1
|
Zhang J, Ying Z, Li H, Liu X, Ma D, Yu H. Preparation of Soybean Dreg-Based Biochar@TiO 2 Composites and the Photocatalytic Degradation of Aflatoxin B 1 Exposed to Simulated Sunlight Irradiation. Toxins (Basel) 2024; 16:429. [PMID: 39453205 PMCID: PMC11511473 DOI: 10.3390/toxins16100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a highly toxic carcinogen severely harmful to humans and animals. This study fabricated SDB-6-K-9@TiO2 composites via the hydrothermal synthesis method to reduce AFB1. The structural characterization results of the photocatalytic composites showed that TiO2 was successfully loaded onto SDB-6-K-9. The different photocatalytic degradation conditions, photocatalyst kinetics, recycling performance, and photocatalytic degradation mechanism were investigated. Photocatalysis with 6 mg of 4%SDB-6-K-9@TiO2 in a 100 μg/mL AFB1 solution presented a reduction of over 95%, exhibiting excellent performance, high stability, and reusability even after five cycles of photocatalytic experiments. Active species trapping experiments confirmed that holes (h+) played the most critical role. After structural analysis and identification of the photocatalytic degradation products, the photodegradation path and photocatalytic oxidation mechanism of 4%SDB-6-K-9@TiO2 were postulated. The results show a new way to improve TiO2's photocatalytic performance, providing a certain theoretical basis for the effective AFB1 reduction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China;
| | - Zhiwei Ying
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Y.); (H.L.)
| | - He Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Y.); (H.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.Y.); (H.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Hailong Yu
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| |
Collapse
|
2
|
Lu J, Zhou J, Guo H, Li Y, He X, Chen L, Zhang Y. Highly fluorinated magnetic covalent organic framework for efficient adsorption and sensitive detection of microcystin toxin in aqueous samples. J Chromatogr A 2022; 1676:463290. [DOI: 10.1016/j.chroma.2022.463290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/19/2023]
|
3
|
Jain M, Khan SA, Pandey A, Pant KK, Ziora ZM, Blaskovich MAT. Instructive analysis of engineered carbon materials for potential application in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148583. [PMID: 34328999 DOI: 10.1016/j.scitotenv.2021.148583] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Water remediation is an essential component for sustainable development. Increasing population and rapid industrialization have contributed to the deterioration of water resources. In particular, effluents from chemical, pharmaceutical, petroleum industries, and anthropogenic activities have led to severe ecological degradation. Many of these detrimental pollutants are highly toxic even at low concentrations, acting as carcinogens and inflicting severe long-lasting effects on human health. This review underscores the potential applications of engineered carbon-based materials for effective wastewater treatment. It focuses on the performance as well as efficiency of activated carbon, graphene nanomaterial, and carbon nanotubes, both with and without chemical functionalization. Plausible mechanisms of action between the chemically functionalized adsorbent and pollutants are also discussed. Based on the keywords from the literature published in the recent five years, a statistical practicality-vs-applicability analysis of these three materials is also provided. The review will provide a deep understanding of the physical or chemical interactions of the wastewater pollutants with carbon materials.
Collapse
Affiliation(s)
- Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India
| | - Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Kamal Kishore Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| | - Zyta Maria Ziora
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Sethi YA, Kulkarni AK, Ambalkar AA, Panmand RP, Kulkarni MV, Gosavi SW, Kale BB. Efficient solar light-driven hydrogen generation using an Sn 3O 4 nanoflake/graphene nanoheterostructure. RSC Adv 2021; 11:29877-29886. [PMID: 35480278 PMCID: PMC9040915 DOI: 10.1039/d1ra05617d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural "sunlight" irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h-1 g-1 from H2O and 7887 μmol h-1 g-1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.
