1
|
Abdeta AB, Wedajo F, Wu Q, Kuo DH, Li P, Zhang H, Huang T, Lin J, Chen X. B and N Codoped Cellulose-Supported Ag-/Bi-Doped Mo(S,O) 3 Trimetallic Sulfo-Oxide Catalyst for Photocatalytic H 2 Evolution Reaction and 4-Nitrophenol Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12987-13000. [PMID: 38869190 DOI: 10.1021/acs.langmuir.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Cellulose plays a significant role in designing efficient and stable cellulose-based metallic catalysts, owing to its surface functionalities. Its hydroxyl groups are used as anchor sites for the nucleation and growth of metallic nanoparticles and, as a result, improve the stability and catalytic activity. Meanwhile, cellulose is also amenable to surface modifications to be more suitable for incorporating and stabilizing metallic nanoparticles. Herein, the Ag-/Bi-doped Mo(S,O)3 trimetallic sulfo-oxide anchored on B and N codoped cellulose (B-N-C) synthesized by a facile approach showed excellent stability and catalytic activity for PHER at 573.28 μmol/h H2 with 25 mg of catalyst under visible light, and 92.3% of the 4-nitrophenol (4-NP) reduction was achieved within 135 min by in situ-generated protons. In addition to B and N codoping, our use of the calcination method for B-N-C preparation further increases the structural disorders and defects, which act as anchoring sites for Ag-/Bi-doped Mo(S,O)3 nanoparticles. The Ag-/Bi-doped Mo(S,O)3@B-N-C surface active site also stimulates H2O molecule adsorption and activation kinetics and reduces the photogenerated charge carrier's recombination rate. The Mo4+ → Mo6+ electron hopping transport and the O 2p and Bi 6s orbital overlap facilitate the fast electron transfer by enhancing the electron's lifetime and photoinduced charge carrier mobility, respectively. In addition to acting as a support, B-N-C provides a highly conductive network that enhances charge transport, and the relocated electron in B-N-C activates the H2O molecule, which enables Ag-/Bi-doped Mo(S,O)3@B-N-C to have appreciable PHER performance.
Collapse
Affiliation(s)
- Adugna Boke Abdeta
- Department of Chemistry, College of Natural Science, Jimma University, 378 Jimma, Ethiopia
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feyisa Wedajo
- Department of Chemistry, College of Natural Science, Jimma University, 378 Jimma, Ethiopia
| | - Qinhan Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Hau Kuo
- Departments of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ping Li
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanya Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinguo Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Freyer A, Tumiel TM, Smeaton M, Savitzky BH, Kourkoutis LF, Krauss TD. Heterogeneity in Cation Exchange Ag + Doping of CdSe Nanocrystals. ACS NANOSCIENCE AU 2023; 3:280-285. [PMID: 37601918 PMCID: PMC10436366 DOI: 10.1021/acsnanoscienceau.3c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 08/22/2023]
Abstract
Cation exchange is becoming extensively used for nanocrystal (NC) doping in order to produce NCs with unique optical and electronic properties. However, despite its ever-increasing use, the relationships between the cation exchange process, its doped NC products, and the resulting NC photophysics are not well characterized. For example, similar doping procedures on NCs with the same chemical compositions have resulted in quite different photophysics. Through a detailed single molecule investigation of a postsynthesis Ag+ doping of CdSe NCs, a number of species were identified within a single doped NC sample, suggesting the differences in the optical properties of the various synthesis methods are due to the varied contributions of each species. Electrostatic force microscopy (EFM), electron energy loss spectroscopy (EELS) mapping, and single molecule photoluminescence (PL) studies were used to identify four possible species resulting from the Ag+-CdSe cation exchange doping process. The heterogeneity of these samples shows the difficulty in controlling a postsynthesis cation exchange method to produce homogeneous samples needed for use in any potential application. Additionally, the heterogeneity in the doped samples demonstrates that significant care must be taken in describing the ensemble or average characteristics of the sample.
