1
|
Nachaichot A, Kenvised O, Choram S, Nijpanich S, Budsombat S. Catalytic reduction of nitrophenols and dyes by HKUST-1/hydrogel composite. RSC Adv 2025; 15:6974-6983. [PMID: 40041380 PMCID: PMC11876955 DOI: 10.1039/d5ra00081e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
The effective removal of nitrophenols from wastewater is crucial due to their high carcinogenic risk. This research presents the development of a copper-based metal-organic framework (HKUST-1) integrated into a chitosan-graft-poly(acrylic acid) hydrogel. The hydrogel composite was evaluated as a catalyst for reducing nitrophenols and dyes using sodium borohydride (NaBH4) as a reducing agent. Various conditions were investigated for the reduction of 4-nitrophenol (4-NP) to the less harmful 4-aminophenol (4-AP), including catalyst dosage, NaBH4 concentration, initial 4-NP concentration, temperature, and pH. The catalyst was able to completely reduce 4-NP within 25 minutes at a dosage of 3 g L-1 and a NaBH4 concentration of 300 mM. The reduction rate increased with higher temperatures, with an Arrhenius activation energy of 54.4 kJ mol-1. Common anions found in surface water, such as Cl-, NO3 -, SO4 2-, and HCO3 -, had a slight impact on the reduction rate of 4-NP. When tested in real water environments, the reduction rate decreased, but complete conversion was still achieved. Additionally, the composite successfully reduced 100% of 2-nitrophenol, 100% of methyl orange, and 69% of Congo red. Overall, the hydrogel composite has shown significant potential as a catalyst for reducing various organic pollutants with high efficiency and easy separation through filtration.
Collapse
Affiliation(s)
- Atipong Nachaichot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 432 02373 +66 432 02222-12243
| | - Orrawin Kenvised
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 432 02373 +66 432 02222-12243
| | - Sirikanlaya Choram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 432 02373 +66 432 02222-12243
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public Organization) Nakhonratchasima 30000 Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66 432 02373 +66 432 02222-12243
| |
Collapse
|
2
|
Arif M, Rauf A, Raza H, Moussa SB, Haroon SM, Alzahrani AYA, Akhter T. Catalytic reduction of nitroarenes by palladium nanoparticles decorated silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) hybrid microgels. Int J Biol Macromol 2024; 275:133633. [PMID: 38964695 DOI: 10.1016/j.ijbiomac.2024.133633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Conversion of toxic nitroarenes into less toxic aryl amines, which are the most suitable precursors for different types of compounds, is done with various materials which are costly or take more time for this conversion. In this regards, a silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) Si@P(CS-NIPAM-MAA) Si@P(CNM) core-shell microgel system was synthesized through free radical precipitation polymerization (FRPP) and then fabricated with palladium nanoparticles (Pd NPs) by in situ-reduction method to form Si@Pd-P(CNM) and characterized with XRD, TEM, FTIR, SEM, and EDX. The catalytic efficiency of Si@Pd-P(CNM) hybrid microgels was studied for reduction of 4-nitroaniline (4NiA) under diverse conditions. Different nitroarenes were successfully transformed into their corresponding aryl amines with high yields using the Si@Pd-P(CNM) system as catalyst and NaBH4 as reductant. The Si@Pd-P(CNM) catalyst exhibited remarkable catalytic efficiency and recyclability as well as maintaining its catalytic effectiveness over multiple cycles.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hamid Raza
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science and Arts, Mohail Asser, King Khalid University, Abha 61413, Saudi Arabia
| | - Shah M Haroon
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | | | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
3
|
Meetam P, Phonlakan K, Nijpanich S, Budsombat S. Chitosan-grafted hydrogels for heavy metal ion adsorption and catalytic reduction of nitroaromatic pollutants and dyes. Int J Biol Macromol 2024; 255:128261. [PMID: 37992945 DOI: 10.1016/j.ijbiomac.2023.128261] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Chitosan-grafted-poly(acrylic acid) (CS-g-PAA) and chitosan-grafted- poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (CS-g-P(AA-co-AMPS)) hydrogels were synthesized and then employed as adsorbents for the effective removal of Cu2+ and other heavy metal ions. The effect of hydrogel's composition on the Cu2+ adsorption was explored. The CS-g-PAA hydrogel demonstrated a superior adsorption capacity compared to pristine CS, PAA hydrogel, and CS-g-P(AA-co-AMPS) hydrogels. The adsorption followed the Langmuir isotherm model, and the pseudo-second order kinetic model. Additionally, the CS-g-PAA hydrogel exhibited relatively high adsorption performances toward Cr3+, Co2+, Ni2+, Pb2+, and Zn2+. Metal ions adsorbed within CS-g-PAA hydrogels underwent reduction to their corresponding metallic states and were reutilized as catalysts for the reduction of 4-nitrophenol. The comparative catalytic performances of the metal species in the hydrogel were in the order of Cu > Ni > Co > Zn. The reduction efficiency of Cu-CS-g-PAA increased with increased catalyst dosage, NaBH4 concentration, and temperature. A very low activation energy of 3.7 kJ/mol was observed. The catalyst maintained high catalytic performance even when subjected to real water samples and proved its reusability for up to three cycles. Moreover, the catalyst could effectively reduce 2-nitrophenol and methyl orange.