Collapse
Affiliation(s)
- Yogesh A Sethi
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Aniruddha K Kulkarni
- Prof. John Barnabas School for Biological Studies, Department of Chemistry, Ahmednagar College Ahmednagar 414001 India
| | - Anuradha A Ambalkar
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Rajendra P Panmand
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Milind V Kulkarni
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Suresh W Gosavi
- Department of Physics, Savitribai Phule Pune University Pune 411008 India
| | - Bharat B Kale
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| |
Collapse
|
5
|
Nasseh N, Arghavan FS, Daglioglu N, Asadi A. Fabrication of novel magnetic CuS/Fe 3O 4/GO nanocomposite for organic pollutant degradation under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19222-19233. [PMID: 33394401 DOI: 10.1007/s11356-020-12066-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The magnetic nanocomposites composed of copper sulphide, iron oxide, and graphene oxide (CuS/Fe3O4/GO) were synthesized through a facile sol-gel combined with hydrothermal techniques for photodegradation of methylene blue (MB) as a model organic pollutant. The as-prepared samples were characterized by powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), differential reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray analysis (EDX) and results confirmed successful synthesis of magnetic nanocomposite. Presence of Fe3O4 and GO in nanocomposite induced a synergistic effect in CuS performance as CS88F6G6 (i.e. 88% CuS, 6% Fe3O4, and 6% GO). The photocatalytic degradation efficiency of MB reached up to 90.3% after exposure to visible light irradiation for 80 min. The composite nanosheets are photostable, reusable, and magnetically recoverable, revealing potential application in removal of organic pollutants.
Collapse
Affiliation(s)
- Negin Nasseh
- Social Determinants of Health Research Center, Faculty of Health, Department of Environmental Health Engineering, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Sadat Arghavan
- Student Research Committee, Department of Environmental Health Engineering, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nebile Daglioglu
- School of Medicine, Department of Forensic Medicine, Cukurova University, 01330, Adana, Turkey
| | - Anvar Asadi
- Research Center for Environmental Determinants of Health, Health Institute, Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Serrà A, Philippe L, Perreault F, Garcia-Segura S. Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. WATER RESEARCH 2021; 188:116543. [PMID: 33137522 DOI: 10.1016/j.watres.2020.116543] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 05/08/2023]
Abstract
This review compiles recent advances and challenges in the photocatalytic treatment of natural water by analyzing the remediation of cyanotoxins. The review frames the treatment need based on the occurrence, geographical distribution, and legislation of cyanotoxins in drinking water while highlighting the underestimated global risk of cyanotoxins. Next, the fundamental principles of photocatalytic treatment for remediating cyanotoxins and the complex degradation pathway for the most widespread cyanotoxins are presented. The state-of-the-art and recent advances on photocatalytic treatment processes are critically discussed, especially the modification strategies involving TiO2 and the primary operational conditions that determine the scalability and integration of photocatalytic reactors. The relevance of light sources and light delivery strategies are shown, with emphasis on novel biomimicry materials design. Thereafter, the seldomly-addressed role of water-matrix components is thoroughly and critically explored by including natural organic matter and inorganic species to provide future directions in designing highly efficient strategies and scalable reactors.
Collapse
Affiliation(s)
- Albert Serrà
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.
| | - Laetitia Philippe
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA.
| |
Collapse
|
7
|
He X, Wang A, Wu P, Tang S, Zhang Y, Li L, Ding P. Photocatalytic degradation of microcystin-LR by modified TiO 2 photocatalysis: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140694. [PMID: 32673915 DOI: 10.1016/j.scitotenv.2020.140694] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 05/23/2023]
Abstract
Microcystin-LR (MC-LR), the most toxic and commonly encountered cyanotoxin, is produced by harmful cyanobacterial blooms and potentially threatens human and ecosystems health. Titanium dioxide (TiO2) photocatalysis is attracting growing attention and has been considered as an efficient, environmentally friendly and promising solution to eliminate MC-LR in the aquatic ecosystems. Over recent decades, scientific efforts have been directed towards the understanding of fundamentals, modification strategies, and application potentials of TiO2 photocatalysis in degrading MC-LR. In this article, recent reports have been reviewed and progress has been summarized in the development of heterogeneous TiO2-based photocatalysts for MC-LR photodegradation under visible, UV, or solar light. The proposed photocatalytic principles of TiO2 and destruction of MC-LR have been thoroughly discussed. Specifically, some main modification methods for improving the drawbacks and performance of TiO2 nanoparticle were highlighted, including element doping, semiconductor coupling, immobilization, floatability amelioration and magnetic separation. Moreover, the performance evaluation metrics quantum yield (QY) and figure of merit (FOM) were used to compare different photocatalysts in MC-LR degradation. The best performance was seen in N-TiO2 with QY and FOM values of 2.20E-07 molecules/photon and 1.00E-11 mol·L/(g·J·h). N-TiO2 or N-TiO2-based materials may be excellent options for photocatalyst design in terms of MC-LR degradation. Finally, a summary of the remaining challenges and perspectives on new tendencies in this exciting frontier and still an emerging area of research were addressed accordingly. Overall, the present review will offer a deep insight for understanding the photodegradation of MC-LR with modified TiO2 to further inspire researchers that work in associated fields.
