planet's environment. Our analysis provides the basis for prioritizing future experimental work to explore potential complex chemistry on other planets. Key Words: Habitability-Alternative solvents for life-Alternative biochemistry. Astrobiology 24, 1231-1256.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Miller JL, Damodaran K, Floreancig PE. Nitrogen Heterocycle Synthesis through Hydride Abstraction of Acyclic Carbamates and Related Species: Scope, Mechanism, Stereoselectivity, and Product Conformation Studies. Chemistry 2023; 29:e202302977. [PMID: 37796745 DOI: 10.1002/chem.202302977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
Acyliminium ions and related species are potent electrophiles that can be quite valuable in the synthesis of nitrogen-containing molecules. This manuscript describes a protocol to form these intermediates through hydride abstractions of easily accessible allylic carbamates, amides, and sulfonamides that avoids the reversibility that is possible in classical condensation-based routes. These intermediates are used in the preparation of a range of nitrogen-containing heterocycles, and in many cases high levels of stereocontrol are observed. Specifically areas of investigation include the impact of chemical structure on oxidation efficiency, the geometry of the intermediate iminium ions, the impact of a substrate stereocenter on stereocontrol, and an examination of transition state geometry.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Krishnan Damodaran
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
6
|
Li YA, Wu G, Li J. Palladium-Catalyzed N-Alkenylation of N-Aryl Phosphoramidates with Alkenes. Molecules 2023; 28:molecules28114466. [PMID: 37298944 DOI: 10.3390/molecules28114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Versatile and concise Pd-catalyzed oxidative N-alkenylation of N-aryl phosphoramidates with alkenes is described in this study, a reaction that is of great significance but surprisingly unexploited. The transformation proceeds under mild reaction conditions, using O2 as a green oxidant and TBAB as an effective additive. An efficient catalytic system allows a variety of drug-related substrates to participate in these transformations, which is of great interest in the drug discovery and development of phosphoramidates.
Collapse
Affiliation(s)
- Yu-An Li
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325015, China
| | - Jia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
7
|
Thomas AA, Seidl FJ, Mague JT, Sathyamoorthi S. Ring-Opening Reactions of Phosphoramidate Heterocycles. Tetrahedron 2023; 137:133390. [PMID: 37885946 PMCID: PMC10602049 DOI: 10.1016/j.tet.2023.133390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
We present protocols for the conversion of phosphoramidate heterocycles into 1,3-chloroamines and 1,3-aminoalcohols. For the formation of chloroamines, our optimized protocol involves heating the phosphoramidate starting material with 4 equivalents of HCl in a dioxane/toluene solvent mixture. The substituents on the phosphoramidate starting material have a profound influence on product formation. Phosphoramidates with a variety of aza-heterocyclic substituents engage, but those containing a 5-chloro-8-quinolinol arm are most competent for 1,3-chloroamine formation. Furthermore, only the phosphoramidate cis diastereomers allow for 1,3-chloroamine formation. X-ray crystallography studies coupled with DFT analysis provide a basis for the stark difference in reactivity between the cis and trans diastereomers. Amino-alcohol products form by heating phosphoramidate heterocycles with aqueous HF in toluene. Here, there is no diastereomeric preference or a requirement for an aza-heterocyclic arm. Based on a substrate survey, both reactions tolerate a broad range of substitution patterns and functional groups. This work establishes that phosphoramidates are competent synthons for interesting amine products and further increases the prominence of tethered aza-Wacker technology.
Collapse
Affiliation(s)
- Annu Anna Thomas
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, 66047, USA
| | | | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, 66047, USA
| |
Collapse
|
8
|
New thioxothiazolidinyl-acetamides derivatives as potent urease inhibitors: design, synthesis, in vitro inhibition, and molecular dynamic simulation. Sci Rep 2023; 13:21. [PMID: 36593349 PMCID: PMC9807592 DOI: 10.1038/s41598-022-27234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
To identify potent urease inhibitors, in the current study, a series of thioxothiazolidinyl-acetamides were designed and synthesized. The prepared compounds were characterized by spectroscopic techniques, including FTIR, 1HNMR, 13CNMR, and elemental analysis. In the enzymatic assessments, it was demonstrated that all derivatives had significant urease inhibition with IC50 values in the range of 1.473-9.274 µM in comparison with the positive control hydroxyurea (IC50 = 100.21 ± 2.5 µM) and thiourea (IC50 = 23.62 ± 0.84 µM). Compound 6i (N-benzyl-3-butyl-4-oxo-2-thioxothiazolidine-5-carboxamide) was the most active agent with an IC50 value of 1.473 µM. Additionally, kinetic investigation and in silico assessments of 6i was carried out to understand the type of inhibition and behavior of the most potent derivative within the binding site of the enzyme. Noteworthy, the anti-urease assay against P. vulgaris revealed 6e and 6i as the most active agents with IC50 values of 15.27 ± 2.40 and 17.78 ± 3.75 µg/mL, respectively. Antimicrobial evaluations of all compounds reveal that compounds 6n and 6o were the most potent antimicrobial agents against the standard and resistant S. aureus. 6n and 6o also showed 37 and 27% inhibition in the development of biofilm by S. aureus at 512 µg/ml. Furthermore, the MTT test showed no toxicity up to 100 µM. Taken together, the study suggests that the synthesized thioxothiazolidinyl-acetamides bases derivatives may serve as potential hits as urease inhibitors.
