1
|
Han Q, Wang C, Liu J, Wang C, Zhang H, Ni Q, Sun J, Wang Y, Sun B. Application of Nanozymes and its Progress in the Treatment of Ischemic Stroke. Transl Stroke Res 2024; 15:880-892. [PMID: 37555909 DOI: 10.1007/s12975-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Nanozymes are a new kind of material which has been applied since the beginning of this century, and its birth has promoted the development of chemistry, materials science, and biology. Nanozymes can be used as a substitute for natural enzyme and has a wide range of applications; therefore, it has attracted extensive attention from all sectors of the community, and the number of studies has constantly increasing. In this paper, we introduced the outstanding achievements in the field of nanozymes in recent years from the main function, the construction of nanozyme-based biosensors, and the treatment of ischemic stroke, and we also illustrated the internal mechanism and the catalytic principle. In the end, the obstacles and challenges in the future development of nanozymes were proposed.
Collapse
Affiliation(s)
- Qing Han
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Chengcheng Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jian Liu
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Cai Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Hongming Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Baoliang Sun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| |
Collapse
|
2
|
Das T, Das S, Kumar P, C A B, Mandal D. Coal waste-derived synthesis of yellow oxidized graphene quantum dots with highly specific superoxide dismutase activity: characterization, kinetics, and biological studies. NANOSCALE 2023; 15:17861-17878. [PMID: 37885430 DOI: 10.1039/d3nr04259f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The disintegration of coal-based precursors for the scalable production of nanozymes relies on the fate of solvothermal pyrolysis. Herein, we report a novel economic and scalable strategy to fabricate yellow luminescent graphene quantum dots (YGQDs) by remediating unburnt coal waste (CW). The YGQDs (size: 7-8 nm; M.W: 3157.9 Da) were produced using in situ "anion-radical" assisted bond cleavage in water (within 8 h; at 121 °C) with yields of ∼87%. The presence of exposed surface and edge groups, such as COOH, C-O-C, and O-H, as structural defects accounted for its high fluorescence with εmax ∼530 nm at pH 7. Besides, these defects also acted as radical stabilizers, demonstrating prominent anti-oxidative activity of ∼4.5-fold higher than standard ascorbic acid (AA). In addition, the YGQDs showed high biocompatibility towards mammalian cells, with 500 μM of treatment dose showing <15% cell death. The YGQDs demonstrated specific superoxide dismutase (SOD) activity wherein 15 μM YGQDs equalled the activity of 1-unit biological SOD (bSOD), measured using the pyrogallol assay. The Km for YGQDs was ∼10-fold higher than that for bSOD. However, the YGQDs retained their SOD activity in harsh conditions like high temperatures or denaturing reactions, where the activity of bSOD is completely lost. The binding affinity of YGQDs for superoxide ions, measured from isothermal calorimetry (ITC) studies, was only 10-fold lower than that of bSOD (Kd of 586 nM vs. 57.3 nM). Further, the pre-treatment of YGQDs (∼10-25 μM) increased the cell survivability to >75-90% in three cell lines during ROS-mediated cell death, with the highest survivability being shown for C6-cells. Next, the ROS-induced apoptosis in C6-cells (model for neurodegenerative diseases study), wherein YGQDs uptake was confirmed by confocal microscopy, showed ∼5-fold apoptosis alleviation with only 5 μM pretreatment. The YGQDs also restored the expression of pro-inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-6) and anti-inflammatory Th2 cytokines (IL-10) to their basal levels, with a net >3-fold change observed. This further explains the molecular mechanism for the antioxidant property of YGQDs. The high specific SOD activity associated with YGQDs may provide the cheapest alternative source for producing large-scale SOD-based nanozymes that can treat various oxidative stress-linked disorders/diseases.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| |
Collapse
|
3
|
Min S, Yu Q, Ye J, Hao P, Ning J, Hu Z, Chong Y. Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications. Molecules 2023; 28:4615. [PMID: 37375170 DOI: 10.3390/molecules28124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Glucose oxidase (GOD) is an oxidoreductase that catalyzes the aerobic oxidation of glucose into hydrogen peroxide (H2O2) and gluconic acid, which has been widely used in industrial raw materials production, biosensors and cancer treatment. However, natural GOD bears intrinsic disadvantages, such as poor stability and a complex purification process, which undoubtedly restricts its biomedical applications. Fortunately, several artificial nanomaterials have been recently discovered with a GOD-like activity and their catalytic efficiency toward glucose oxidation can be finely optimized for diverse biomedical applications in biosensing and disease treatments. In view of the notable progress of GOD-mimicking nanozymes, this review systematically summarizes the representative GOD-mimicking nanomaterials for the first time and depicts their proposed catalytic mechanisms. We then introduce the efficient modulation strategy to improve the catalytic activity of existing GOD-mimicking nanomaterials. Finally, the potential biomedical applications in glucose detection, DNA bioanalysis and cancer treatment are highlighted. We believe that the development of nanomaterials with a GOD-like activity will expand the application range of GOD-based systems and lead to new opportunities of GOD-mimicking nanomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Shengyi Min