Collapse
Affiliation(s)
- Xinghou He
- Central South University Xiangya School of Public Health, Changsha, Hunan 410078, China
| | - Anzhi Wang
- University School of South China Hengyang Medical School, Hengyang, Hunan 421001, China
| | - Pian Wu
- Central South University Xiangya School of Public Health, Changsha, Hunan 410078, China
| | - Shibiao Tang
- Central South University School of Minerals Processing and Bioengineering, Changsha, Hunan 410083, China
| | - Yong Zhang
- Central South University Xiangya School of Public Health, Changsha, Hunan 410078, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ping Ding
- Central South University Xiangya School of Public Health, Changsha, Hunan 410078, China.
| |
Collapse
|
8
|
Sun S, Zhao R, Xie Y, Liu Y. Reduction of aflatoxin B 1 by magnetic graphene oxide/TiO 2 nanocomposite and its effect on quality of corn oil. Food Chem 2020; 343:128521. [PMID: 33162254 DOI: 10.1016/j.foodchem.2020.128521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Magnetic graphene oxide/TiO2(MGO/TiO2) nanocomposite was synthesized for the reduction of aflatoxin B1 (AFB1) in corn oil. The photodegradation of synthesized nanocomposites on AFB1 in corn oil under different treatment conditions and its effect on the quality of corn oil were investigated. The doping of magnetic GO effectively enhanced the photocatalytic activity of TiO2 both under UV light and visible light. The reduction of AFB1 in corn oil reached 96.4% after illumination for 120 min under UV-Vis light. Holes (h+) and the hydroxyl radicals (OH) were found to play important roles in the reduction of AFB1, and three transformation products were confirmed by electrospray ionization mass spectrometry (ESI/MS) analysis. In addition, the quality of the treated corn oil was still acceptable after storage for 180 days. This study provides an effective, environmental-friendly and practical approach for reduction of AFB1 in oil products.
Collapse
Affiliation(s)
- Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Ran Zhao
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Lianhua Street, Zhengzhou 450001, China.
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Patel KP, Gayakwad EM, Shankarling GS. Graphene Oxide as a Metal‐free Carbocatalyst for Direct Amide Synthesis from Carboxylic Acid and Amine Under Solvent‐Free Reaction Condition. ChemistrySelect 2020. [DOI: 10.1002/slct.202000870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khushbu P. Patel
- Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Mat Department of Dyestuff Technology Institute of Chemical Technology, N. P. Marg, Matunga Mumbai 400019 India
| | - Eknath M. Gayakwad
- Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Mat Department of Dyestuff Technology Institute of Chemical Technology, N. P. Marg, Matunga Mumbai 400019 India
| | - Ganapati S. Shankarling
- Department of Dyestuff Technology, Institute of Chemical Technology, N. P. Marg, Mat Department of Dyestuff Technology Institute of Chemical Technology, N. P. Marg, Matunga Mumbai 400019 India
| |
Collapse
|
10
|
Chen Q, Zhang R, He Z, Xiong L, Wang Q. Is graphene formed on WC surface under glycerol lubrication? Yes. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Qi Chen
- School of Materials Science and Engineering East China JiaoTong University Nanchang China
| | - Renhui Zhang
- School of Materials Science and Engineering East China JiaoTong University Nanchang China
| | - Zhongyi He
- School of Materials Science and Engineering East China JiaoTong University Nanchang China
| | - Liping Xiong
- School of Materials Science and Engineering East China JiaoTong University Nanchang China
| | - Qing Wang
- Lanzhou University of Technology College of Science Lanzhou China
| |
Collapse
|
11
|
Zhang R, Chen Q, Fan X, He Z, Xiong L, Shen M. In Situ Friction-Induced Graphene Originating from Methanol at the Sliding Interface between the WC Self-Mated Tribo-Pair and Its Tribological Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3887-3893. [PMID: 32176507 DOI: 10.1021/acs.langmuir.9b03963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alcohols are reported to have superlubricity at low loads during sliding; however, their lubricity under high loads has rarely been reported. Meanwhile, the lubrication mechanism of alcohols under high loads is still not well understood. Here, we first report the lubricity of methanol under 98 N and 1450 rpm and demonstrate the formation of graphene and fullerene-like nanostructures induced by tribochemical reactions. Results show that the lubrication mechanism was mainly attributed to the friction-induced graphene under boundary lubrication condition. Besides that, the wear rate of a YG8 hard alloy ball mainly occurred at the run-in processes, and the friction-induced graphene effectively inhibited further wear after the run-in processes. The formation mechanism of graphene was well investigated, and the flash temperature rise and catalyst (WC, WO2, and WO3) were the major causes for the formation of graphene.