Collapse
|
9
|
Slavchev I, Ward JS, Rissanen K, Dobrikov GM, Simeonov S. Base-promoted direct amidation of esters: beyond the current scope and practical applications. RSC Adv 2022; 12:20555-20562. [PMID: 35919171 PMCID: PMC9284525 DOI: 10.1039/d2ra03524c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The base-promoted direct amidation of unactivated esters is among the most useful reactions for amide bond formation in contemporary organic chemistry. The intensive research in this area has led to the development of a number of new methods to achive this transformation. However, to date, the existing literature is more methodological and in many instances lacks practical directions. Therefore, the full potential of this transformation is yet to be revealed by broadening the substrate scope. In a search for new practical applications of the amidation reaction, herein we present a comprehensive study of a number of base-promoted direct amidations that encompass a wide range of amines and esters. Furthermore, we applied our findings in the synthesis of phosphoramidates and several industrially relevant products.
Collapse
Affiliation(s)
- Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 9 Sofia 1113 Bulgaria
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry Survontie 9 B 40014 Jyväskylä Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry Survontie 9 B 40014 Jyväskylä Finland
| | - Georgi M Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 9 Sofia 1113 Bulgaria
| | - Svilen Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 9 Sofia 1113 Bulgaria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Av. Prof. Gama Pinto 1649-003 Lisbon Portugal
| |
Collapse
|
10
|
Zhang G, Liu T, Song J, Quan Y, Jin L, Si M, Liao Q. N 2 Cleavage on d 4/d 4 Molybdenum Centers and Its Further Conversion into Iminophosphorane under Mild Conditions. J Am Chem Soc 2022; 144:2444-2449. [PMID: 35014788 DOI: 10.1021/jacs.1c11134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of N-containing organophosphine compounds using N2 as the nitrogen source under mild conditions has attracted much attention. Herein, the conversion of N2 into iminophosphorane was reported. By visible light irradiation, N2 was split on a MoII complex bearing a PNCNP ligand, directly forming the MoV nitride. After the N-P bond formation on the terminal nitride, the N atom from N2 was ultimately transferred into iminophosphorane. Key intermediates were characterized.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Tanggao Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Jinyi Song
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Yingyu Quan
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Li Jin
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Mengyue Si
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| | - Qian Liao
- Zhang Dayu School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, Liaoning, China
| |
Collapse
|
11
|
Gholivand K, Faraghi M, Tizhoush SK, Ahmadi S, Yousefian M, Mohammadpanah F, Roe SM. Synthesis, characterization, biological properties, and molecular docking studies of new phosphoramide-based Ag( i) complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of two new synthesized Ag(i) complexes on their biological properties was examined.
Collapse
Affiliation(s)
- Khodayar Gholivand
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Faraghi
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - Samaneh K. Tizhoush
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - Sara Ahmadi
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - Mostafa Yousefian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fahimeh Mohammadpanah
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | - S. Mark Roe
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| |
Collapse
|
12
|
New phosphoramides containing imidazolidine moiety as anticancer agents: an experimental and computational study. Bioorg Chem 2022; 120:105617. [DOI: 10.1016/j.bioorg.2022.105617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022]
|
13
|
Bouchareb F, Berredjem M. Recent progress in the synthesis of phosphoramidate and phosphonamide derivatives: A review. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.2012781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fouzia Bouchareb
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Faculty of Sciences, Department of Chemistry, Badji-Mokhtar - Annaba University, Annaba, Algeria
- Faculty of Sciences and Technology, Department of Chemistry, Chadli Bendjedid - EL Tarf University, El Tarf, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Faculty of Sciences, Department of Chemistry, Badji-Mokhtar - Annaba University, Annaba, Algeria
| |
Collapse
|
14
|
Sabourin A, Dufour J, Vors JP, Bernier D, Montchamp JL. Synthesis of P-Substituted 5- and 6-Membered Benzo-Phostams: 2,3-Dihydro-1 H-1,2-benzazaphosphole 2-Oxides and 2,3-Tetrahydro-1 H-1,2-benzazaphosphinine 2-Oxides. J Org Chem 2021; 86:14684-14694. [PMID: 34633805 DOI: 10.1021/acs.joc.1c01501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several approaches were developed for the preparation of phosphorus-substituted 5- and 6-membered benzophostams. Carbodiimide-promoted cyclization of zwitterionic aminophosphinates derived from a nitrobenzene precursor accomplished the cyclization in good yields. Alternatively, a novel copper-catalyzed cross-coupling between a phosphonamide and a bromobenzene precursor produced the heterocycles in moderate to good yields. Three different methods are compared for the synthesis of the P-ethoxy-substituted 5-membered benzophostam.
