1
|
Marsili L, Dal Bo M, Berti F, Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021; 13:1876. [PMID: 34834291 PMCID: PMC8620438 DOI: 10.3390/pharmaceutics13111876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy; (M.D.B.); (G.T.)
| |
Collapse
|
2
|
Shishir MRI, Gowd V, Suo H, Wang M, Wang Q, Chen F, Cheng KW. Advances in smart delivery of food bioactive compounds using stimuli-responsive carriers: Responsive mechanism, contemporary challenges, and prospects. Compr Rev Food Sci Food Saf 2021; 20:5449-5488. [PMID: 34668321 DOI: 10.1111/1541-4337.12851] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic-organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.
Collapse
Affiliation(s)
- Mohammad Rezaul Islam Shishir
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,School of Biological Sciences, The University of Hong Kong, Hong Kong, P. R. China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Marsili L, Dal Bo M, Eisele G, Donati I, Berti F, Toffoli G. Characterization of Thermoresponsive Poly-N-Vinylcaprolactam Polymers for Biological Applications. Polymers (Basel) 2021; 13:2639. [PMID: 34451180 PMCID: PMC8400179 DOI: 10.3390/polym13162639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Poly-N-Vinylcaprolactam (PNVCL) is a thermoresponsive polymer that exhibits lower critical solution temperature (LCST) between 25 and 50 °C. Due to its alleged biocompatibility, this polymer is becoming popular for biomedical and environmental applications. PNVCL with carboxyl terminations has been widely used for the preparation of thermoresponsive copolymers, micro- and nanogels for drug delivery and oncological therapies. However, the fabrication of such specific targeting devices needs standardized and reproducible preparation methods. This requires a deep understanding of how the miscibility behavior of the polymer is affected by its structural properties and the solution environment. In this work, PNVCL-COOH polymers were prepared via free radical polymerization (FRP) in order to exhibit LCST between 33 and 42 °C. The structural properties were investigated with NMR, FT-IR and conductimetric titration and the LCST was calculated via UV-VIS and DLS. The LCST is influenced by the molecular mass, as shown by both DLS and viscosimetric values. Finally, the behavior of the polymer was described as function of its concentration and in presence of different biologically relevant environments, such as aqueous buffers, NaCl solutions and human plasma.
Collapse
Affiliation(s)
- Lorenzo Marsili
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Giorgio Eisele
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Federico Berti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, CRO National Cancer Institute, IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| |
Collapse
|
4
|
Terracciano R, Demarchi D, Ruo Roch M, Aiassa S, Pagana G. Nanomaterials to Fight Cancer: An Overview on Their Multifunctional Exploitability. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2760-2777. [PMID: 33653442 DOI: 10.1166/jnn.2021.19061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years the worldwide research community has highlighted innumerable benefits of nanomaterials in cancer detection and therapy. Nevertheless, the development of cancer nanomedicines and other bionanotechnology requires a huge amount of considerations about the interactions of nanomaterials and biological systems, since long-term effects are not yet fully known. Open issues remain the determination of the nanoparticles distributions patterns and the internalization rate into the tumor while avoiding their accumulation in internal organs or other healthy tissues. The purpose of this work is to provide a standard overview of the most recent advances in nanomaterials to fight cancer and to collect trends and future directions to follow according to some critical aspects still present in this field. Complementary to the very recent review of Wolfram and Ferrari which discusses and classifies successful clinically-approved cancer nanodrugs as well as promising candidates in the pipeline, this work embraces part of their proposed classification system based on the exploitation of multifunctionality and extends the review to peer-reviewed journal articles published in the last 3 years identified through international databases.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Danilo Demarchi
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Simone Aiassa
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| | - Guido Pagana
- Department of Electronics and Telecommunications (DET), Politecnico di Torino, 10129, Italy
| |
Collapse
|
5
|
Mocan T, Stiufiuc R, Popa C, Nenu I, Pestean C, Nagy AL, Mocan LP, Leucuta DC, Hajjar NA, Sparchez Z. Percutaneous ultrasound guided PEG-coated gold nanoparticles enhanced radiofrequency ablation in liver. Sci Rep 2021; 11:1316. [PMID: 33446793 PMCID: PMC7809408 DOI: 10.1038/s41598-020-79917-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023] Open
Abstract