Collapse
Affiliation(s)
- Renhui Zhang
- School of Materials Science and Engineering, East China JiaoTong University, Nanchang 330013, People's Republic of China
| | - Qi Chen
- School of Materials Science and Engineering, East China JiaoTong University, Nanchang 330013, People's Republic of China
| | - Xiaoqiang Fan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Zhongyi He
- School of Materials Science and Engineering, East China JiaoTong University, Nanchang 330013, People's Republic of China
| | - Liping Xiong
- School of Materials Science and Engineering, East China JiaoTong University, Nanchang 330013, People's Republic of China
| | - Mingxue Shen
- School of Materials Science and Engineering, East China JiaoTong University, Nanchang 330013, People's Republic of China
| |
Collapse
|
12
|
Samadder R, Akter N, Roy AC, Uddin MM, Hossen MJ, Azam MS. Magnetic nanocomposite based on polyacrylic acid and carboxylated cellulose nanocrystal for the removal of cationic dye. RSC Adv 2020; 10:11945-11956. [PMID: 35496582 PMCID: PMC9050926 DOI: 10.1039/d0ra00604a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The development of safe and cost-effective methods for the treatment of dye polluted wastewater has been a great concern among researchers. Herein, we developed a nanocomposite (M3D-PAA-CCN) based on polyacrylic acid (PAA) crosslinked with magnetic 3D crosslinkers (M3D) and carboxylated cellulose nanocrystals (CCN), for the removal of cationic dyes from aqueous solutions. Acrylic-functionalized Fe3O4 nanoparticles were covalently linked to the polymer chains via the form of the 3D crosslinker to introduce magnetic properties into the as-synthesized nanocomposite. The addition of highly dispersive CCN reduced the gel-like properties of the nanocomposite and instead incorporated a diffusive nature, which was more desirable for adsorbents. The surface morphology of the nanocomposite was analyzed by FESEM and the size of the nanocomposite particles was found to be in the range of 60-90 nm. The chemical functionalities and compositions were determined by XPS, FTIR, and EDX analyses whereas TGA confirmed the thermal stability of M3D-PAA-CCN. The maximum adsorption capacity of the M3D-PAA-CCN (332 mg g-1) was measured higher than that of M3D-PAA (114 mg g-1) to a cationic methylene blue (MB) dye indicating the significant contribution of CCN. The adsorption capacity of the as-synthesized M3D-PAA-CCN was found to be highly pH-dependent and the adsorption capacity increased with the increase of pH owing to the greater negative charge as indicated by the higher zeta potential. The adsorption kinetics of MB on the composites was found to follow the pseudo-second-order model. The adsorption capacity was also investigated as a function of concentration to figure out the adsorption mechanism using Langmuir and Freundlich isotherm models. The Langmuir model fitted the adsorption process better as suggested by the relatively smaller nonlinear chi-square value obtained from the fitting parameters.