Collapse
Affiliation(s)
- Abigail Freyer
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| | - Trevor M. Tumiel
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| | - Michelle Smeaton
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Benjamin H. Savitzky
- Department
of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Lena F. Kourkoutis
- School
of Applied and Engineering Physics, Cornell
University, Ithaca, New York 14853, United States
- Kavli Institute
at Cornell for Nanoscale Science, Cornell
University, Ithaca, New York 14853, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
- The
Institute of Optics, University of Rochester, Rochester, New York 14627-0216, United
States
| |
Collapse
|
3
|
Luo X, Zhou X, Wei S. Ionic liquid-assisted green solution approach for high-performance full-color emission quantum dot films of Ag-doped ZnxCd1-xS. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Zhou J, Zhao X, Xu H, Wang Z, Zhang X, Su Z. Integration of Carbon Dots on Nanoflower Structured ZnCdS as a Cocatalyst for Photocatalytic Degradation. MATERIALS (BASEL, SWITZERLAND) 2022; 16:366. [PMID: 36614704 PMCID: PMC9821953 DOI: 10.3390/ma16010366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The application of catalysts is one of the most effective methods in the oil refining, chemical, medical, environmental protection, and other industries. In this work, carbon dots (CDs) were selected as an initiator and doped into the main catalyst, Zn0.2Cd0.8S, and a novel Zn0.2Cd0.8S@CD composite catalyst with a nanoflower structure was successfully obtained. The synthesized composites (Zn0.2Cd0.8S@CDs) were characterized by means of SEM, TEM, XRD, FT-IR, XPS, and UV-Vis DRS. Transient photocurrent response and Nyquist curve analysis further proved that the carrier separation efficiency of the composite catalyst was significantly improved. In addition, the photocatalytic activity of Zn0.2Cd0.8S@CDs for rhodamine B removal from aqueous solution was tested under visible-light irradiation. When the amount of Zn0.2Cd0.8S@CDs composite catalyst reached 50 mg, the degradation rate of rhodamine B was 79.35%. Finally, the photocatalytic degradation mechanism of the Zn0.2Cd0.8S@CDs complex was studied. CD doping enhances the adsorption capacity of Zn0.2Cd0.8S@CDs composite catalysts due to the increase in surface area, effectively inducing charge delocalization and enhancing the photocatalytic capacity. Zn0.2Cd0.8S@CDs composites with low cost and high carrier separation efficiency have broad application prospects in the photocatalytic degradation of dyes.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhichao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Wagner M, Strassert CA, Gröhn F. Hierarchical electrostatic nanotemplating and self-assembly of electron-transferring hybrid nanostructures: CdS-polymer-porphyrin particles. NANOSCALE 2022; 14:13040-13045. [PMID: 35912789 DOI: 10.1039/d2nr02132c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We demonstrate a versatile route to functional multi-component nanostructures by a hierarchical electrostatic nanotemplating - self-assembly approach: CdS-polyelectrolyte-porphyrin structures are formed in aqueous solution. The system was investigated with regard to its photocatalytic activity in different model reactions, and the mechanisms upon excitation were elucidated.
Collapse
Affiliation(s)
- Maximilian Wagner
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials and Bavarian Polymer Institute, Friedrich-Alexander - Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Cells in Motion Interfaculty Centre, Center for Soft Nanoscience, Center for Nanotechnology - Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials and Bavarian Polymer Institute, Friedrich-Alexander - Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.
| |
Collapse
|
6
|
The Shell Matters: Self-Organized CdS-ZnS/MnS-Core-Shell—Porphyrin-Polymer Nano-Assemblies for Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12080907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A facile synthesis of catalytically tunable core-shell CdS-ZnxMn1-xS-nanoparticles in conjunction with poly(acrylic acid) (PAA) and porphyrin in an aqueous solution is described in the following: The shell composition of the inorganic nanoparticles is varied to tune the optical properties and to optimize the catalytic activity. Further, the tetravalent cationic 5,10,15,20-tetrakis(4-trimethylammoniophenyl) porphyrin (TAPP) fulfills a triple functionality in the catalyst: as a photosensitizer, as an electrostatic linker connecting the nanoparticles and as a probe to investigate the surface composition of the II-VI semiconducting nanoparticles. Different nanoparticles with varying zinc sulfide/manganese sulfide shell ratios are tested with regard to their photocatalytic behavior by crocin bleaching. The results reveal that the shell composition can be a crucial key to optimize the catalytic activity, which can further be important in tuning the reactivity of related systems. Fundamentally, the stepwise multi-component self-assembly in an aqueous solution has been demonstrated to allow the tuning of optic and catalytic properties of core-shell nanoparticles, a general concept that may be widely applicable.