Collapse
Affiliation(s)
- Axel Sabourin
- Department of Chemistry and Biochemistry, TCU Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Jeremy Dufour
- Bayer SAS, Centre de Recherche La Dargoire, 14-20 impasse Pierre Baizet, CEDEX, Lyon 69263, France
| | - Jean-Pierre Vors
- Bayer SAS, Centre de Recherche La Dargoire, 14-20 impasse Pierre Baizet, CEDEX, Lyon 69263, France
| | - David Bernier
- Bayer SAS, Centre de Recherche La Dargoire, 14-20 impasse Pierre Baizet, CEDEX, Lyon 69263, France
| | - Jean-Luc Montchamp
- Department of Chemistry and Biochemistry, TCU Box 298860, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
15
|
Shinde AH, Thomas AA, Mague JT, Sathyamoorthi S. Highly Regio- and Diastereoselective Tethered Aza-Wacker Cyclizations of Alkenyl Phosphoramidates. J Org Chem 2021; 86:14732-14758. [PMID: 34665630 PMCID: PMC10119688 DOI: 10.1021/acs.joc.1c01483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present highly diastereoselective tethered aza-Wacker cyclization reactions of alkenyl phosphoramidates. "Arming" the phosphoramidate tether with 5-chloro-8-quinolinol was essential to achieving >20:1 diastereoselectivity in these reactions. The substrate scope with respect to alkenyl alcohols and phosphoramidate tether was extensively explored. The scalability of the oxidative cyclization was demonstrated, and the product cyclophosphoramidates were shown to be valuable synthons, including for tether removal. With chiral alkenyl precursors, enantiopure cyclic phosphoramidates were formed.
Collapse
Affiliation(s)
- Anand H. Shinde
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA (66047)
| | - Annu Anna Thomas
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA (66047)
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana, USA. (70118)
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA (66047)
| |
Collapse
|
16
|
Data S, Leung Wai J, Kumar S, Cameron AJ, Trehet M, Itumoh EJ, Feld J, Söhnel T, Leitao EM. The Step‐Wise Synthesis of Oligomeric Phosphoramidates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shailja Data
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| | - Jeffery Leung Wai
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
| | - Saawan Kumar
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
| | - Alan J. Cameron
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
- School of Biological Sciences University of Auckland 3b Symonds St 1142 Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery 1142 Auckland New Zealand
| | - Manon Trehet
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
| | - Emeka J. Itumoh
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| | - Joey Feld
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| | - Erin M. Leitao
- School of Chemical Sciences University of Auckland Private Bag, 92019 1142 Auckland New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology 6140 Wellington New Zealand
| |
Collapse
|
17
|
Zamudio-Medina A, Pérez-Hernández N, Castrejón-Flores JL, Romero-García S, Prado-García H, Bañuelos-Hernández A, Franco-Pérez M. Obtaining symmetric and asymmetric bisphosphoramidates and bisphosphoramidothioates by a single step multicomponent reaction. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1878358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Angel Zamudio-Medina
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, CDMX, México
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, México
| | | | - Susana Romero-García
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Heriberto Prado-García
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | - Marco Franco-Pérez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
18
|
Fu Y, Duan F, Du Z. Visible Light Driven Oxidative Coupling of Amines and P(O)−H/P−OR Compounds under Photocatalyst‐Free Conditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Fei Duan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
19
|
Shaik MS, Nadiveedhi MR, Gundluru M, Sarva S, Allagadda R, Chippada AR, Chamarthi N, Cirandur SR. Green synthesis of phosphoramidates and evaluation of their α-amylase activity by in silico and in vitro studies. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1876239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Mohan Gundluru
- Department of Chemistry, Sri Venkateswara University, Tirupati, AP, India