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qiao Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiaquan Ye
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Pengfei Hao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiayu Ning
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhiqiang Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Abstract
Enzymes fold into three-dimensional structures to distribute amino acid residues for catalysis, which inspired the supramolecular approach to construct enzyme-mimicking catalysts. A key concern in the development of supramolecular strategies is the ability to confine and orient functional groups to form enzyme-like active sites in artificial materials. This review introduces the design principles and construction of supramolecular nanomaterials exhibiting catalytic functions of heme-dependent enzymes, a large class of metalloproteins, which rely on a heme cofactor and spatially configured residues to catalyze diverse reactions via a complex multistep mechanism. We focus on the structure-activity relationship of the supramolecular catalysts and their applications in materials synthesis/degradation, biosensing, and therapeutics. The heme-free catalysts that catalyze reactions achieved by hemeproteins are also briefly discussed. Towards the end of the review, we discuss the outlook on the challenges related to catalyst design and future prospective, including the development of structure-resolving techniques and design concepts, with the aim of creating enzyme-mimicking materials that possess catalytic power rivaling that of natural enzymes..
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Deng Q, Zhang L, Liu X, Kang L, Yi J, Ren J, Qu X. COF-based artificial probiotic for modulation of gut microbiota and immune microenvironment in inflammatory bowel disease. Chem Sci 2023; 14:1598-1605. [PMID: 36794177 PMCID: PMC9906670 DOI: 10.1039/d2sc04984h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Conventional strategies for treating inflammatory bowel disease merely relieve inflammation and excessive immune response, but fail to solve the underlying causes of IBD, such as disrupted gut microbiota and intestinal barrier. Recently, natural probiotics have shown tremendous potential for the treatment of IBD. However, probiotics are not recommended for IBD patients, as they may cause bacteremia or sepsis. Herein, for the first time, we constructed artificial probiotics (Aprobiotics) based on artificial enzyme-dispersed covalent organic frameworks (COFs) as the "organelle" and a yeast shell as the membrane of the Aprobiotics to manage IBD. The COF-based artificial probiotics, with the function of natural probiotics, could markedly relieve IBD by modulating the gut microbiota, suppressing intestinal inflammation, protecting the intestinal epithelial cells, and regulating immunity. This nature-inspired approach may aid in the design of more artificial systems for the treatment of various incurable diseases, such as multidrug-resistant bacterial infection, cancer, and others.
Collapse
Affiliation(s)
- Qingqing Deng
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xuemeng Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Lihua Kang
- Cancer Center, First Affiliated Hospital, Jilin UniversityChangchunJilin130061P. R China
| | - Jiadai Yi
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China .,University of Science and Technology of China Hefei Anhui 230029 China
| |
Collapse
|
6
|
Herman RA, Zhu X, Ayepa E, You S, Wang J. Advances in the One-Step Approach of Polymeric Materials Using Enzymatic Techniques. Polymers (Basel) 2023; 15:703. [PMID: 36772002 PMCID: PMC9922006 DOI: 10.3390/polym15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The formulation in which biochemical enzymes are administered in polymer science plays a key role in retaining their catalytic activity. The one-step synthesis of polymers with highly sequence-controlled enzymes is a strategy employed to provide enzymes with higher catalytic activity and thermostability in material sustainability. Enzyme-catalyzed chain growth polymerization reactions using activated monomers, protein-polymer complexation techniques, covalent and non-covalent interaction, and electrostatic interactions can provide means to develop formulations that maintain the stability of the enzyme during complex material processes. Multifarious applications of catalytic enzymes are usually attributed to their efficiency, pH, and temperature, thus, progressing with a critical structure-controlled synthesis of polymer materials. Due to the obvious economics of manufacturing and environmental sustainability, the green synthesis of enzyme-catalyzed materials has attracted significant interest. Several enzymes from microorganisms and plants via enzyme-mediated material synthesis have provided a viable alternative for the appropriate synthesis of polymers, effectively utilizing the one-step approach. This review analyzes more and deeper strategies and material technologies widely used in multi-enzyme cascade platforms for engineering polymer materials, as well as their potential industrial applications, to provide an update on current trends and gaps in the one-step synthesis of materials using catalytic enzymes.