Collapse
|
7
|
Iida K, Uehigashi Y, Kim D. Origin of photoluminescence of water-soluble CuInS 2 quantum dots prepared via a hydrothermal method. RSC Adv 2021; 11:33186-33191. [PMID: 35497559 PMCID: PMC9042224 DOI: 10.1039/d1ra05761h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 11/21/2022] Open
Abstract
This study was performed to investigate the origin of the photoluminescence (PL) properties of hydrothermally-synthesized water-soluble CuInS2 (CIS) quantum dots (QDs). The corresponding PL decay profiles, time-resolved PL spectra, and excitation intensity dependence of the PL spectra were evaluated. The decay profiles exhibited a strong dependence on the detection energy, and the peak of the time-resolved PL spectra shifted to lower energies with increasing time. With increasing excitation light intensity, the PL peak shifted to the high-energy side. These experimental results were consistent with the characteristics of donor–acceptor pair emission. The PL properties of Cu-doped and non-doped CdSe QDs, which show Cu-related and defect-related PL emission, respectively, were compared. Based on these results, it was concluded that donor–acceptor pair emission is the underlying mechanism of the PL of the hydrothermally-synthesized water-soluble CIS QDs. The donor–acceptor pair emission is the underlying mechanism of the PL of the hydrothermally-synthesized water-soluble CIS QDs.![]()
Collapse
Affiliation(s)
- Kazutaka Iida
- Department of Applied Physics, Graduate School of Engineering, Osaka City University 3-3-138, Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Yota Uehigashi
- Department of Applied Physics, Graduate School of Engineering, Osaka City University 3-3-138, Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - DaeGwi Kim
- Department of Applied Physics, Graduate School of Engineering, Osaka City University 3-3-138, Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
8
|
Ke B, Bai X, Wang R, Shen Y, Cai C, Bai K, Zeng R, Zou B, Chen Z. Alkylthiol-enabled Se powder dissolving for phosphine-free synthesis of highly emissive, large-sized and spherical Mn-doped ZnSeS nanocrystals. RSC Adv 2017. [DOI: 10.1039/c7ra06873e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The enhanced dissolution of Se without organo-phosphines is a key issue in the synthesis of oil-soluble selenide nanocrystals.
Collapse
Affiliation(s)
- Bao Ke
- School of Material Science and Engineering
- School of Life and Environmental Sciences
- Guilin University of Electronic Technology
- Guilin 541004
- P. R. China
| | - Xianwei Bai
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Rongkai Wang
- School of Chemistry and Materials Science
- Guizhou Normal University
- Guiyang 550001
- P. R. China
| | - Yayun Shen
- School of Chemistry and Materials Science
- Guizhou Normal University
- Guiyang 550001
- P. R. China
| | - Chunxiao Cai
- Department of Experiential Practice
- Guilin University of Electronic Technology
- Guilin 541004
- P. R. China
| | - Kun Bai
- School of Material Science and Engineering
- School of Life and Environmental Sciences
- Guilin University of Electronic Technology
- Guilin 541004
- P. R. China
| | - Ruosheng Zeng
- School of Material Science and Engineering
- School of Life and Environmental Sciences
- Guilin University of Electronic Technology
- Guilin 541004
- P. R. China
| | - Bingsuo Zou
- School of Materials Science & Engineering
- Beijing Institute of Technology
- Beijing 100081
- P. R. China
| | - Zhencheng Chen
- School of Material Science and Engineering
- School of Life and Environmental Sciences
- Guilin University of Electronic Technology
- Guilin 541004
- P. R. China
| |
Collapse
|
9
|
Nanocarbons with Different Dimensions as Noble-Metal-Free Co-Catalysts for Photocatalysts. Catalysts 2016. [DOI: 10.3390/catal6080111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|