- DST–PURSE Centre, Sri Venkateswara University, Tirupati, AP, India
| | - Santhisudha Sarva
- Department of Chemistry, Sri Venkateswara University, Tirupati, AP, India
| | | | - Appa Rao Chippada
- Department of Biochemistry, Sri Venkateswara University, Tirupati, AP, India
| | - Nagaraju Chamarthi
- Department of Chemistry, Sri Venkateswara University, Tirupati, AP, India
| | | |
Collapse
|
20
|
Subratti A, Ramkissoon A, Lalgee LJ, Jalsa NK. Synthesis and evaluation of the antibiotic-adjuvant activity of carbohydrate-based phosphoramidate derivatives. Carbohydr Res 2020; 500:108216. [PMID: 33309230 DOI: 10.1016/j.carres.2020.108216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Phosphoramidates are becoming increasingly recognized as molecular targets for therapeutic development. Their biological functions are significantly influenced by their inherent properties such as reactivity, as well as the P-N backbone which allows for structural diversity. In this study we report the synthesis of novel carbohydrate-based phosphoramidate derivatives via the Staudinger-phosphite reaction; along with an evaluation of their adjuvant activity in combination with popular antibiotics. Our targets involved variation in both the sugar residue as well as the identity of the phosphoramidate. Moderate to excellent yields of these derivatives were obtained. Notable adjuvant activity was observed with the halogenated phosphoramidates. For the fluorinated glucose derivative in particular, a remarkable 32-fold decrease in the MIC of Ampicillin was obtained against Methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Afraz Subratti
- Department of Chemistry, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Antonio Ramkissoon
- Department of Life Sciences, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Lorale J Lalgee
- Department of Chemistry, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago
| | - Nigel K Jalsa
- Department of Chemistry, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago.
| |
Collapse
|
21
|
Castrejón-Flores JL, Reyna-Luna J, Flores-Martinez YM, García-Ventura MI, Zamudio-Medina A, Franco-Pérez M. Characterizing the thermal degradation mechanism of two bisphosphoramidates by TGA, DSC, mass spectrometry and first-principle theoretical protocols. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Itumoh EJ, Data S, Leitao EM. Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates. Molecules 2020; 25:E3684. [PMID: 32823507 PMCID: PMC7463754 DOI: 10.3390/molecules25163684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
This review covers the main synthetic routes to and the corresponding mechanisms of phosphoramidate formation. The synthetic routes can be separated into six categories: salt elimination, oxidative cross-coupling, azide, reduction, hydrophosphinylation, and phosphoramidate-aldehyde-dienophile (PAD). Examples of some important compounds synthesized through these routes are provided. As an important class of organophosphorus compounds, the applications of phosphoramidate compounds, are also briefly introduced.
Collapse
Affiliation(s)
- Emeka J. Itumoh
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- Department of Industrial Chemistry, Ebonyi State University, Abakaliki 480001, Ebonyi State, Nigeria
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Shailja Data
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Erin M. Leitao
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; (E.J.I.); (S.D.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
23
|
Chabour I, Nájera C, Sansano JM. Diastereoselective multicomponent phosphoramidate-aldehyde-dienophile (PAD) process for the synthesis of polysubstituted cyclohex-2-enyl-amine derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Imrankhan M, Shivashankar K. Iodine catalyzed one-pot four component synthesis of coumarinyl phosphoramidates via sequential addition of reactants. NEW J CHEM 2020. [DOI: 10.1039/d0nj04445h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An unprecedented synthetic route for the preparation of a library of novel coumarinyl phosphoramidate derivatives via iodine catalysed one-pot four component reactions of ethyl 4-bromo-3-oxo-alkanoate, sodium azide, trialkyl phosphites, and phenols in ethanol is reported.
