1
|
Huang A, Xu H, Xia Z, Hao W, Wu D, He H. Study of the Energy Crossing Between Excited States Affected by the Electronegativity of Substituents for Three 4-Azido-1,8-naphthalimide Derivatives. J Phys Chem A 2024; 128:9353-9361. [PMID: 39422437 DOI: 10.1021/acs.jpca.4c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Rapid detection of H2S is crucial for human physiological health and natural ecosystems. In this study, the fluorescent sensing mechanisms of three 4-azido-1,8-naphthalimide-based fluorescent probes to monitor H2S were theoretically investigated by density functional theory and time-dependent density functional theory. The potential energy curve of the charge transfer (CT) state has a crossover with that of the locally excited (LE) state proved by the constructed linear interpolating internal coordinate pathway. Thus, the transform takes place from the LE state to the CT state causing the fluorescence quenching of the probes from a nonradiative transition process of the CT state. The distance between the Franck-Condon point and the minimal energy conical intersection becomes larger with the increase of the electronegativity of substituents on the 1,8-naphthalimide fluorophore. In addition, the degree of charge separation is closely related to the energy difference between the CT and the LE states which are also essentially affected by the electronegativity of the substituents. Since the electronegativity of the substituents has proved important for the probes, our work lays a certain theoretical foundation for the design and synthesis of more sensitive 4-azido-1,8-naphthalimide-based fluorescent probes.
Collapse
Affiliation(s)
- Anran Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Honghong Xu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Zhicheng Xia
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Wenxuan Hao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Dongxia Wu
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Haixiang He
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P.R. China
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
4
|
Yoon SA, Gopala L, Lee MH. Biocompatible 7-nitro-2,1,3-benzoxadiazole-embedded naphthalimide for exploring endogenous H 2S in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122582. [PMID: 36905738 DOI: 10.1016/j.saa.2023.122582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is a central signaling and antioxidant biomolecule involved in various biological processes. As inappropriate levels of H2S in the human body are closely related to various diseases, including cancer, a tool capable of detecting H2S with high selectivity and sensitivity in living systems is urgently required. In this work, we intended to develop a biocompatible and activatable fluorescent molecular probe for detecting H2S generation in living cells. The 7-nitro-2,1,3-benzoxadiazole-imbedded naphthalimide (1) probe presented here responds specifically to H2S and produces readily detectable fluorescence at 530 nm. Interestingly, probe 1 exhibited significant fluorescence responses to changes in endogenous H2S levels as well as high biocompatibility and permeability in living HeLa cells. This allowed for the real-time monitoring of endogenous H2S generation as an antioxidant defense response in the oxidatively stressed cells.
Collapse
Affiliation(s)
- Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | - Lavanya Gopala
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, South Korea.
| |
Collapse
|
5
|
Mishra PK, Kang MG, Lee H, Kim S, Choi S, Sharma N, Park CM, Ko J, Lee C, Seo JK, Rhee HW. A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chem Sci 2022; 13:955-966. [PMID: 35211260 PMCID: PMC8790779 DOI: 10.1039/d1sc04871f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
We developed a proximity photo-crosslinking method (Spotlight) with a 4-azido-N-ethyl-1,8-naphthalimide (AzNP) moiety that can be converted to reactive aryl nitrene species using ambient blue light-emitting diode light. Using an AzNP-conjugated HaloTag ligand (VL1), blue light-induced photo-crosslinked products of various HaloTag-conjugated proteins of interest were detected in subcellular spaces in live cells. Chemical or heat stress-induced dynamic changes in the proteome were also detected, and photo-crosslinking in the mouse brain tissue was enabled. Using Spotlight, we further identified the host interactome of SARS-CoV-2 nucleocapsid (N) protein, which is essential for viral genome assembly. Mass analysis of the VL1-crosslinked product of N-HaloTag in HEK293T cells showed that RNA-binding proteins in stress granules were exclusively enriched in the cross-linked samples. These results tell that our method can reveal the interactome of protein of interest within a short distance in live cells.