Collapse
Affiliation(s)
- Panjalak Meetam
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public organization), Nakhon Ratchasima 30000, Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Ahmad I, Abbasi A, El Bahy ZM, Ikram S. Synergistic effect of silver NPs immobilized on Fe 3O 4@L-proline magnetic nanocomposite toward the photocatalytic degradation of Victoria blue and reduction of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27837-x. [PMID: 37278899 DOI: 10.1007/s11356-023-27837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
The surface of magnetite (Fe3O4) nanoparticles was subject to modification through the incorporation of L-proline (LP) by simple co-precipitation method in which silver nanoparticles were deposited by in situ method, thereby yielding the Fe3O4@LP-Ag nanocatalyst. The fabricated nanocatalyst was characterized using an array of techniques including Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometry (VSM), Brunauer-Emmett-Teller (BET), and UV-Vis spectroscopy. The results evince that the immobilization of LP on the Fe3O4 magnetic support facilitated the dispersion and stabilization of Ag NPs. The SPION@LP-Ag nanophotocatalyst exhibited exceptional catalytic efficiency facilitating the reduction of MO, MB, p-NP, p-NA, NB, and CR in the presence of NaBH4. The rate constants obtained from the pseudo-first-order equation were 0.78, 0.41, 0.34, 0.27, 0.45, 0.44, and 0.34 min-1 for CR, p-NP, NB, MB, MO, and p-NA, respectively. Additionally, the Langmuir-Hinshelwood model was deemed the most probable mechanism for catalytic reduction. The novelty of this study lies in the use of L-proline immobilized on Fe3O4 MNPs as a stabilizing agent for the in-situ deposition of silver nanoparticles, resulting in the synthesis of Fe3O4@LP-Ag nanocatalyst. This nanocatalyst exhibits high catalytic efficacy for the reduction of multiple organic pollutants and azo dyes, which can be attributed to the synergistic effects between the magnetic support and the catalytic activity of the silver nanoparticles. The easy recyclability and low cost of the Fe3O4@LP-Ag nanocatalyst further enhance its potential application in environmental remediation.
Collapse
Affiliation(s)
- Iftkhar Ahmad
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi, 110025, India
| | - Arshiya Abbasi
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi, 110025, India
| | - Zeinhom M El Bahy
- Department of Chemistry, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Saiqa Ikram
- Bio/Polymer Research Laboratory, Department of Chemistry, Jamia Millia Islamia University, New Delhi, 110025, India.
| |
Collapse
|
5
|
Riaz M, Ajmal M, Naseem A, Jabeen N, Farooqi ZH, Mahmood K, Ali A, Rasheed L, Saqib ANS. Synthesis of poly (N-isopropyl acrylamide-co-2-acrylamido methylpropane sulfonic acid) hydrogel containing copper and nickel nanoparticles with easy recycling and efficient catalytic potential. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Abstract
Poly(N-isopropyl acrylamide-co-2-acrylamido methyl propane sulfonic acid) hydrogel was prepared and used as matrix for the fabrication of nickel and copper nanoparticles. Nickel and copper nanoparticles were fabricated via in situ reduction of Ni (II) and Cu (II) ions within the hydrogel matrix. The manufactured hydrogel and its corresponding composites with Ni and Cu nanoparticles were characterized by FTIR, XRD, EDX, TEM, and TGA. Thermal stability of hydrogel was found to be increased upon fabricating with metal nanoparticles. The hydrogel showed ability to absorb water 63 times of its weight in dried form. The Ni and Cu nanoparticles were observed to be well dispersed, spherical in shape and most of them were having diameters in the range of 12.5 to 38.8 nm and 58 to 102 nm, respectively. The as-prepared hydrogel-nickel and hydrogel-Cu nanocomposite were used as catalysts for the reduction of a toxic pollutant 4-nitrophenol. At 25 °C, the reduction of 4-NP was found to proceed with apparent rate constant (k
app) of 0.107 and 0.122 min−1 in the presence of composite containing Ni and Cu nanoparticles, respectively. However, k
app was increased with corresponding increase in temperature and its maximum value was found to be 0.815 min−1 at 88 °C with catalyst containing Ni nanoparticles. The formation of well dispersed Ni and Cu nanoparticles in the prepared hydrogel reflected that this hydrogel system can act as efficient stabilizing agent along with acting as a reactor medium. Recycling potential of catalysts was studied for five successive cycles.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Chemistry , University of Wah , Wah Cantt , Pakistan
| | - Muhammad Ajmal
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Atif Naseem
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Nusrat Jabeen
- Department of Chemistry , University of Wah , Wah Cantt , Pakistan
| | - Zahoor H. Farooqi
- School of Chemistry , University of the Punjab, New Campus , Lahore , Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University , Multan , Pakistan
| | - Abid Ali
- Department of Chemistry , University of Lahore , Lahore , Pakistan
| | - Lubna Rasheed
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| | - Ahmad Nauman Shah Saqib
- Department of Chemistry , Division of Science and Technology, University of Education , Lahore , Pakistan
| |
Collapse
|
6
|
Kobayashi Y, Yokoyama S, Shoji R. Molten Salt Synthesis of Intermetallic Compound TiNi Nanopowder Passivated by TiO x Shell Prepared from NiTiO 3 for Catalytic Hydrogenation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8536. [PMID: 36500032 PMCID: PMC9736321 DOI: 10.3390/ma15238536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Titanium-nickel alloy is an attractive material due to its unique properties of shape memory effect, superior elasticity, and biocompatibility. Generally, Ti-Ni alloy powders are prepared from pure elemental powders of Ti and Ni as starting materials, but it is an energy-intensive process to obtain pure titanium. In this study, intermetallic compound TiNi powder passivated by TiOx shell was prepared by directly reducing a commercial NiTiO3 using CaH2 reducing agent in a molten LiCl at 650 °C. Analyses by X-ray diffraction, scanning electron microscopy/transmission electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the powder had a core-shell structure, with the core of TiNi and the shell of TiOx-rich composition with scarce metallic Ni nicely catalyzing hydrogenation reactions with good recyclability and stability.