Collapse
Affiliation(s)
- Richard Ansah Herman
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade P.O. Box 74, Ghana
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
7
|
Lyu Z, Ding S, Du D, Qiu K, Liu J, Hayashi K, Zhang X, Lin Y. Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Adv Drug Deliv Rev 2022; 185:114269. [PMID: 35398244 DOI: 10.1016/j.addr.2022.114269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 01/10/2023]
Abstract
Significant progress has been made in developing two-dimensional (2D) nanomaterials owing to their ultra-thin structure, high specific surface area, and many other advantages. Recently, 2D nanomaterials with enzyme-like properties, especially peroxidase (POD)-like activity, are highly desirable for many biomedical applications. In this review, we first classify the types of 2D POD-like nanomaterials and then summarize various strategies for endowing 2D nanomaterials with POD-like properties. Representative examples of biomedical applications are reviewed, emphasizing in antibacterial, biosensing, and cancer therapy. Last, the future challenges and prospects of 2D POD-like nanomaterials are discussed. This review is expected to provide an in-depth understanding of 2D POD-like materials for biomedical applications.
Collapse
|
8
|
Liu J, Liu X, Chen H, Yang L, Cai A, Ji H, Wang Q, Zhou X, Li G, Wu M, Qin Y, Wu L. Bifunctional Pdots-Based Novel ECL Nanoprobe with Qualitative and Quantitative Dual Signal Amplification Characteristics for Trace Cytokine Analysis. Anal Chem 2022; 94:7115-7122. [PMID: 35500042 DOI: 10.1021/acs.analchem.2c01041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, a novel methodology to design bifunctional ECL-luminophores with self-enhanced and TSA-amplified characteristics was proposed for improving the sensing performance of ECL-immunosensor toward trace cytokine analysis. Thanks to the qualitative- and quantitative- dual signal amplification technique, the as-prepared ECL biosensor demonstrated excellent detection performance. By analyzing the prospective cytokine biomarkers (IL-6), the ECL immunosensor exhibited a broad examination range with quite low detection limit and quite high selectivity, which was far superior to commercial ELISA kits and ever reported works. In particular, the novel ECL nanoprobe developed here could also be applied to monitor other immune toxicities or disease-related cytokines by using the respective antibodies corresponding to these targets. Moreover, the concept and construction strategy of self-amplified ECL-luminophores presented here could be further extended to design a series of Pdots-derived multicolored ECL probes to meet the needs of multipathway detection applications.
Collapse
Affiliation(s)
- Jinxia Liu
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Xiaodi Liu
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Huanhuan Chen
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Luxia Yang
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Aiting Cai
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Xiaobo Zhou
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Guo Li
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Mingmin Wu
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Yuling Qin
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| | - Li Wu
- School of Public Health, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|
9
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Wang Q, Liu S, Tang Z. Recent progress in the design of analytical methods based on nanozymes. J Mater Chem B 2021; 9:8174-8184. [PMID: 34498637 DOI: 10.1039/d1tb01521d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials with intrinsic enzyme-like properties (nanozymes) have attracted growing interest owing to their striking merits over the traditional enzymes, such as low cost, easy surface modification, high stability and robustness, and tunable activity. These features enable them to be considered as a potent substitute for natural enzymes to construct novel analytical platforms to detect various analytes from small molecules to proteins and cells. In this review, we focus on recent advances in the design strategies using nanozyme catalytic mediated signal amplification for sensing applications. The progress of nanozyme-based analytical systems in the detection of different types of analytes, including ions, small biomolecules, biomacromolecules and others, is summarized. Furthermore, the future challenges and opportunities of nanozyme-based analytical methods are discussed.