Collapse
Affiliation(s)
- Pratyush Kumar Mishra
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University Seoul 08826 Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Subin Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Nirmali Sharma
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Cheol-Min Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- School of Biological Sciences, Seoul National University Seoul 08826 Korea
| |
Collapse
|
6
|
Kafle A, Bhattarai S, Miller JM, Handy ST. Hydrogen sulfide sensing using an aurone-based fluorescent probe. RSC Adv 2020; 10:45180-45188. [PMID: 35516280 PMCID: PMC9058623 DOI: 10.1039/d0ra08802a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide detection and sensing is an area of interest from both an environmental and a biological perspective. While many methods are currently available, the most sensitive and biologically applicable ones are fluorescence based. In general, these fluorescent probes are based upon large, high-molecular weight, well-characterized fluorescent scaffolds that are synthetically demanding to prepare and difficult to tune and modify. In this study, we have reported a new reduction-based, rationally designed and synthesized turn-on fluorescent probe (Z)-2-(4′-azidobenzylidene)-5-fluorobenzofuran-3(2H)-one (6g) utilizing a low molecular weight aurone fluorophore. During these studies, the modular nature of the synthesis was used to quickly overcome problems with solubility, overlap of excitation of the probe and reduced product, and rate of reaction, resulting in a final compound that is efficient and sensitive for the detection of hydrogen sulfide. The limitation of slow reaction and the reduced fluorescence in a biologically relevent medium was solved by employing cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The probe features a high fluorescence enhancement, fast response (10–30 min), and good sensitivity (1 μm) and selectivity for hydrogen sulfide. Hydrogen sulfide detection and sensing is an area of interest from both an environmental and a biological perspective.![]()
Collapse
Affiliation(s)
- Arjun Kafle
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Shrijana Bhattarai
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Justin M Miller
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA .,Department of Chemistry, Middle Tennessee State University Murfreesboro TN 37132 USA
| | - Scott T Handy
- Molecular Bioscience Program, Middle Tennessee State University Murfreesboro TN 37132 USA .,Department of Chemistry, Middle Tennessee State University Murfreesboro TN 37132 USA
| |
Collapse
|
7
|
Zabihi FS, Mohammadi A. Synthesis and application of a new chemosensor based on the thiazolylazo-quinazolinone hybrid for detection of F - and S 2- in aqueous solutions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118439. [PMID: 32387917 DOI: 10.1016/j.saa.2020.118439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
A new chemosensor based on the thiazolylazo-quinazolinone hybrid (TAQH) was designed and synthesized for naked-eye sensitive detection of F- and S2-in aqueous acetonitrile solution. Spectral characterization of TAQH using FT-IR, 1H NMR, and 13C NMR analysis revealed that the probe TAQH was successfully synthesized using a two steps reaction, including the diazotization-coupling and condensation reactions, respectively. The ion sensing ability of TAQH toward a wide range of anions and metal ions was evaluated by naked-eye detection method and UV-Vis absorption spectroscopy. The chemosensor TAQH displayed a fast and clear color change from yellow to red in the presence of F- and S2- ions, enabling easily detect with the naked eye. This clear color change is due to the effective interaction of the basic F- and S2- anions with hydroxyl group of chemosensor as a binding site. The experimental data also revealed that the F- and S2- ions were sensed by the probe TAQH over a wide pH range from 3 to 8. The results also confirmed that the TAQH has a wide linear detection range for F- and S2- ions. From UV-vis titration experiment, the limit of detection (LOD) for F- and S2- ions was found to be 3.1 μM and 5.7 μM, respectively. For quantitative measurements, the paper test strips containing TAQH were successfully fabricated and applied to detect F- and S2- ions in aqueous solutions. Furthermore, Job's plot based on spectroscopic data showed one-to-one stoichiometry for the interaction of anions with probe TAQH. Therefore, the proposed chemosensor with excellent features like the cost-effective, high sensitively and selectively and short response times can be utilized in any physical and biological conditions.
Collapse
Affiliation(s)
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
8
|
Wu Q, Huo F, Wang J, Yin C. Fluorescent probe for detecting hydrogen sulfide based on disulfide nucleophilic substitution-addition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118437. [PMID: 32388415 DOI: 10.1016/j.saa.2020.118437] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
In view of the importance of hydrogen sulfide (H2S) in the organism, a fast, noninvasive method for the detection of H2S in situ is needed. Fluorescent probes based on disulfide-bond nucleophilic substitution-addition can selectively detect H2S in vivo, which is very popular because it allows quick response for H2S, thus it will be a useful tool for monitoring H2S in the vivo. We developed a dicyanoisopentanone-based H2S fluorescent probe (EW-H) that used a disulfide group as a self-destructive linker reaction site. Under the nucleophilic substitution of H2S, the disulfide bond of EW-H was cleaved, and then nucleophilic addition took place intramolecularly to release the fluorophore (at 580 nm). The response to H2S, EW-H had high sensitivity (86 nM of the detection limit), large Stokes shift (155 nm) and a fast response time. More importantly, the probe was also applied for bioimaging in HepG2 cells, indicating its potential applications in biological organism.