To investigate the effects of PEG-coated gold nanoparticles on ablation zone volumes following in vivo radiofrequency ablation of porcine liver. This prospective study was performed following institutional animal care and committee approval was used. Radiofrequency ablations were performed in the livers of ten Sus scrofa domesticus swines. During each ablation, 10 mL (mL) of Peg-coated gold nanoparticles at two different concentrations (0.5 mg/mL and 0.01 mg/mL) were injected through the electrode channel into the target zone. For the control group, 10 mL of physiological saline was used. Five to ten minutes after each ablation, contrast enhanced ultrasound (CEUS) was performed to evaluate the volume of the coagulation zone. On day five we performed another CEUS and the animals were sacrificed. Treated tissues were explanted for quantification of the ablation zones' volumes. Hematoxylin and eosin (H&E) staining was also performed for histologic analysis. A total of 30 ablations were performed in the livers. The mean coagulation zone volume as measured by CEUS on day 5 after RFA was: 21.69 ± 3.39 cm3, 19.22 ± 5.77 cm3, and 8.80 ± 3.33 cm3 for N1, N2 and PS respectively. The coagulation zone volume after N1 and N2 treatments was significantly higher compared to PS treatment (p < 0.001 and p = 0.025 respectively). There was no difference between N1 and N2 treatment (p = 0.60). In our proof-of concept, pilot study we have shown for the first time that when injected directly into the target tissue during RFA, gold nanoparticles can substantially increase the coagulation zone.
Collapse
Affiliation(s)
- Tudor Mocan
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Rares Stiufiuc
- Department of Bionanoscopy, MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4-6, 400337, Cluj-Napoca, Romania
| | - Calin Popa
- 3rd Surgical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Iuliana Nenu
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Cosmin Pestean
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur no. 3-5, 400372, Cluj-Napoca, Romania
| | - Andras Laszlo Nagy
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur no. 3-5, 400372, Cluj-Napoca, Romania
| | - Lavinia Patricia Mocan
- Histology Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuta
- Medical Informatics and Biostatistics Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- 3rd Surgical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Zeno Sparchez
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|
6
|
Ahmad D, Al Meshaiti FA, Al Anazi YK, Al Owassil O, Yassin AEB. Rapid and Sensitive Liquid Chromatographic Method for Determination of Anastrozole in Different Polymer-Lipid Hybrid Nanoparticles. SLAS Technol 2021; 26:384-391. [PMID: 33435790 DOI: 10.1177/2472630320982308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole's incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile-phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04-99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.
Collapse
Affiliation(s)
- Dilshad Ahmad
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Faisal A Al Meshaiti
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Yazeed K Al Anazi
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Osama Al Owassil
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Research Center, National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagn Biol Med 2020; 39:49-88. [PMID: 32233691 DOI: 10.1080/15368378.2020.1741383] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Percutaneous thermal ablation has proven to be an effective modality for treating both benign and malignant tumours in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50°C, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumour destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of-the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non-invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
8
|
Soft poly(N-vinylcaprolactam) nanogels surface-decorated with AuNPs. Response to temperature, light, and RF-field. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Fernández‐Quiroz D, Loya‐Duarte J, Silva‐Campa E, Argüelles‐Monal W, Sarabia‐Sainz A, Lucero‐Acuña A, del Castillo‐Castro T, San Román J, Lizardi‐Mendoza J, Burgara‐Estrella AJ, Castaneda B, Soto‐Puebla D, Pedroza‐Montero M. Temperature stimuli‐responsive nanoparticles from chitosan‐
graft
‐poly(
N
‐vinylcaprolactam) as a drug delivery system. J Appl Polym Sci 2019. [DOI: 10.1002/app.47831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jorge Loya‐Duarte
- Departamento de Ingeniería Química y MetalurgiaUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| | - Erika Silva‐Campa
- Departamento de Investigación en FísicaUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| | - Waldo Argüelles‐Monal
- Centro de Investigación en Alimentación y DesarrolloGrupo de Investigación en Biopolímeros Hermosillo Sonora 83304 Mexico
| | - Andre‐í Sarabia‐Sainz
- Departamento de Investigación en FísicaUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| | - Armando Lucero‐Acuña
- Departamento de Ingeniería Química y MetalurgiaUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| | - Teresa del Castillo‐Castro
- Departamento de Investigación en Polímeros y MaterialesUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros (ICTP‐CSIC) Madrid 28006 Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN) Madrid 28029 Spain
| | - Jaime Lizardi‐Mendoza
- Centro de Investigación en Alimentación y DesarrolloGrupo de Investigación en Biopolímeros Hermosillo Sonora 83304 Mexico
| | | | - Beatriz Castaneda
- Departamento de FísicaUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| | - Diego Soto‐Puebla
- Departamento de Investigación en FísicaUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| | - Martín Pedroza‐Montero
- Departamento de Investigación en FísicaUniversidad de Sonora Hermosillo Sonora 83000 Mexico
| |
Collapse
|
10
|
Siirilä J, Häkkinen S, Tenhu H. The emulsion polymerization induced self-assembly of a thermoresponsive polymer poly(N-vinylcaprolactam). Polym Chem 2019. [DOI: 10.1039/c8py01421c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A thermoresponsive polymer, poly(N-vinylcaprolactam) (PNVCL), was synthesized in an emulsion above its thermal transition temperature to produce particles via polymerization induced self-assembly (PISA).