Collapse
Affiliation(s)
- Qingqing Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China.
| | - Shaoqin Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
11
|
Jin Y, Luan Y, Wu Z, Wen W, Zhang X, Wang S. Photocatalytic Fuel Cell-Assisted Molecularly Imprinted Self-Powered Sensor: A Flexible and Sensitive Tool for Detecting Aflatoxin B1. Anal Chem 2021; 93:13204-13211. [PMID: 34528807 DOI: 10.1021/acs.analchem.1c02074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-powered electrochemical sensor has gained big achievements in energy and devices, but it is challenging in analytical application owing to its low energy conversion efficiency and limited selectivity caused by the plentiful interference in actual samples. Herein, a new self-powered biosensor was constructed by the integration of a photocatalytic fuel cell (PFC) with a molecular imprinting polymer (MIP) to achieve sensitive and specific detection of aflatoxin B1 (AFB1). Compared with other fuel cells, the PFC owns the advantages of low cost, high energy, good stability, and friendly environment by using light as the excitation source. MoS2-Ti3C2Tx MXene (MoS2-MX) served as the photoanode material for the first time by forming a heterojunction structure, which can enhance the photocurrent by about 3-fold and greatly improve the photoelectric conversion efficiency. Aiming at the poor selectivity of the self-powered sensor, the MIP was introduced to achieve the specific capture and separation of targets without sample pretreatment. Using the MIP and PFC as recognition and signal conversion elements, respectively, the proposed self-powered biosensor showed a wide dynamic range of 0.01-1000 ng/mL with a detection limit of 0.73 pg/mL, which opened opportunities to design more novel self-powered biosensors and promoted its application in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yunxia Jin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yang Luan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
12
|
Su C, Wang B, Li S, Wie Y, Wang Q, Li D. Fabrication of Pd@ZnNi‐MOF/GO Nanocomposite and Its Application for H
2
O
2
Detection and Catalytic Degradation of Methylene Blue Dyes. ChemistrySelect 2021. [DOI: 10.1002/slct.202101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ce Su
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Bangxian Wang
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Siliang Li
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Yunbiao Wie
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Qingli Wang
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| | - Dongjian Li
- School of Petrochemical Engineering Lanzhou University of Technology Gansu Lanzhou 730000 P.R. China
| |
Collapse
|
13
|
Ma DL, Wu C, Liu H, Wu KJ, Leung CH. Luminescence approaches for the rapid detection of disease-related receptor proteins using transition metal-based probes. J Mater Chem B 2021; 8:3249-3260. [PMID: 31647090 DOI: 10.1039/c9tb01889a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein biomarkers, particularly abnormally expressed receptor proteins, have been proved to be one of the crucial biomarkers for the rapid assessment, diagnosis, prognosis and prediction of specific human diseases. Transition metal based strategies in particular possess delightful strengths in the in-field and real-time visualization of receptor proteins owing to their unique photophysical properties. In this review, we highlight recent advances in the development of detection methods for receptor protein biomarkers using transition metal based approaches, particularly those employing transition metal complexes. We first discuss the strengths and weaknesses of various strategies used for protein biomarker monitoring in live cells. We then describe the principles of the various sensing platforms and their application for receptor protein detection. Finally, we discuss the challenges and future inspirations in this specific field.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong SAR 999077, China.