Collapse
Affiliation(s)
- Rajib Samadder
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Nahida Akter
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Abinash Chandra Roy
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Mosfeq Uddin
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Jahangir Hossen
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Shafiul Azam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| |
Collapse
|
13
|
Nazari Y, Salem S. Efficient photocatalytic methylene blue degradation by Fe 3O 4@TiO 2 core/shell linked to graphene by aminopropyltrimethoxysilane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25359-25371. [PMID: 31256408 DOI: 10.1007/s11356-019-05740-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
In the present article, Fe3O4@TiO2 core/shell (FT) linked to graphene was fabricated by sol-gel technique as a photocatalyst and was employed for the solar degradation of cationic methylene blue (MB) in aqueous solution. The prepared core/shells were linked to graphene oxide (FTGO) and reduced graphene oxide (FTRGO) via embedding into 3-aminopropyltrimethoxysilane (APS). The structure of this magnetic composition was characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and BET surface area measurements. The significance of the composite structure in photocatalytic degradation was spectrophotometrically tested by blending the obtained powders with wastewater containing methylene blue under solar irradiation. The appropriate dosage of APS to link the Fe3O4@TiO2 core/shell onto GO and RGO surfaces was determined to be 1 ml per gram of FT. The kinetic studies were performed to investigate the effects of different parameters, such as composition structure, APS dosage, and repeatability. Kinetic data are well fitted by a first-order model with a high correlation coefficient. Regardless of the prominent advantage of composites in magnetic powder separation, the Fe3O4@TiO2 core/shell linked to graphene oxide is an efficient composite in comparison to FTRGO for the dye degradation without losing the original activity and stability.
Collapse
Affiliation(s)
- Yousef Nazari
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Shiva Salem
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran.
| |
Collapse
|
14
|
Khadgi N, Upreti AR. Photocatalytic degradation of Microcystin-LR by visible light active and magnetic, ZnFe 2O 4-Ag/rGO nanocomposite and toxicity assessment of the intermediates. CHEMOSPHERE 2019; 221:441-451. [PMID: 30654258 DOI: 10.1016/j.chemosphere.2019.01.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
In this work, we aimed to study photocatalytic degradation of Microcystin-LR (MC-LR), a cyanotoxin known to cause acute as well as chronic toxicity and even mortality. The nanocomposite (NC) based on zinc ferrite (ZnFe2O4) was modified with graphene oxide (GO) and Ag nanoparticles (NPs) to enhance its photocatalytic properties under visible light. The so-formed ZnFe2O4-Ag/rGO NC exhibited superior performance in visible light allowing complete degradation of MC-LR within 120 min of treatment with pseudo rate constant, k = 0.0515 min-1, several times greater than other photocatalysts, TiO2 (k = 0.0009 min-1), ZnFe2O4 (k = 0.0021 min-1), ZnFe2O4-Ag (k = 0.0046 min-1) and ZnFe2O4/rGO (k = 0.007 min-1) respectively. The total organic carbon analysis revealed that only 22% of MC-LR was mineralized on 120 min of treatment time indicating presence of different intermediate by-products. The intermediates formed during photocatalytic treatment were identified using liquid chromatography-mass spectrometry (LCMS) based on which probable degradation pathways were proposed. The attack from OH radicals formed during the photocatalytic process resulted to hydroxylation and subsequent cleavage of diene bond. The toxicity assessment with Daphnia magna revealed that the degradation process has alleviated toxicity of the MC-LR and no toxic intermediates were formed during the treatment which is very important from eco-toxicological view point. Therefore, ZnFe2O4-Ag/rGO has a good potential in the field of environmental applications as visible light active and magnetic photocatalyst with enhanced performance.
Collapse
Affiliation(s)
- Nirina Khadgi
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Akhanda Raj Upreti
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
15
|
Patel KP, Gayakwad EM, Patil VV, Shankarling GS. Graphene Oxide: A Metal‐Free Carbocatalyst for the Synthesis of Diverse Amides under Solvent‐Free Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801673] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Khushbu P. Patel
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| | - Eknath M. Gayakwad
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| | - Vilas V. Patil
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| | - Ganapati S. Shankarling
- Department of Dyestuff TechnologyInstitute of Chemical Technology, N. P. Marg, Matunga, Mumbai – 400019 India
| |
Collapse
|
16
|
yang J, He X, Chen L, Zhang Y. Thiol-yne click synthesis of boronic acid functionalized silica nanoparticle-graphene oxide composites for highly selective enrichment of glycoproteins. J Chromatogr A 2017; 1513:118-125. [DOI: 10.1016/j.chroma.2017.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 10/19/2022]
|
17
|
Fu W, Zhang Z, Zhuang P, Shen J, Ye M. One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions. J Colloid Interface Sci 2017; 497:83-92. [DOI: 10.1016/j.jcis.2017.02.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