Collapse
Affiliation(s)
- Yasukazu Kobayashi
- Renewable Energy Research Centre, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama 963-0298, Japan
| | - Shota Yokoyama
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida, Hachioji 193-0997, Japan
| | - Ryo Shoji
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida, Hachioji 193-0997, Japan
| |
Collapse
|
7
|
Zahid S, Alzahrani AK, Kizilbash N, Ambreen J, Ajmal M, Farooqi ZH, Siddiq M. Preparation of stimuli responsive microgel with silver nanoparticles for biosensing and catalytic reduction of water pollutants. RSC Adv 2022; 12:33215-33228. [PMID: 36425212 PMCID: PMC9677230 DOI: 10.1039/d2ra05475b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
Herein, we report poly(N-isopropylacrylamide/2-acrylamido-2-methylpropane sulfonic acid) microgel fabricated with silver nanoparticles. The identification of copolymerization and functional groups in the bare microgel and those fabricated with silver nanoparticles was examined by Fourier transform infrared spectroscopy. The pH and temperature sensitivity of microgels was studied using dynamic light scattering. Thermogravimetric analysis was carried out to study the thermal stability. X-Ray diffraction patterns indicated the amorphous nature of bare microgel and crystalline nature of those containing silver nanoparticles. A bathochromic shift was found in the surface plasmon resonance of silver nanoparticles present in microgel with increase in pH of the medium. Moreover, the microgel containing silver nanoparticles served as an effective catalyst for reducing the toxic nitroaromatic pollutants and carcinogenic dyes. The microgel containing silver nanoparticles also showed good capability to serve as biosensor for the detection of hydrogen peroxide.
Collapse
Affiliation(s)
- Sara Zahid
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University Arar-91431 Saudi Arabia
| | - Nadeem Kizilbash
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University Arar-91431 Saudi Arabia
| | - Jaweria Ambreen
- Department of Chemistry, COMSATS University Islamabad Park Road 45550 Islamabad Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
8
|
Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Most of the transition metal ions are toxic and their removal from water is important. For this purpose, nearly monodisperse spherical core shell microgel particles with diameter of 88 ± 3 nm have been synthesized by free radical precipitation polymerization method and characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Extraction of copper ions from water under several conditions of pH, copper ions content and core shell microgel concentrations was undertaken. Several adsorption isotherms were tested to explore the process of adsorption of copper ions on the microgel particles. Kinetics of adsorption process was examined by pseudo first order, pseudo second order, intra-particle diffusion and Elovich models. Copper ions adsorbed in shell region of core shell microgel were reduced to copper nanoparticles. The hybrid microgel was used to reduce organic pollutants such as 4-nitrophenol (4NP), methylene blue (MB), and methyl orange (MO) in aqueous medium. The value of pseudo first order rate constant for catalytic reduction of 4NP, MB, and MO was found 0.602, 0.831, and 0.874 min−1 respectively. The resultant core shell hybrid microgel system can serve as efficient catalyst for numerous other organic transformations.
Collapse
|
9
|
Saeed SR, Ajmal M, Bibi I, Shah SS, Siddiq M. Synthesis and characterization of SiO 2-NiO xerogel nanocomposite prepared by sol–gel method for catalytic reduction of p-nitrophenol. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2073541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Syed Rashid Saeed
- Department of Chemistry, Hazara University Mansehra, Khyber-Pukhtoonkhwa, Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Iram Bibi
- Department of Chemistry, Hazara University Mansehra, Khyber-Pukhtoonkhwa, Pakistan
| | - Syed Sakhawat Shah
- Department of Chemistry, Hazara University Mansehra, Khyber-Pukhtoonkhwa, Pakistan
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad, Islamabad Pakistan
| |
Collapse
|
10
|
Hydrodeoxygenation of palm oil to green diesel products on mixed-phase nickel phosphides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.111422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Arif M. Complete life of cobalt nanoparticles loaded into cross-linked organic polymers: a review. RSC Adv 2022; 12:15447-15460. [PMID: 35693224 PMCID: PMC9121440 DOI: 10.1039/d2ra01058e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
The synthesis and use of Co nanoparticles loaded into cross-linked polymers for generation of hydrogen is discussed in detail. The factors affecting hydrogen production have been discussed briefly. The catalytic reduction of dyes and nitroarenes is also discussed in detail.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| |
Collapse
|
12
|
Heidari H, Aliramezani F. Reductant‐Free and In‐Situ Green Synthesis of Ag Nanoparticles on Fe
3
O
4
@Nanocellulose and Their Catalytic Activity for the Reduction of Dyes. ChemistrySelect 2021. [DOI: 10.1002/slct.202004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hannaneh Heidari
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| | - Fatemeh Aliramezani
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| |
Collapse
|
13
|
Ayodhya D, Veerabhadram G. Microwave-assisted fabrication of g-C 3N 4 nanosheets sustained Bi 2S 3 heterojunction composites for the catalytic reduction of 4-nitrophenol. ENVIRONMENTAL TECHNOLOGY 2021; 42:826-841. [PMID: 31318310 DOI: 10.1080/09593330.2019.1646323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
In this work, we report a stable g-C3N4, Bi2S3, and g-C3N4/Bi2S3 composite catalysts were prepared via a facile one-pot microwave-assisted method and characterized. The orthorhombic phase and nearly spherical shape of the particles with an average diameter of 5-25 nm of g-C3N4/Bi2S3 composite were obtained from XRD and TEM. The composite also exhibits a high surface area (32.15 m2/g), which may provide convenient transportation and diffusion for substrate molecule. The optical studies were displayed the g-C3N4/Bi2S3 composite has a sharp absorption band in the visible region, higher charge separation, and reduced recombination rate. These results show that the Bi2S3 NPs have good crystallinity and are uniformly deposited on the surface of the g-C3N4 sheet. The catalytic performance of the g-C3N4/Bi2S3 composite for the reduction of 4-NP to 4-AP was exhibited approximately 100%, which is 1.48 and 2.34 times higher than the Bi2S3 and g-C3N4 catalysts, respectively. The pseudo-first-order rate constant was estimated as 1.648 × 10 -2 min-1 for the reduction of 4-NP using g-C3N4/Bi2S3 composite in 1 h reaction time. The effect of catalyst dosage (0-30 mg) was also investigated for the reduction of 4-NP using g-C3N4/Bi2S3 composite catalyst. Moreover, the reusability of the g-C3N4/Bi2S3 composite was exhibited a better reduction of the 4-NP even after 5 cycles and it was found that 8% reduction in the initial reduction rate. The obtained results from this study show that g-C3N4/Bi2S3 composite has the potential efficiency and stability to make it an ideal catalyst for the reduction of toxic effluents and wastewater treatment.