Collapse
Affiliation(s)
- Mohammed Imrankhan
- P. G. Department of Chemistry
- Central College Campus
- Bangalore University
- Bangalore
- India
| | | |
Collapse
|
25
|
Polyfluoroaromatic stavudine (d4T) ProTides exhibit enhanced anti-HIV activity. Bioorg Med Chem Lett 2019; 29:126721. [PMID: 31679972 DOI: 10.1016/j.bmcl.2019.126721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/24/2022]
Abstract
Human Immunodeficiency Virus (HIV) damages the immune system and leads to the life-threatening acquired immunodeficiency syndrome (AIDS). Despite the advances in the field of antiretroviral treatment, HIV remains a major public health challenge. Nucleosides represent a prominent chemotherapeutic class for treating viruses, however their cellular uptake, kinase-mediated activation and catabolism are limiting factors. Herein, we report the synthesis and in vitro evaluation of stavudine (d4T) ProTides containing polyfluorinated aryl groups against two strains; HIV-1 (IIIB) and HIV-2 (ROD). ProTide 5d containing a meta-substituted pentafluorosulfanyl (3-SF5) aryl group showed superior antiviral activity over the parent d4T and the nonfluorinated analogue 5a. ProTide 5d has low nanomolar antiviral activity; (IC50 = 30 nM, HIV-1) and (IC50 = 36 nM, HIV-2) which is over tenfold more potent than d4T. Interestingly, ProTide 5d showed a significantly high selectivity indices with SI = 1753 (HIV-1) and 1461 (HIV-2) which is more than twice that of the d4T. All ProTides were screened in wild type as well as thymidine kinase deficient (TK-) cells. Enzymatic activation of ProTide 5d using carboxypeptidase Y enzyme and monitored using both 31P and 19F NMR is presented.
Collapse
|
26
|
Tan M, Zheng W, Yang L, Zhou L, Zeng Q. I
2
‐Catalyzed Oxidative N−P Cross‐Coupling of Diarylphosphine Oxides and Sulfoximines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mingchao Tan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 P. R. China
| | - Wenting Zheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 P. R. China
| | - Lu Yang
- Department of Chemistry Graduate School of ScienceTohoku University 6-3 Azaaoba Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Lihong Zhou
- College of Environment and EcologyChengdu University of Technology Chengdu 610059 P. R. China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials, Chemistry & Chemical EngineeringChengdu University of Technology Chengdu 610059 P. R. China
| |
Collapse
|
27
|
Romanowska J, Kolodziej K, Sobkowski M, Rachwalak M, Jakubowski T, Golebiewska J, Kraszewski A, Boryski J, Dabrowska A, Stawinski J. Aryl H-phosphonates. 19. New anti-HIV pronucleotide phosphoramidate diesters containing amino- and hydroxypyridine auxiliaries. Eur J Med Chem 2019; 164:47-58. [PMID: 30590257 DOI: 10.1016/j.ejmech.2018.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/19/2018] [Accepted: 12/15/2018] [Indexed: 10/27/2022]
Abstract
We have designed a new type of AZT and ddU phosphoramidate diesters containing various combinations of 2-, 3-, 4-aminopyridine and 2-, 3-, 4-hydroxypyridine moieties attached to the phosphorus center, as potential anti-HIV pronucleotides. Depending on the pKa values of the aminopyridines and the hydroxypyridines used, alternative synthetic strategies based on H-phosphonate chemistry were developed for their preparation. Synthetic aspects of these transformations and the biological activity of the synthesized compounds are discussed.
Collapse
Affiliation(s)
- Joanna Romanowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| | - Krystian Kolodziej
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Michal Sobkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Rachwalak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Tomasz Jakubowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Justyna Golebiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Adam Kraszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jerzy Boryski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aleksandra Dabrowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland.
| |
Collapse
|
28
|
Gupta S, Baranwal S, Chaudhary P, Kandasamy J. Copper-promoted dehydrogenative cross-coupling reaction of dialkyl phosphites with sulfoximines. Org Chem Front 2019; 6:2260-2265. [DOI: 10.1039/c9qo00469f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Synthesis of sulfoximine derived phosphoramidates was achieved in good to excellent yields from NH-sulfoximines and dialkyl phosphites.
Collapse
Affiliation(s)
- Surabhi Gupta
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi
- India
| | - Siddharth Baranwal
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi
- India
| | - Priyanka Chaudhary
- Department of Chemistry
- Indian Institute of Technology (BHU)
- Varanasi
- India
| | | |
Collapse
|
29
|
Jones DJ, O'Leary EM, O'Sullivan TP. Synthesis and application of phosphonothioates, phosphonodithioates, phosphorothioates, phosphinothioates and related compounds. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
|
31
|
Salmeia KA, Flaig F, Rentsch D, Gaan S. One-Pot Synthesis of P( O)-N Containing Compounds Using N-Chlorosuccinimide and Their Influence in Thermal Decomposition of PU Foams. Polymers (Basel) 2018; 10:E740. [PMID: 30960665 PMCID: PMC6403897 DOI: 10.3390/polym10070740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Synthesis of intermediate containing P(O)-Cl bonds is the key to converting P(O)-H bonds to P(O)-N. In this work we have performed chlorination reactions of different H-phosphinates and H-phosphonates using N-chlorosuccinimide as an environmentally-benign chlorinating agent. The chlorination reaction showed high yield and high selectivity for transformation of P(O)-H bonds into P(O)-Cl analogues, resulting in an easily separable succinimide as the by-product. Using a one-pot synthesis methodology, we have synthesized a series of P(O)-N containing derivatives whose synthesis was found to be dependent on the reaction solvents and the starting materials. The synthesized P(O)-N compounds were incorporated in flexible polyurethane foam (FPUF) and screened for their influence in thermal decomposition of FPUFs using thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC). All solid P(O)-N compounds influenced the first-stage decomposition of FPUFs, which resulted in an accelerated decomposition or temporary stabilization of this stage. However, the liquid P(O)-N derivatives volatilize at an earlier stage and could be active in the gas phase. In addition, they also work in condensed phase via acid catalyzed decomposition for FPUFs.