Collapse
|
11
|
Liu PY, Miao ZH, Li K, Yang H, Zhen L, Xu CY. Biocompatible Fe3+–TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells. Colloids Surf B Biointerfaces 2018; 167:183-190. [DOI: 10.1016/j.colsurfb.2018.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022]
|
12
|
Yadav P, Singh SP, Rengan AK, Shanavas A, Srivastava R. Gold laced bio-macromolecules for theranostic application. Int J Biol Macromol 2018; 110:39-53. [DOI: 10.1016/j.ijbiomac.2017.10.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
13
|
Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan Derivatives: Introducing New Functionalities with a Controlled Molecular Architecture for Innovative Materials. Polymers (Basel) 2018; 10:E342. [PMID: 30966377 PMCID: PMC6414943 DOI: 10.3390/polym10030342] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
The functionalization of polymeric substances is of great interest for the development of innovative materials for advanced applications. For many decades, the functionalization of chitosan has been a convenient way to improve its properties with the aim of preparing new materials with specialized characteristics. In the present review, we summarize the latest methods for the modification and derivatization of chitin and chitosan under experimental conditions, which allow a control over the macromolecular architecture. This is because an understanding of the interdependence between chemical structure and properties is an important condition for proposing innovative materials. New advances in methods and strategies of functionalization such as the click chemistry approach, grafting onto copolymerization, coupling with cyclodextrins, and reactions in ionic liquids are discussed.
Collapse
Affiliation(s)
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico.
| | - Daniel Fernández-Quiroz
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | | | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
14
|
Bhuvaneswari K, Sivaguru P, Lalitha A. Synthesis, Biological Evaluation and Molecular Docking of Novel Curcumin Derivatives as Bcl-2 Inhibitors Targeting Human Breast Cancer MCF-7 Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201702406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Paramasivam Sivaguru
- Department of Chemistry; Northeast Normal University; Changchun, jilin 130024 China
| | - Appaswami Lalitha
- Department of chemistry; Periyar University; Salem- 636107, Tamil Nadu India
| |
Collapse
|
15
|
Mironava T, Arachchilage VT, Myers KJ, Suchalkin S. Gold Nanoparticles and Radio Frequency Field Interactions: Effects of Nanoparticle Size, Charge, Aggregation, Radio Frequency, and Ionic Background. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13114-13124. [PMID: 29061042 DOI: 10.1021/acs.langmuir.7b03210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we investigated experimentally the dependency of radio frequency (rf) absorption by gold nanoparticles (AuNPs) on frequency (10 kHz to 450 MHz), NP size (3.5, 17, and 36 nm), charge of the ligand shell (positive amino and negative carboxylic functional groups), aggregation state, and presence of electrolytes (0-1 M NaCl). In addition, we examined the effect of protein corona on the rf absorption by AuNPs. For the first time, rf energy absorption by AuNPs was analyzed in the 10 kHz to 450 MHz rf range. We have demonstrated that the previously reported rf heating of AuNPs can be solely attributed to the heating of the ionic background and AuNPs do not absorb noticeable rf energy regardless of the NP size, charge, aggregation, and presence of electrolytes. However, the formation of protein corona on the AuNP surface resulted in rf energy absorption by AuNP-albumin constructs, suggesting that protein corona might be partially responsible for the heating of AuNPs observed in vivo. The optimal frequency of rf absorption for the AuNP-albumin constructs is significantly higher than conventional 13.56 MHz, suggesting that the heating of AuNPs in rf field should be performed at considerably higher frequencies for better results in vivo.