Collapse
Affiliation(s)
- Dasari Ayodhya
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Guttena Veerabhadram
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
14
|
Zhu Y, Xu G, Song W, Wu M, Yao R, Sadeghzadeh SM. Cu2O Nanocatalysts Immobilized on p(SBMA) for Synergistic CO2 Activation to Afford Esters and Heterocycles at Ambient Pressure. Catal Letters 2021. [DOI: 10.1007/s10562-020-03518-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Highly Versatile Gum Acacia Based Swellable Microgels Encapsulating Cobalt Nanoparticles; An Approach to Rapid and Recoverable Environmental Nano-catalysis. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01870-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Naeem H, Ajmal M, Khatoon F, Siddiq M, Khan GS. Synthesis of graphene oxide–metal nanoparticle nanocomposites for catalytic reduction of nitrocompounds in aqueous medium. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1991736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hina Naeem
- Department of Chemistry, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, University of Education, Attock Campus., Attock, Pakistan
| | - Fatima Khatoon
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gul Shahzada Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Bahrain
| |
Collapse
|
17
|
Kottappara R, Pillai SC, Kizhakkekilikoodayil Vijayan B. Copper-based nanocatalysts for nitroarene reduction-A review of recent advances. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Ajmal M, Anwar S, Naeem H, Zia MA, Siddiq M. Poly(acrylic acid) hydrogel microparticles fabricated with silver nanoparticles: synthesis, characterization, and catalytic applications. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Ajmal
- Department of Chemistry University of Education, Attock Campus Attock Pakistan
| | - Saad Anwar
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Hina Naeem
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
- Rawalpindi Women University, 6th Road, Satellite Town Rawalpindi Pakistan
| | - Muhammad Abid Zia
- Department of Chemistry University of Education, Attock Campus Attock Pakistan
| | - Muhammad Siddiq
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| |
Collapse
|
19
|
Sarvestani M, Azadi R. Synthesis and Characterization of GO-Chit-Ni Nanocomposite as a Recoverable Nanocatalyst for Reducing Nitroarenes in Water. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190806125217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, nickel nanoparticles (Ni-NPs) immobilized on graphene oxide-chitosan
(GO-Chit-Ni) have been synthesized and characterized as a catalyst for reduction of nitroarenes in water.
For this purpose, GO has been functionalized with chitosan (GO-Chit). Then, Ni-NPs were immobilized
on the surface of GO-Chit using a simple method. The GO-Chi-Ni nanocomposites were characterized
using Fourier Transforms Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy
(TEM), X-Ray Diffraction Measurements (XRD), and Atomic Adsorption Spectrometry (AAS). The
GO-Chi-Ni nanoparticles demonstrated appropriate catalytic activity in reducing nitroarenes to aryl
amines in the existence of sodium borohydride (NaBH4) aqueous solution as a hydrogen source at
80oC. This catalytic system applies environmentally benign water as a solvent that is cheap, easily accessible,
non-toxic, non-volatile, non-flammable and thermally stable. This type of catalyst can be applied
several times with no considerable change in its performance.
Collapse
Affiliation(s)
- Mosayeb Sarvestani
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| | - Roya Azadi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| |
Collapse
|
20
|
Meydan E, Demirci S, Aktas N, Sahiner N, Ozturk OF. Boron-containing magnetic nanoparticles from Co, Ni, and Fe chloride salts and their catalytic performances on 4-nitrophenol reduction. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Ali HSM, Khan SA. Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria. ACS OMEGA 2020; 5:7379-7391. [PMID: 32280879 PMCID: PMC7144176 DOI: 10.1021/acsomega.9b04410] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
In this work, a superabsorbent polymer, sodium polyacrylate, also known as water ball (WB), loaded with Ni, Cu, and Ag zero-valent metal nanoparticles (MNPs) was applied for environmental remediation. WBs loaded with Ni, Cu, and Ag NPs were evaluated for their catalytic performance against the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and decolorization of methyl orange (MO), Congo red (CR), and methylene blue (MB) dyes. The apparent rate constants (K app) for the reduction of 4-NP to 4-AP in the presence of Ni, Cu, and Ag NPs were 2.1 × 10-1, 2.9 × 10-1, and 4.6 × 10-1 min-1, respectively, indicating the strongest activity of WB loaded with Ag NPs as compared to the other two catalysts. Similarly, WB loaded with Ag NPs showed the highest K app values compared to the other two catalysts. Among all of the bacteria studied, except Providencia stuartii and Streptococcus mutans, the zone of inhibition of Ag was higher as compared to that of the Ni and Cu NPs, however, slightly low from that of the reference standard tetracycline TE30. Furthermore, the synthesized catalysts were extensively characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) analyses.
Collapse
Affiliation(s)
- Hani S.
H. Mohammed Ali
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, KSA, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department
of Chemistry, University of Swabi, Swabi Anbar23561, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
22
|
Gholinejad M, Naghshbandi Z, Sansano JM. Co/Cu bimetallic ZIF as New heterogeneous catalyst for reduction of nitroarenes and dyes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Gholinejad
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195‐1159, Gavazang Zanjan 45137‐66731 Iran
- Research Center for Basic Sciences & Modern Technologies (RBST)Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137‐66731 Iran
| | - Zhwan Naghshbandi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) P. O. Box 45195‐1159, Gavazang Zanjan 45137‐66731 Iran
| | - José M. Sansano
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO‐CINQA)Universidad de Alicante Apdo. 99, E‐03080‐ Alicante Spain
| |
Collapse
|
23
|
Islam MT, Sultana KA, Noveron JC. Borohydride-free catalytic reduction of organic pollutants by platinum nanoparticles supported on cellulose fibers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Synthesis and characterization of magnetic poly(acrylic acid) hydrogel fabricated with cobalt nanoparticles for adsorption and catalytic applications. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01738-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Shafiq Z, Ajmal M, Kiran S, Zulfiqar S, Yasmeen G, Iqbal M, Farooqi ZH, Ahmad Z, Sahiner N, Mahmood K, Ahmad HB, Al-Harrasi A. Facile synthesis of hydrogel-nickel nanoparticle composites and their applications in adsorption and catalysis. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Homopolymer bulk hydrogel of methacrylic acid was synthesized through a new single-step facile rout and used as a template for the fabrication of nickel (Ni) nanoparticles and as adsorbent to remove methylene blue (MB) and Rhodamine-6G (Rh-6G) from water. The Ni nanoparticles containing composite hydrogel was applied as catalyst for the degradation of a nitro compound. The carboxylic groups acted as highly efficient adsorption sites and their high degree was responsible for the removal of huge amounts of MB and Rh-6G from water. The maximum adsorption capacity of poly (methacrylic acid) hydrogel was 685 mg g−1 for MB and 1571 mg g−1 for Rh-6G. The adsorption data of MB was best fitted with Langmuir adsorption isotherm while that of Rh-6G with Temkin adsorption isotherm. Catalytic property of prepared hydrogel integrated with Ni nanoparticles was evaluated by using it as a catalyst for the degradation of 4-nitrophenol (4-NP). The apparent rate constant (k
app) observed in this study for the reduction of 4-NP was as high as 0.038 min−1. It was found that this catalyst system can be used repetitively with a slight decrease in catalytic activity.