| | | | | | | | | |
Collapse
|
14
|
Yuan L, Guo W, Fu Y, Zhang Z, Wang P, Wang J. A rapid colorimetric method for determining glutathione based on the reaction between cobalt oxyhydroxide nanosheets and 3,3′,5,5′-Tetramethylbenzidine. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Huang Y, Yu D, Qiu Y, Chu L, Lin Y. The Role of Nanomaterials in Modulating the Structure and Function of Biomimetic Catalysts. Front Chem 2020; 8:764. [PMID: 33134257 PMCID: PMC7550733 DOI: 10.3389/fchem.2020.00764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
Nanomaterial-incorporated enzyme mimics have so far been examined in various cases, and their properties are governed by the properties of both catalysts and materials. This review summarizes recent efforts in understanding the role of inorganic nanomaterials for modulating biomimetic catalytic performance. Firstly, the importance of enzyme mimics, and the necessity for tuning their catalysis will be outlined. Based on structural characteristics, these catalysts are divided into two types: traditional artificial enzymes, and novel nanomaterial-based enzyme mimics. Secondly, the mechanisms on how nano-sized materials interact with these catalysts will be examined. Intriguingly, incorporating various nanomaterials into biomimetic catalysts may provide a convenient and highly efficient method for the modulation of activities as well as stabilities or introduce new and attractive features. Finally, the perspectives of the main challenges and future opportunities in the areas of nanomaterial-incorporated biomimetic catalysis will be discussed. In this regard, nanomaterials as a kind of promising scaffold for tuning catalysis will attract more and more attention and be practically applied in numerous fields.
Collapse
Affiliation(s)
- Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Deshuai Yu
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen, China
| | - Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Lanlin Chu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Youhui Lin
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Han J, Yoon J. Supramolecular Nanozyme-Based Cancer Catalytic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7344-7351. [DOI: 10.1021/acsabm.0c01127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
17
|
Wang S, Wang F, Fu C, Sun Y, Zhao J, Li N, Liu Y, Ge S, Yu J. AgInSe2-Sensitized ZnO Nanoflower Wide-Spectrum Response Photoelectrochemical/Visual Sensing Platform via Au@Nanorod-Anchored CeO2 Octahedron Regulated Signal. Anal Chem 2020; 92:7604-7611. [DOI: 10.1021/acs.analchem.0c00231] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shaopeng Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Fangfang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Cuiping Fu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Yina Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinge Zhao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Na Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yunqing Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
18
|
Mou J, Xu X, Zhang F, Xia J, Wang Z. Promoting Nanozyme Cascade Bioplatform by ZIF-Derived N-Doped Porous Carbon Nanosheet-based Protein/Bimetallic Nanoparticles for Tandem Catalysis. ACS APPLIED BIO MATERIALS 2019; 3:664-672. [DOI: 10.1021/acsabm.9b01012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Junsong Mou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Xianzhen Xu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
19
|
Smeets V, Baaziz W, Ersen O, Gaigneaux EM, Boissière C, Sanchez C, Debecker DP. Hollow zeolite microspheres as a nest for enzymes: a new route to hybrid heterogeneous catalysts. Chem Sci 2019; 11:954-961. [PMID: 34084349 PMCID: PMC8146638 DOI: 10.1039/c9sc04615a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
In the field of heterogeneous catalysis, the successful integration of enzymes and inorganic catalysts could pave the way to multifunctional materials which are able to perform advanced cascade reactions. However, such combination is not straightforward, for example in the case of zeolite catalysts for which enzyme immobilization is restricted to the external surface. Herein, this challenge is overcome by developing a new kind of hybrid catalyst based on hollow zeolite microspheres obtained by the aerosol-assisted assembly of zeolite nanocrystals. The latter spheres possess open entry-ways for enzymes, which are then loaded and cross-linked to form cross-linked enzyme aggregates (CLEAs), securing their entrapment. This controlled design allows the combination of all the decisive features of the zeolite with a high enzyme loading. A chemo-enzymatic reaction is demonstrated, where the structured zeolite material is used both as a nest for the enzyme and as an efficient inorganic catalyst. Glucose oxidase (GOx) ensures the in situ production of H2O2 subsequently utilized by the TS-1 zeolite to catalyze the epoxidation of allylic alcohol toward glycidol. The strategy can also be used to entrap other enzymes or combination of enzymes, as demonstrated here with combi-CLEAs of horseradish peroxidase (HRP) and glucose oxidase. We anticipate that this strategy will open up new perspectives, leveraging on the spray-drying (aerosol) technique to shape microparticles from various nano-building blocks and on the entrapment of biological macromolecules to obtain new multifunctional hybrid microstructures.