18
|
Zhang MY, Wang MM, Hao YL, Shi XR, Wang XS. Effective extraction and simultaneous determination of Sudan dyes from tomato sauce and chili-containing foods using magnetite/reduced graphene oxide nanoparticles coupled with high-performance liquid chromatography. J Sep Sci 2016; 39:1749-56. [DOI: 10.1002/jssc.201600167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ming-Yue Zhang
- School of Public Healh; North China University of Science and Technology; Tangshan Hebei China
| | - Man-Man Wang
- School of Public Healh; North China University of Science and Technology; Tangshan Hebei China
| | - Yu-Lan Hao
- School of Public Healh; North China University of Science and Technology; Tangshan Hebei China
| | - Xin-Ran Shi
- School of Public Healh; North China University of Science and Technology; Tangshan Hebei China
| | - Xue-Sheng Wang
- School of Public Healh; North China University of Science and Technology; Tangshan Hebei China
| |
Collapse
|
19
|
Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem 2016; 194:1040-7. [DOI: 10.1016/j.foodchem.2015.08.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/21/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
20
|
Zou X, Wan Z, Wan C, Zhang G, Pan X, Peng J, Chang J. Novel Ag/AgCl/K6Nb10.8O30 photocatalyst and its enhanced visible light photocatalytic activities for the degradation of microcystin-LR and acid red G. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2015.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Abstract
AbstractOne of the main public concerns is the aquatic habitat and its corresponding issues because of the incessant contamination of the ecological water systems. In recent years, research attention has been focused on processes that lead to an improved oxidative degradation of organic pollutants. Therefore, semiconductor photocatalysis technology has aroused scientists’ interest in environmental remediation. Although several semiconductors have proven to be ideal candidates for the treatment of water pollution, the efficient separation and recycling of this fine-powdered photocatalyst is still a scientific problem when applied in practice, including separation process, selectivity, and dispersion. A photocatalyst with magnetic properties allows the use of the technique of magnetic separation, which is one of the most effective and simple methods for removing suspended solids from wastewater without the need for further separation processes. The magnetic photocatalyst allows its use as a suspended material, providing the advantage to have a high surface area for reaction. This review highlights the advantages and disadvantages of current photocatalyst systems. Moreover, it focuses on hybrid magnetic photocatalysts, including metals and nonmetals, metal oxides, carbon-based materials, and ceramics.
Collapse
|
22
|
Wei S, Hu X, Liu H, Wang Q, He C. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2015; 294:168-176. [PMID: 25867589 DOI: 10.1016/j.jhazmat.2015.03.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
A novel molecularly imprinted polymer (MIP)-coated magnetic TiO2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC-MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, "green" and low-cost degradation of CR in industrial printing and dyeing wastewater.
Collapse
Affiliation(s)
- Shoutai Wei
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaolei Hu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Hualong Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Wang
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
23
|
Sinha A, Jana NR. Separation of Microcystin-LR by Cyclodextrin-Functionalized Magnetic Composite of Colloidal Graphene and Porous Silica. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9911-9919. [PMID: 25906257 DOI: 10.1021/acsami.5b02038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microcystin-LR belongs to the family of microcystins produced by cyanobacteria and known to be the most toxic of this family. Existence of cyanobacteria in water bodies leads to the contamination of drinking water with microcystin-LR and thus their separation is essential for an advanced water purification system. Here we report functional nanocomposite-based selective separation of microcystin-LR from contaminated water. We have synthesized cyclodextrin-functionalized magnetic composite of colloidal graphene and porous silica where the cyclodextrin component offers host-guest interaction with microcystin-LR and the magnetic component offers easier separation of microcystin-LR from water. High surface area and large extent of chemical functional groups offer high loading (up to 18 wt %) of cyclodextrin with these nanocomposites, and the dispersible form of the nanocomposite offers easier accessibility of cyclodextrin to microcystin-LR. We have shown that microcystin-LR separation efficiency is significantly enhanced after functionalization with cyclodextrin, and among all the tested cyclodextrins, γ-cyclodextrin offers the best performance. We have also found that graphene-based nanocomposite offers better performance over porous silica-based nanocomposite due to better accessibility of cyclodextrins for interaction with microcystin-LR. The proposed graphene-based functional nanocomposite is environment friendly, reusable, and applicable for advanced water purification.
Collapse
Affiliation(s)
- Arjyabaran Sinha
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India
| | - Nikhil R Jana
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India
| |
Collapse
|