Collapse
Affiliation(s)
- Zahid Shafiq
- Institute of Chemical Sciences , Bahauddin Zakariya University , Multan 60800 , Pakistan
| | - Muhammad Ajmal
- Department of Chemistry , University of Education , Attock Campus , Attock 43600 , Pakistan , Tel.: +92 3085513305
| | - Sonia Kiran
- Institute of Chemical Sciences , Bahauddin Zakariya University , Multan 60800 , Pakistan
| | - Sonia Zulfiqar
- Institute of Chemical Sciences , Bahauddin Zakariya University , Multan 60800 , Pakistan
| | - Ghazala Yasmeen
- Institute of Chemical Sciences , Bahauddin Zakariya University , Multan 60800 , Pakistan
| | - Muzaffar Iqbal
- National Centre for Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Zahoor H. Farooqi
- Institute of Chemistry , University of the Punjab , New Campus, Lahore 54590 , Pakistan
| | - Zaheer Ahmad
- Department of Chemistry , University of Wah , Quaid Avenue , Wah Cantt. 47040 , Pakistan
| | - Nurettin Sahiner
- Canakkale Onsekiz Mart University , Faculty of Science and Arts, Chemistry Department, Terzioglu Campus , 17100 Canakkale , Turkey
| | - Khalid Mahmood
- Institute of Chemical Sciences , Bahauddin Zakariya University , Multan 60800 , Pakistan
| | - Hafiz Badaruddin Ahmad
- Institute of Chemical Sciences , Bahauddin Zakariya University , Multan 60800 , Pakistan
| | - Ahmed Al-Harrasi
- UoN Chair of Oman’s Medicinal Plants and Marine Natural Products , University of Nizwa , P.O. Box 33, Birkat Al Mauz , Nizwa 616 , Sultanate of Oman
| |
Collapse
|
26
|
Sahiner N, Demirci S. The use of M@p(4‐VP) and M@p (VI) (M:Co, Ni, Cu) cryogel catalysts as reactor in a glass column in the reduction of p‐nitrophenol to p‐aminophenol under gravity. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nurettin Sahiner
- Faculty of Science & Arts, Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC)Canakkale Onsekiz Mart University Canakkale Turkey
| | - Sahin Demirci
- Faculty of Science & Arts, Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
| |
Collapse
|
27
|
Sarvestani M, Azadi R. Efficient reduction of nitroarenes in water catalyzed by reusable Pd nanoparticles immobilized on chitosan-functionalized graphene oxide. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Graphene oxide was functionalized with chitosan for palladium immobilization (GO–Chit–Pd), which was used as an efficient catalyst for the reduction of aromatic nitro compounds using sodium borohydride in water. To achieve the best catalytic efficacy, various parameters such as temperature, solvent, mole ratio of hydrogen sources, and the amount of catalyst were optimized. The method has been applied to the reduction of a broad range of nitroarenes with different properties. The easy purification, convenient operation, environmental friendliness, and high product yields render this method viable for use. The nanocatalyst can be easily separated and efficiently recovered and reused for multiple cycles without appreciable loss in its catalytic activity.
Collapse
Affiliation(s)
- Mosayeb Sarvestani
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| | - Roya Azadi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61357-43169, Iran
| |
Collapse
|
28
|
Naeem H, Ajmal M, Qureshi RB, Muntha ST, Farooq M, Siddiq M. Facile synthesis of graphene oxide-silver nanocomposite for decontamination of water from multiple pollutants by adsorption, catalysis and antibacterial activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:199-211. [PMID: 30286349 DOI: 10.1016/j.jenvman.2018.09.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 05/14/2023]
Abstract
Here in, we presented a facile one-step method for the synthesis of Graphene oxide-silver (GO-Ag) nanocomposite and its applications as a sorbent for the elimination of some toxic pollutants from aqueous medium, as an efficient catalyst in the individual as well as simultaneous reduction reactions of multiple compounds, and as an antibacterial agent for the destruction of some harmful microorganisms existent in wastewater. GO was prepared using a modified Hummers method and Ag nanoparticles were integrated on GO sheets by chemical reduction of Ag+ ions on the surfaces of GO sheets. The composition and morphology of the nanocomposite was extensively characterized with elemental dispersive X-ray analysis (EDX), Fourier transform infra-red (FT-IR) spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA). The GO-Ag nanocomposite demonstrated remarkable adsorption capacities and recyclability for malachite green (MG) and ethyl violet (EV) dyes. Various experimental parameters affecting adsorptive behavior of nanocomposite like temperature, pH, time of contact between dye and adsorbent, and adsorbent dose were evaluated thoroughly. Experimental data was simulated with different adsorption isotherms and kinetic models to evaluate adsorption behavior of both dyes and results confirmed the adsorption of both the dyes to be followed by pseudo 2nd order kinetic model and Langmuir adsorption model. Moreover, adsorbent was regenerated in suitable media for both dyes without any loss in removal efficiency. The catalytic performance for the 2-nitroaniline (2-NA) reduction was investigated in detail. Most importantly, the prepared nanocomposite was found to have potential to adsorb multiple pollutants all together as well as to catalyze the simultaneous reduction of a mixture of dyes (MG, MO, and EV) and 2-NA. An additional advantage of the GO-Ag nanocomposite was its antibacterial activity acquired to the presence of Ag nanoparticles. Two bacterial strains (Gram-negative bacterium, E. coli and the Gram-positive bacterium, S. aureus) were used to test antibacterial activity of composite and the results confirmed the remarkable performance of the nanocomposite in destroying harmful pathogens.