Collapse
Affiliation(s)
- Valentin Smeets
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS - Université de Strasbourg 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS - Université de Strasbourg 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Eric M Gaigneaux
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Cédric Boissière
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, PSL Research University 4 Place Jussieu F-75005 Paris France
| | - Clément Sanchez
- Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, Collège de France, PSL Research University 4 Place Jussieu F-75005 Paris France
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), UCLouvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
20
|
Tan W, Wei T, Huo J, Loubidi M, Liu T, Liang Y, Deng L. Electrostatic Interaction-Induced Formation of Enzyme-on-MOF as Chemo-Biocatalyst for Cascade Reaction with Unexpectedly Acid-Stable Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36782-36788. [PMID: 31532179 DOI: 10.1021/acsami.9b13080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combining biocatalytic and chemocatalytic reactions in a one-pot reaction not only avoids the tedious isolation of intermediates during the reactions but also provides a desirable alternative to extend the range of catalytic reactions. Here, we report a facile strategy to immobilize an enzyme, glucose oxidase (GOx), on PCN-222(Fe) induced by electrostatic interaction in which PCN-222(Fe) serves as both a support and chemocatalyst. The immobilization was confirmed through ζ potential measurement, confocal laser scanning microscopy, Fourier transform infrared spectrometry, and UV-vis spectroscopy. This chemo-biocatalyst was applied to a cascade reaction to catalyze glucose oxidation and ABTS (ABTS = 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (or pyrogallol) oxidation. The catalytic kinetics studies show that these chemo-biocatalytic cascade reactions obey the Michaelis-Menten equation, which indicates that the cascade reactions follow the typical enzymatic dynamic regulation process. Interestingly, GOx/PCN-222(Fe) exhibits an exceptional acid-stable catalytic performance as evidenced by circular dichroism spectroscopy where no significant structure change was observed toward acidic solutions with different pH values. GOx/PCN-222(Fe) also displays desirable recyclability since no significant loss of conversion rates was found after six repeated reactions. This work presents a convenient strategy to construct metal-organic framework based chemo-biocatalysts, which may find potential applications in sensing and nanomachines.
Collapse
Affiliation(s)
- Wenlong Tan
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , China
| | - Ting Wei
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , China
| | - Jia Huo
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , China
- Shenzhen Research Institute of Hunan University , Shenzhen 518057 , Guangdong , China
| | - Mohammed Loubidi
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , China
| | - Tingting Liu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , China
| | - Yu Liang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , Hunan , China
| | - Libo Deng
- Shenzhen University , Shenzhen 518057 , Guangdong , China
| |
Collapse
|
21
|
Zhang L, Pan J, Long Y, Li J, Li W, Song S, Shi Z, Zhang H. CeO 2 -Encapsulated Hollow Ag-Au Nanocage Hybrid Nanostructures as High-Performance Catalysts for Cascade Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903182. [PMID: 31490623 DOI: 10.1002/smll.201903182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Inspired by bio-enzymes, multistep cascade reactions are highly attractive in catalysis. Despite extensive research in recent years, it remains a challenge to promote the stability and activity of catalysts. Here, well-defined core-shell structured Ag-Au nanocage@CeO2 (Ag-Au NC@CeO2 ) are designed by a simple and facile self-assembly method. The results indicate that the Ag-Au NC@CeO2 has glucose oxidase-like activity and intrinsic peroxidase-like activity at the same time. As expected, Ag-Au NC@CeO2 hybrid nanomaterials exhibit cascade reactions activity. Moreover, the hybrid materials are promising to detect glucose without bio-enzymes. This research has potential applications in biomedicine and biomimetic catalysis.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jing Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yan Long
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jian Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Wei Li
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhan Shi
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
22
|
Bahuguna A, Kumar A, Krishnan V. Carbon‐Support‐Based Heterogeneous Nanocatalysts: Synthesis and Applications in Organic Reactions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900259] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ashish Bahuguna