Collapse
Affiliation(s)
- Khalifah A Salmeia
- Additives and Chemistry Group, Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Florence Flaig
- Additives and Chemistry Group, Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| | - Daniel Rentsch
- Laboratory for Functional Polymers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
| | - Sabyasachi Gaan
- Additives and Chemistry Group, Advanced Fibers, Empa-Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
32
|
Doleželová E, Terán D, Gahura O, Kotrbová Z, Procházková M, Keough D, Špaček P, Hocková D, Guddat L, Zíková A. Evaluation of the Trypanosoma brucei 6-oxopurine salvage pathway as a potential target for drug discovery. PLoS Negl Trop Dis 2018; 12:e0006301. [PMID: 29481567 PMCID: PMC5843355 DOI: 10.1371/journal.pntd.0006301] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/08/2018] [Accepted: 02/05/2018] [Indexed: 01/19/2023] Open
Abstract
Due to toxicity and compliance issues and the emergence of resistance to current medications new drugs for the treatment of Human African Trypanosomiasis are needed. A potential approach to developing novel anti-trypanosomal drugs is by inhibition of the 6-oxopurine salvage pathways which synthesise the nucleoside monophosphates required for DNA/RNA production. This is in view of the fact that trypanosomes lack the machinery for de novo synthesis of the purine ring. To provide validation for this approach as a drug target, we have RNAi silenced the three 6-oxopurine phosphoribosyltransferase (PRTase) isoforms in the infectious stage of Trypanosoma brucei demonstrating that the combined activity of these enzymes is critical for the parasites’ viability. Furthermore, we have determined crystal structures of two of these isoforms in complex with several acyclic nucleoside phosphonates (ANPs), a class of compound previously shown to inhibit 6-oxopurine PRTases from several species including Plasmodium falciparum. The most potent of these compounds have Ki values as low as 60 nM, and IC50 values in cell based assays as low as 4 μM. This data provides a solid platform for further investigations into the use of this pathway as a target for anti-trypanosomal drug discovery. Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei. Current treatments suffer from low efficacy, toxicity issues and complex medication regimens. Moreover, an alarming number of these parasites are demonstrating resistance to current drugs. For these reasons, there is a renewed effort to develop new classes of modern therapeutics based upon the unique T. brucei cellular processes. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRTase), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. We demonstrated that T. brucei encodes two isoforms of hypoxanthine-guanine PRTases (HGPRT) and one hypoxanthine-guanine-xanthine PRTase (HGXPRT). The concurrent activity of these enzymes is required for the normal cell growth in vitro. Moreover, acyclic nucleoside phosphonates represent a promising class of potent and selective compounds as they inhibit the enzymes with Ki values in nanomolar range and exert cytotoxic effects on T. brucei cells grown in vitro with EC50 values in the single digit micromolar range. Our results provide a new foundation for further investigations of these compounds in vivo and suggest that 6-oxopurine salvage pathway represents a possible target for future drug discovery efforts directed at eliminating HAT.