Collapse
Affiliation(s)
- Hina Naeem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt, 47040, Pakistan
| | | | - Sedra Tul Muntha
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Farooq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
29
|
Islam MT, Rosales J, Saenz-Arana R, Arrieta R, Kim H, Sultana KA, Lin Y, Villagran D, Noveron JC. Synthesis of high surface area transition metal sponges and their catalytic properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj02096a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile synthesis of cobalt, nickel, and copper sponges and their catalytic properties for the reduction of 4-nitrophenol, methyl orange, and methylene blue.
Collapse
Affiliation(s)
- Md. Tariqul Islam
- Department of Chemistry
- University of Texas at El Paso
- El Paso
- USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment
| | - Jose Rosales
- Department of Chemistry
- University of Texas at El Paso
- El Paso
- USA
| | | | - Roy Arrieta
- Department of Chemistry
- University of Texas at El Paso
- El Paso
- USA
| | - Hoejin Kim
- Department of Mechanical Engineering
- University of Texas at El Paso
- El Paso
- USA
| | - Kazi Afroza Sultana
- Department of Environmental Science and Engineering
- University of Texas at El Paso
- El Paso
- USA
| | - Yirong Lin
- Department of Mechanical Engineering
- University of Texas at El Paso
- El Paso
- USA
| | - Dino Villagran
- Department of Chemistry
- University of Texas at El Paso
- El Paso
- USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment
| | - Juan C. Noveron
- Department of Chemistry
- University of Texas at El Paso
- El Paso
- USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment
| |
Collapse
|
30
|
Formenti D, Ferretti F, Scharnagl FK, Beller M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chem Rev 2018; 119:2611-2680. [PMID: 30516963 DOI: 10.1021/acs.chemrev.8b00547] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni, and Cu has led to their tremendous achievements over the last years prompting their greater application as "standard" catalysts. In this review, we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages.
Collapse
Affiliation(s)
- Dario Formenti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Francesco Ferretti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Florian Korbinian Scharnagl
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| |
Collapse
|
31
|
A facile strategy for synthesis of Ni@C(N) nanocapsules with enhanced catalytic activity for 4-nitrophenol reduction. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Wang J, Zhu X, Wei L, Ye Y, Liu Y, Li J, Mei T, Wang X, Wang L. Controlled Shape Transformation and Loading Release of Smart Hemispherical Hybrid Microgels Triggered by ‘Inner Engines’. ChemistrySelect 2018. [DOI: 10.1002/slct.201800729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Xiang Zhu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Lai Wei
- Wuhan Drug Solubilization and Delivery Technology Research Center; School of Environment and Biochemical Engineering; Wuhan Vocational College of Software and Engineering; Wuhan 430205 China
| | - Yuqi Ye
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Yuying Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Tao Mei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials; Key Laboratory for the Green Preparation and Application of Functional Materials; Ministry of Education, Hubei Key Laboratory of Polymer Materials; School of Materials Science and Engineering, Hubei University; Wuhan 430062 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage; School of Chemistry & Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
33
|
Paul Guin J, Bhardwaj YK, Varshney L. Chemically clean synthesis and characterization of graphene oxide-poly(acrylic acid-sodium styrene sulfonate) composite thermostable elastic gel encapsulating copper nanoparticles for efficient catalytic reduction of 4-nitrophenol. J Appl Polym Sci 2018. [DOI: 10.1002/app.46200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jhimli Paul Guin
- Radiation Technology Development Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Y. K. Bhardwaj
- Radiation Technology Development Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| | - Lalit Varshney
- Radiation Technology Development Division; Bhabha Atomic Research Centre; Mumbai 400085 India
| |
Collapse
|
34
|
Naeem H, Ajmal M, Muntha S, Ambreen J, Siddiq M. Synthesis and characterization of graphene oxide sheets integrated with gold nanoparticles and their applications to adsorptive removal and catalytic reduction of water contaminants. RSC Adv 2018; 8:3599-3610. [PMID: 35542905 PMCID: PMC9077651 DOI: 10.1039/c7ra12030c] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/31/2017] [Indexed: 11/21/2022] Open
Abstract
Here, we report the facile synthesis of graphene oxide-gold (GO-Au) nanocomposites and their use as adsorbents for the removal of toxic industrial dyes from water and as catalysts for the individual and simultaneous reduction of a dye and a nitro compound in aqueous medium. GO sheets were prepared using a modified Hummers method while Au nanoparticles were integrated on GO sheets by reducing Au(iii) ions on the surfaces of GO sheets using sodium citrate as a reducing agent. The prepared composite was characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy and thermal gravimetric analysis (TGA). The GO-Au nanocomposite demonstrated efficient adsorption capacities and recyclability for malachite green (MG) and ethyl violet (EV) dyes. The effects of various experimental parameters including temperature, pH, contact time, and adsorbent dose were studied. From the simulation of experimental data with different adsorption isotherms and kinetic models it was found that the adsorption of both the dyes followed the Freundlich adsorption model and a pseudo-second order kinetic model, respectively. Moreover, the adsorbent showed better recyclability for both dyes without any compromise on the removal efficiency. Similarly, the catalytic performance for the reduction of 2-nitroaniline (2-NA) has been investigated in detail by using the prepared nanocomposite as a catalyst. Most importantly, we reported the simultaneous adsorption of cationic and anionic dyes from water using the prepared nanocomposite as well as the simultaneous catalytic reduction of a mixture of EV and 2-NA. So, considering the facile synthesis process and the efficient removal of a variety of dyes and the catalytic performance this work opens up a tremendous opportunity to bring GO based nanocomposites from experimental research to practically applied materials for wastewater treatment.