Collapse
Affiliation(s)
- Tatsiana Mironava
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Visal T Arachchilage
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Kenneth J Myers
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| | - Sergey Suchalkin
- Materials Science and Engineering and ‡Electrical and Computer Engineering, Stony Brook University , Stony Brook, New York 11794, United States
| |
Collapse
|
16
|
Nehate C, Aji Alex MR, Kumar A, Koul V. Combinatorial delivery of superparamagnetic iron oxide nanoparticles (γFe 2O 3) and doxorubicin using folate conjugated redox sensitive multiblock polymeric nanocarriers for enhancing the chemotherapeutic efficacy in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:1128-1143. [PMID: 28415398 DOI: 10.1016/j.msec.2017.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/02/2017] [Accepted: 03/02/2017] [Indexed: 11/28/2022]
Abstract
Redox sensitive, folate conjugated multiblock polymeric system of (-PLGA-PEG-PLGA-urethane-ss-) demonstrated self-assembly into stable nanoplatforms. The polymeric nanocarriers were encapsulated with doxorubicin and highly crystalline γFe2O3 superparamagnetic iron oxide nanoparticles (SPIONs), for co-delivery of the same to cancer cells, with average particle size of ~170nm and zeta potential of ~-33mV. Furthermore, the designed formulation was evaluated for protein adsorption, hemo-cytocompatibility and stability. Glutathione (GSH) induced redox sensitivity of the nanocarriers was depicted by ~4.47 fold increase in drug release in the presence of 10mM GSH. In vitro cellular uptake studies of the designed nanocarriers showed synergistic cytotoxic effect in folate overexpressing cells (HeLa and MDA-MB-231), after subjecting the cells to radio frequency (RF) induced hyperthermia (~43°C). Negligible effect of the combinatorial therapy was observed in normal cells (L929). The developed polymeric system depicted facile synthesis, reproducibility and potential for achieving combinatorial and targeted delivery of drug and SPIONs to cancer cells. This combinatorial approach can help in achieving better therapeutic effect with minimal side effects of chemotherapy.
Collapse
Affiliation(s)
- Chetan Nehate
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - M R Aji Alex
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arun Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
17
|
Li X, McTaggart M, Malardier-Jugroot C. Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system. Biophys Chem 2016; 214-215:17-26. [DOI: 10.1016/j.bpc.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
|
18
|
Effect of the molecular architecture on the thermosensitive properties of chitosan- g -poly( N -vinylcaprolactam). Carbohydr Polym 2015; 134:92-101. [DOI: 10.1016/j.carbpol.2015.07.069] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
|
19
|
Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015; 204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
|
20
|
Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles. Int J Biol Macromol 2014; 74:249-62. [PMID: 25526695 DOI: 10.1016/j.ijbiomac.2014.11.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 11/21/2022]
Abstract
The curcumin-encapsulated chitosan-graft-poly(N-vinyl caprolactam) nanoparticles containing gold nanoparticles (Au-CRC-TRC-NPs) were developed by ionic cross-linking method. After "optimum RF exposure" at 40 W for 5 min, Au-CRC-TRC-NPs dissipated heat energy in the range of ∼42°C, the lower critical solution temperature (LCST) of chitosan-graft-poly(N-vinyl caprolactam), causing controlled curcumin release and apoptosis to cancer cells. Further, in vivo PK/PD studies on swiss albino mice revealed that Au-CRC-TRC-NPs could be sustained in circulation for a week with no harm to internal organs. The colon tumor localization studies revealed that Au-CRC-TRC-NPs were retained in tumor for a week. These results throw light on their feasibility as multi-responsive nanomedicine for RF-assisted cancer treatment modalities.
Collapse
|