Collapse
Affiliation(s)
- Eva Doleželová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
| | - David Terán
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
| | - Zuzana Kotrbová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | - Michaela Procházková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | - Dianne Keough
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Petr Špaček
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. Prague, Czech Republic
| | - Dana Hocková
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. Prague, Czech Republic
| | - Luke Guddat
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- * E-mail: (AZ); (LWG)
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
- * E-mail: (AZ); (LWG)
| |
Collapse
|
33
|
Keough DT, Rejman D, Pohl R, Zborníková E, Hocková D, Croll T, Edstein MD, Birrell GW, Chavchich M, Naesens LMJ, Pierens GK, Brereton IM, Guddat LW. Design of Plasmodium vivax Hypoxanthine-Guanine Phosphoribosyltransferase Inhibitors as Potential Antimalarial Therapeutics. ACS Chem Biol 2018; 13:82-90. [PMID: 29161011 DOI: 10.1021/acschembio.7b00916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) are the foremost causative agents of malaria. Due to the development of resistance to current antimalarial medications, new drugs for this parasitic disease need to be discovered. The activity of hypoxanthine-guanine-[xanthine]-phosphoribosyltransferase, HG[X]PRT, is reported to be essential for the growth of both of these parasites, making it an excellent target for antimalarial drug discovery. Here, we have used rational structure-based methods to design an inhibitor, [3R,4R]-4-guanin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)oxy-1-N-(phosphonopropionyl)pyrrolidine, of PvHGPRT and PfHGXPRT that has Ki values of 8 and 7 nM, respectively, for these two enzymes. The crystal structure of PvHGPRT in complex with this compound has been determined to 2.85 Å resolution. The corresponding complex with human HGPRT was also obtained to allow a direct comparison of the binding modes of this compound with the two enzymes. The tetra-(ethyl l-phenylalanine) tetraamide prodrug of this compound was synthesized, and it has an IC50 of 11.7 ± 3.2 μM against Pf lines grown in culture and a CC50 in human A549 cell lines of 102 ± 11 μM, thus giving it a ∼10-fold selectivity index.
Collapse
Affiliation(s)
- Dianne T. Keough
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Dominik Rejman
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166
10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166
10 Prague 6, Czech Republic
| | - Eva Zborníková
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166
10 Prague 6, Czech Republic
| | - Dana Hocková
- Institute
of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166
10 Prague 6, Czech Republic
| | - Tristan Croll
- Institute
of Health and Biomedical Innovation, Queensland University of Technology, 2 George St, Brisbane 4000, Australia
| | - Michael D. Edstein
- Department
of Drug Evaluation, Australian Army Malaria Institute, Enoggera 4051, Australia
| | - Geoff W. Birrell
- Department
of Drug Evaluation, Australian Army Malaria Institute, Enoggera 4051, Australia
| | - Marina Chavchich
- Department
of Drug Evaluation, Australian Army Malaria Institute, Enoggera 4051, Australia
| | - Lieve M. J. Naesens
- Rega
Institute for Medical Research, Katholique University, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Gregory K. Pierens
- Centre for
Advanced Imaging, The University of Queensland, St Lucia 4072, Australia
| | - Ian M. Brereton
- Centre for
Advanced Imaging, The University of Queensland, St Lucia 4072, Australia
| | - Luke W. Guddat
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
34
|
Synthesis and evaluation of symmetric acyclic nucleoside bisphosphonates as inhibitors of the Plasmodium falciparum, Plasmodium vivax and human 6-oxopurine phosphoribosyltransferases and the antimalarial activity of their prodrugs. Bioorg Med Chem 2017; 25:4008-4030. [DOI: 10.1016/j.bmc.2017.05.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/22/2023]
|
35
|
Ntatsopoulos V, Vassiliou S, Macegoniuk K, Berlicki Ł, Mucha A. Novel organophosphorus scaffolds of urease inhibitors obtained by substitution of Morita-Baylis-Hillman adducts with phosphorus nucleophiles. Eur J Med Chem 2017; 133:107-120. [DOI: 10.1016/j.ejmech.2017.03.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|
36
|
Hassan MM, Abdel-Kariem SM, Ali TE. Synthesis and antioxidant properties of some novel 1,3,4,2-oxadiazaphosphepino[6,7- c]quinolinones and pyrazolo[3,4:4′,3′]quinolino[5,1- c][1,4,2]oxazaphosphinine. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1290625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mohamed M. Hassan
- Department of Chemistry, Faculty of Education, Ain Sham University, Cairo, Egypt
| | | | - Tarik E. Ali
- Department of Chemistry, Faculty of Education, Ain Sham University, Cairo, Egypt
| |
Collapse
|
37
|
Dutta AK, Captain I, Jessen HJ. New Synthetic Methods for Phosphate Labeling. Top Curr Chem (Cham) 2017; 375:51. [DOI: 10.1007/s41061-017-0135-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
|
38
|
Kandil S, Balzarini J, Rat S, Brancale A, Westwell AD, McGuigan C. ProTides of BVdU as potential anticancer agents upon efficient intracellular delivery of their activated metabolites. Bioorg Med Chem Lett 2016; 26:5618-5623. [PMID: 27818111 PMCID: PMC5131913 DOI: 10.1016/j.bmcl.2016.10.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/04/2022]
Abstract
Nucleosides represent a major chemotherapeutic class for treating cancer, however their limitations in terms of cellular uptake, nucleoside kinase-mediated activation and catabolism are well-documented. The monophosphate pro-nucleotides known as ProTides represents a powerful strategy for bypassing the dependence on active transport and nucleoside kinase-mediated activation. Herein, we report the structural tuning of BVdU ProTides. Forty six phosphoramidates were prepared and biologically evaluated against three different cancer cell lines; murine leukemia (L1210), human CD4+ T-lymphocyte (CEM) and human cervical carcinoma (HeLa). Twenty-fold potency enhancement compared to BVdU was achieved against L1210 cells. Interestingly, a number of ProTides showed low micromolar activity against CEM and HeLa cells compared to the inactive parent BVdU. The ProTides showed poor, if any measurable toxicity to non-tumourigenic human lung fibroblast cell cultures. Separation of four pairs of the diastereoisomeric mixtures and comparison of their spectral properties, biological activities and enzymatic activation rate is reported.