Collapse
Affiliation(s)
- H Naeem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| | - M Ajmal
- Department of Chemistry, University of Wah Quaid Avenue Wah Cantt 47040 Pakistan
| | - S Muntha
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| | - J Ambreen
- Department of Physics, COMSATS Institute of Technology Park Road, Chak Shahzad 45550 Islamabad Pakistan
| | - M Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| |
Collapse
|
35
|
Javed R, Shah LA, Sayed M, Khan MS. Uptake of heavy metal ions from aqueous media by hydrogels and their conversion to nanoparticles for generation of a catalyst system: two-fold application study. RSC Adv 2018; 8:14787-14797. [PMID: 35541309 PMCID: PMC9079941 DOI: 10.1039/c8ra00578h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels, respectively. The synthesized hydrogels have the ability to be used as absorbents for the removal of selected heavy metal ions such as Cu2+, Co2+, Ni2+ and Zn2+ from aqueous media. Absorption studies revealed that the absorption of metal ions by the hydrogels followed the order Cu2+ > Ni2+ > Co2+ > Zn2+. For the mechanism of absorption, both Freundlich and Langmuir absorption isotherms were applied. Metal ion entrapped hydrogels were treated using an in situ chemical reduction method in order to convert the metal ions into metal nanoparticles for the synthesis of hybrid hydrogels. The synthesis and morphology were confirmed using FT-IR and SEM, while the absorbed metal amounts were measured using TGA and AAS. The hybrid hydrogels were further used as catalysts for the reduction of macro (methylene blue, methyl orange and congo red) and micro (4-nitrophenol and nitrobenzene) pollutants from the aqueous environment. The catalytic performance and re-usability of the hybrid hydrogels were successfully investigated. Poly(methacrylic acid) (P(MAA)), poly(acrylamide) (P(AAm)) and poly(3-acrylamidopropyltrimethyl ammonium chloride) (P(APTMACl)) were synthesized as anionic, neutral and cationic hydrogels respectively.![]()
Collapse
Affiliation(s)
- Rida Javed
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Luqman Ali Shah
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Murtaza Sayed
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Muhammad Saleem Khan
- National Centre of Excellence in Physical Chemistry
- University of Peshawar
- Peshawar 25120
- Pakistan
| |
Collapse
|
36
|
Liew KH, Rocha M, Pereira C, Pires AL, Pereira AM, Yarmo MA, Juan JC, Yusop RM, Peixoto AF, Freire C. Highly Active Ruthenium Supported on Magnetically Recyclable Chitosan-Based Nanocatalyst for Nitroarenes Reduction. ChemCatChem 2017. [DOI: 10.1002/cctc.201700649] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kin Hong Liew
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
- School of Chemical Sciences and Food Technology; Faculty of Science and Technology; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Darul Ehsan Malaysia
| | - Mariana Rocha
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
| | - Clara Pereira
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
| | - Ana L. Pires
- IFIMUP-IN, Department of Physics and Astronomy, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
| | - André M. Pereira
- IFIMUP-IN, Department of Physics and Astronomy, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
| | - Mohd Ambar Yarmo
- School of Chemical Sciences and Food Technology; Faculty of Science and Technology; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Darul Ehsan Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre, NANOCAT; University of Malaya; 50603 Kuala Lumpur Malaysia
| | - Rahimi M. Yusop
- School of Chemical Sciences and Food Technology; Faculty of Science and Technology; Universiti Kebangsaan Malaysia; 43600 UKM Bangi Selangor Darul Ehsan Malaysia
| | - Andreia F. Peixoto
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
| | - Cristina Freire
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; 4169-007 Porto Portugal
| |
Collapse
|
37
|
Ghorbanloo M, Heydari A, Yahiro H. Ag-nanoparticle embedded p(AA) hydrogel as an efficient green heterogeneous Nano-catalyst for oxidation and reduction of organic compounds. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Ali Heydari
- Department of Chemistry, Faculty of Science; University of Zanjan; 45371-38791 Zanjan Iran
| | - Hidenori Yahiro
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering; Ehime University; Matsuyama 790-8577 Japan
| |
Collapse
|
38
|
Preparation and characterization of poly(N-isoproylacrylamide-co-dimethylaminoethyl methacrylate) microgels and their composites of gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Nasrollahzadeh M, Sajadi SM, Maham M, Dasmeh HR. In situ green synthesis of Cu nanoparticles supported on natural Natrolite zeolite for the reduction of 4‐nitrophenol, congo red and methylene blue. IET Nanobiotechnol 2017; 11:538-545. [DOI: 10.1049/iet-nbt.2016.0143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mahmoud Nasrollahzadeh
- Department of ChemistryFaculty of ScienceUniversity of QomP. O. Box 37185‐359QomIran
- Center of Environmental ResearchesUniversity of QomQomIran
| | - S. Mohammad Sajadi
- Department of Petroleum GeoscienceFaculty of ScienceSoran UniversityPO Box 624, Soran, Kurdistan Regional GovernmentIraq
| | - Mehdi Maham
- Department of ChemistryAliabad Katoul BranchIslamic Azad UniversityAliabad KatoulIran
| | | |
Collapse
|
40
|
Maji SK, Jana A. Two-dimensional nanohybrid (RGS@AuNPs) as an effective catalyst for the reduction of 4-nitrophenol and photo-degradation of methylene blue dye. NEW J CHEM 2017. [DOI: 10.1039/c6nj04062d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly active hybrid material (RGS@AuNPs), as an efficient catalyst, is successfully synthesized for the reduction of 4-nitrophenol and methylene blue in the presence of NaBH4, as well as the photocatalytic decomposition of methylene blue.