Collapse
Affiliation(s)
- Qing Wu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China; Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China; Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Junping Wang
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China; Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
Liu J, Liu X, Lu S, Zhang L, Feng L, Zhong S, Zhang N, Bing T, Shangguan D. Ratiometric detection and imaging of hydrogen sulfide in mitochondria based on a cyanine/naphthalimide hybrid fluorescent probe. Analyst 2020; 145:6549-6555. [DOI: 10.1039/d0an01314e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel fluorescent probe (L1) for ratiometric detection and imaging of H2S in mitochondria was developed by combining a H2S-sensitive naphthalimide fluorophore and a mitochondria targeting cyanine fluorophore.
Collapse
Affiliation(s)
- Jing Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Shanshan Lu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Lingling Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Le Feng
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Shilong Zhong
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Analytical Chemistry for Living Biosystems
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
10
|
Li JZ, Leng TH, Wang ZQ, Zhou L, Gong XQ, Shen YJ, Wang CY. A large Stokes shift, sequential, colorimetric fluorescent probe for sensing Cu2+/S2- and its applications. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Velusamy N, Thirumalaivasan N, Bobba KN, Wu SP, Bhuniya S. A hydrogen sulfide triggered self-immolative fluorescent probe for lysosome labeling in live cells. NEW J CHEM 2018. [DOI: 10.1039/c7nj04119e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed a naphthalimide-based, lysosome-targeting, and self-immolative fluorescent probe for H2S detection.
Collapse
Affiliation(s)
- Nithya Velusamy
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | | | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| | - Shu-Pao Wu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu
- Taiwan
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation
- Amrita School of Engineering
- Amrita Vishwa Vidyapeetham
- Coimbatore
- India
| |
Collapse
|
12
|
Meka RK, Heagy MD. Selective Modulation of Internal Charge Transfer and Photoinduced Electron Transfer Processes in N-Aryl-1,8-Naphthalimide Derivatives: Applications in Reaction-Based Fluorogenic Sensing of Sulfide. J Org Chem 2017; 82:12153-12161. [DOI: 10.1021/acs.joc.7b01952] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ranjith K. Meka
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| | - Michael D. Heagy
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
13
|
Singha M, Roy S, Pandey SD, Bag SS, Bhattacharya P, Das M, Ghosh AS, Ray D, Basak A. Use of azidonaphthalimide carboxylic acids as fluorescent templates with a built-in photoreactive group and a flexible linker simplifies protein labeling studies: applications in selective tagging of HCAII and penicillin binding proteins. Chem Commun (Camb) 2017; 53:13015-13018. [DOI: 10.1039/c7cc08209f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple design of versatile template-based protein labeling agents has been successfully demonstrated with HCA and PBPs.
Collapse
Affiliation(s)
- Monisha Singha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Sayantani Roy
- School of Bioscience
- Indian Institute of Technology Kharagpur
- India
| | - Satya Deo Pandey
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | | | | | - Mainak Das
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Anindya S. Ghosh
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | - Debashis Ray
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| | - Amit Basak
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|
14
|
|
15
|
Abstract
Many diverse, sensitive and structurally novel fluorescent probes have recently been reported for H2S detection. Quantification of H2S requires a selective chemosensor which will react only with H2S against a background of high concentrations of other thiols or reducing agents. Most published probes are able to quantify H2S selectively in a simple in vitro system with the most sensitive probes able to detect H2S at below 100 nM concentrations. A subset of probes also have utility in sensing H2S in living cells, and there are now several with specific sub-cellular localization and a few cases of in vivo applications. Biologists studying H2S now have a wide range of tools to assist them to aid further understanding of the role of H2S in biology.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pharmacy, National University of Singapore, Block S4A #03, 18 Science Drive 4, Singapore, 117543, Singapore
| | | |
Collapse
|
16
|
Dong C, Zhou CQ, Yang JW, Liao TC, Chen JX, Yin CX, Chen WH. A novel 3,6-diamino-1,8-naphthalimide derivative as a highly selective fluorescent “turn-on” probe for thiols. RSC Adv 2015. [DOI: 10.1039/c5ra03849a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A novel 3,6-diamino-1,8-naphthalimide-based fluorescent “turn-on” probe exhibited high selectivity and low detection limit toward Cys.
Collapse
Affiliation(s)
- Cheng Dong
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Chun-Qiong Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jian-Wei Yang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Ting-Cong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Cai-Xia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|