Collapse
Affiliation(s)
- Sahar Kandil
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Stephanie Rat
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Andrew D Westwell
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Christopher McGuigan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| |
Collapse
|
39
|
Oliveira FM, Barbosa LC, Fernandes SA, Lage MR, Carneiro JWDM, Kabeshov MA. Evaluation of some density functional methods for the estimation of hydrogen and carbon chemical shifts of phosphoramidates. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Hocková D, Janeba Z, Naesens L, Edstein MD, Chavchich M, Keough DT, Guddat LW. Antimalarial activity of prodrugs of N-branched acyclic nucleoside phosphonate inhibitors of 6-oxopurine phosphoribosyltransferases. Bioorg Med Chem 2015; 23:5502-10. [PMID: 26275679 DOI: 10.1016/j.bmc.2015.07.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/17/2015] [Accepted: 07/19/2015] [Indexed: 11/25/2022]
Abstract
Acyclic nucleoside phosphonates (ANPs) that contain a 6-oxopurine base are good inhibitors of the human and Plasmodium falciparum 6-oxopurine phosphoribosyltransferases (PRTs), key enzymes of the purine salvage pathway. Chemical modifications, based on the crystal structures of several inhibitors in complex with the human PRTase, led to the design of a new class of inhibitors--the aza-ANPs. Because of the negative charges of the phosphonic acid moiety, their ability to cross cell membranes is, however, limited. Thus, phosphoramidate prodrugs of the aza-ANPs were prepared to improve permeability. These prodrugs arrest parasitemia with IC50 values in the micromolar range against Plasmodium falciparum-infected erythrocyte cultures (both chloroquine-sensitive and chloroquine-resistant Pf strains). The prodrugs exhibit low cytotoxicity in several human cell lines. Thus, they fulfill two essential criteria to qualify them as promising antimalarial drug leads.
Collapse
Affiliation(s)
- Dana Hocková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven-University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Michael D Edstein
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, QLD 4051, Australia
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, QLD 4051, Australia
| | - Dianne T Keough
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, QLD, Australia
| | - Luke W Guddat
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, QLD, Australia.
| |
Collapse
|
41
|
Abstract
A substantial portion of metabolism involves transformation of phosphate esters, including pathways leading to nucleotides and oligonucleotides, carbohydrates, isoprenoids and steroids, and phosphorylated proteins. Because the natural substrates bear one or more negative charges, drugs that target these enzymes generally must be charged as well, but small charged molecules can have difficulty traversing the cell membrane by means other than endocytosis. The resulting dichotomy has stimulated a great deal of effort to develop effective prodrugs, compounds that carry little or no charge to enable them to transit biological membranes, but able to release the parent drug once inside the target cell. This chapter presents recent studies on advances in prodrug forms, along with representative examples of their application to marketed and developmental drugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | | |
Collapse
|
42
|
Keough DT, Hocková D, Janeba Z, Wang TH, Naesens L, Edstein MD, Chavchich M, Guddat LW. Aza-acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group As Inhibitors of the Human, Plasmodium falciparum and vivax 6-Oxopurine Phosphoribosyltransferases and Their Prodrugs As Antimalarial Agents. J Med Chem 2014; 58:827-46. [DOI: 10.1021/jm501416t] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dianne T. Keough
- The School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Queensland Australia
| | - Dana Hocková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Tzu-Hsuan Wang
- The School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Queensland Australia
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven—University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Michael D. Edstein
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, Queensland 4051, Australia
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Army Malaria Institute, Enoggera, Brisbane, Queensland 4051, Australia
| | - Luke W. Guddat
- The School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Queensland Australia
| |
Collapse
|