Collapse
Affiliation(s)
- Swarup Kumar Maji
- Department of Chemistry
- Khatra Adibasi Mahavidyalaya
- Khatra 722140
- India
| | - Avijit Jana
- Biomaterials group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- Division of Natural Product Chemistry
| |
Collapse
|
41
|
Sahiner N, Sengel SB. Tannic acid decorated poly(methacrylic acid) micro and nanoparticles with controllable tannic acid release and antioxidant properties. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Khan K, Shaikh AJ, Siddiq M, Sherazi TA, Nawaz M. In situ formation of copper nanoparticles in a p(NIPAM-VAA-AAm) terpolymer microgel that retains the swelling behavior of microgels. JOURNAL OF POLYMER ENGINEERING 2016. [DOI: 10.1515/polyeng-2015-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Copper nanoparticles (CuNPs) are formed inside a microgel assembly by an in situ reduction method, confirmed by changes observed in the absorption spectra of CuNPs at different pH values. The presence of CuNPs has been also confirmed by X-ray diffraction (XRD) studies. The terpolymer microgel p(N-isopropylacrylamide-vinyl acetic acid-acrylamide) (p[NIPAM-VAA-AAm]), which is reported for the first time, was synthesized by free radical emulsion polymerization of a temperature-sensitive NIPAM monomer, pH sensitive VAA monomer and a hydrophilic AAm monomer. The effect of temperature below and above the pKa of VAA and the effect of pH at 20°C in the absence and presence of CuNPs on the hydrodynamic radius of microgel was studied. Size of microgel particles is a function of temperature due to the presence of NIPAM, and a function of pH due to the presence of VAA. The presence of CuNPs has little or no effect on the size of microgels by varying pH, which allows these gels to retain their properties with added benefits of CuNPs for possible drug delivery applications.
Collapse
|
43
|
Huang S, Zhao Y, Tang R. Facile fabrication of a Cu@g-C3N4 nanocatalyst and its application for the aerobic oxidations of alkylaromatics and the reduction of 4-nitrophenol. RSC Adv 2016. [DOI: 10.1039/c6ra18288g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the Cu@g-C3N4 exhibited excellent catalytic performance for the oxidation of ethylbenzene with 98.8% conversion and 94.0% selectivity, and the active parameter k as 1.134 s−1 mM−1 for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Shen Huang
- School of Chemistry and Chemical Engineering
- Central South University
- China
| | - Yukai Zhao
- School of Chemistry and Chemical Engineering
- Central South University
- China
| | - Ruiren Tang
- School of Chemistry and Chemical Engineering
- Central South University
- China
| |
Collapse
|
44
|
Yang Y, Jin R, Zhao S, Liu J, Li Y, Yu X, Shi Z, Xing Y. In situ reduction of well-dispersed nickel nanoparticles on hierarchical nickel silicate hollow nanofibers as a highly efficient transition metal catalyst. RSC Adv 2016. [DOI: 10.1039/c6ra01529h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ni nanoparticles were immobilized on the hierarchically double-shell nickel silicate hollow nanofibers, the composites exhibited an excellent catalytic activity.
Collapse
Affiliation(s)
- Yang Yang
- Jilin Provincial Key Laboratory of Advanced Energy Materials
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Renxi Jin
- Jilin Provincial Key Laboratory of Advanced Energy Materials
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Shuo Zhao
- Department of Chemistry
- Carnegie Mellon University
- Pittsburgh
- USA
| | - Jihong Liu
- Jilin Provincial Key Laboratory of Advanced Energy Materials
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yunfeng Li
- Jilin Provincial Key Laboratory of Advanced Energy Materials
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Xiaodan Yu
- Jilin Provincial Key Laboratory of Advanced Energy Materials
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yan Xing
- Jilin Provincial Key Laboratory of Advanced Energy Materials
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
45
|
Ajmal M, Demirci S, Siddiq M, Aktas N, Sahiner N. Simultaneous catalytic degradation/reduction of multiple organic compounds by modifiable p(methacrylic acid-co-acrylonitrile)–M (M: Cu, Co) microgel catalyst composites. NEW J CHEM 2016. [DOI: 10.1039/c5nj02298c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reactants easily diffuse into a microgel network, adsorb at the surface of catalyst nanoparticles and reduce in the presence of reducing agents.
Collapse
Affiliation(s)
- Muhammad Ajmal
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Sahin Demirci
- Canakkale Onsekiz Mart University
- Faculty of Science & Arts
- Chemistry Department
- 17100 Canakkale
- Turkey
| | - Mohammad Siddiq
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Nahit Aktas
- Chemical Engineering Departments
- Yuzuncu Yil University
- Van
- Turkey
| | - Nurettin Sahiner
- Canakkale Onsekiz Mart University
- Faculty of Science & Arts
- Chemistry Department
- 17100 Canakkale
- Turkey
| |
Collapse
|
46
|
Ajmal M, Demirci S, Siddiq M, Aktas N, Sahiner N. Betaine microgel preparation from 2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide and its use as a catalyst system. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Yildiz S, Sahiner M, Sahiner N. Ionic liquid hydrogel templates: Bulkgel, cryogel, and microgel to be used for metal nanoparticle preparation and catalysis. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
|
49
|
Zheng Y, Zhu Y, Wang A. Evolution of Fe3+-hydrogel for catalytic reduction of 4-nitrophenol. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3587-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Sahiner N, Sagbas S, Aktas N. Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p(tannic acid)–Cu ionic liquid composites. RSC Adv 2015. [DOI: 10.1039/c5ra00126a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using tannic acid (TA) as a biopolymer, poly(tannic Acid) (p(TA)) microgels were obtained by cross-linking TA with trimethylolpropane triglycidyl ether (TMPGDE) as cross-linker in a water-in-oil micro emulsion system.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Faculty of Science & Arts
- Chemistry Department
- Canakkale Onsekiz Mart University
- 17100 Canakkale
- Turkey
| | - Selin Sagbas
- Faculty of Science & Arts
- Chemistry Department
- Canakkale Onsekiz Mart University
- 17100 Canakkale
- Turkey
| | - Nahit Aktas
- Chemical Engineering Department
- Yuzuncu Yil University
- Van
- Turkey
| |
Collapse
|