- School of Basic Sciences and Advanced Materials Research CenterIndian Institute of Technology Mandi, Kamand Himachal Pradesh 175005 India
| | - Ajay Kumar
- School of Basic Sciences and Advanced Materials Research CenterIndian Institute of Technology Mandi, Kamand Himachal Pradesh 175005 India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research CenterIndian Institute of Technology Mandi, Kamand Himachal Pradesh 175005 India
| |
Collapse
|
23
|
Wang X, An Z. Enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization: Precision polymer synthesis via enzymatic catalysis. Methods Enzymol 2019; 627:291-319. [PMID: 31630745 DOI: 10.1016/bs.mie.2019.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization provides a sustainable strategy for efficient production of well-defined polymers under mild conditions. Horseradish peroxidase (HRP), a heme-containing metalloenzyme, catalyzes oxidation of acetylacetone (ACAC) by hydrogen peroxide (H2O2) to generate ACAC radicals, initiating polymerization of vinyl monomers. This HRP/H2O2/ACAC ternary initiating system is applied to RAFT polymerization of different types of vinyl monomers. Furthermore, to overcome the inherent limitation of necessity for oxygen-free conditions, another enzyme, glucose oxidase (GOx) or pyranose 2-oxidase (P2Ox), with excellent deoxygenation capability, is introduced to consume oxygen by catalyzing oxidation of glucose to generate H2O2. The generated H2O2 is directly supplied to HRP catalysis for radical generation. Both GOx-HRP and P2Ox-HRP cascade catalysis afford RAFT polymerization with oxygen tolerance. In this chapter, we mainly focus on detailed synthetic protocols of RAFT polymerizations initiated by HRP/H2O2/ACAC ternary initiating system and P2Ox-HRP cascade catalysis. The general characterization and analytical methods used in these enzyme-initiated RAFT polymerizations are also included.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
| |
Collapse
|
24
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1723] [Impact Index Per Article: 287.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
25
|
Cheng X, Huang L, Yang X, Elzatahry AA, Alghamdi A, Deng Y. Rational design of a stable peroxidase mimic for colorimetric detection of H2O2 and glucose: A synergistic CeO2/Zeolite Y nanocomposite. J Colloid Interface Sci 2019; 535:425-435. [DOI: 10.1016/j.jcis.2018.09.101] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023]
|
26
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
27
|
Wang S, Jiang H, Zhang L, Jiang J, Liu M. Enantioselective Activity of Hemin in Supramolecular Gels Formed by Co-Assembly with a Chiral Gelator. Chempluschem 2018; 83:1038-1043. [DOI: 10.1002/cplu.201800390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Song Wang
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Hejin Jiang
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P.R. China
| | - Jian Jiang
- CAS Key Laboratory of Nanosystems and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P.R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid; Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie Beijing 100190 P.R. China
- University of Chinese Academy of Sciences; Beijing 100049 P.R. China
- CAS Key Laboratory of Nanosystems and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P.R. China
| |
Collapse
|
28
|
|
29
|
Chen H, Qiu Q, Sharif S, Ying S, Wang Y, Ying Y. Solution-Phase Synthesis of Platinum Nanoparticle-Decorated Metal-Organic Framework Hybrid Nanomaterials as Biomimetic Nanoenzymes for Biosensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24108-24115. [PMID: 29956534 DOI: 10.1021/acsami.8b04737] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The synthesis of nanomaterials with specific properties and functions as biomimetic nanoenzymes has attracted extensive attention in the past decades due to their great potential to substitute natural enzymes. Herein, a facile and simple method for the preparation of platinum nanoparticle (PtNP)-decorated two-dimensional metal-organic framework (MOF) nanocomposites was developed. A ligand with heme-like structure, Fe(III) tetra(4-carboxyphenyl)porphine chloride (TCPP(Fe)), was applied to synthesize MOF nanosheets (denoted as Cu-TCPP(Fe) nanosheets) in high yield. Ultrathin Cu-TCPP(Fe) nanosheets with thickness less than 10 nm were used as a novel template for the growth of ultrasmall and uniform PtNPs. Significantly, the obtained hybrid nanomaterials (PtNPs/Cu-TCPP(Fe) hybrid nanosheets) exhibit enhanced peroxidase-like activity compared to PtNPs, Cu-TCPP(Fe) nanosheets, and the physical mixture of both due to the synergistic effect. On account of the excellent peroxidase-like activity of PtNPs/Cu-TCPP(Fe) hybrid nanosheets, we established a colorimetric method for sensitive and rapid detection of hydrogen peroxide. Furthermore, by combining with glucose oxidase, a cascade colorimetric method was established to further detect glucose with excellent sensitivity and selectivity.
Collapse
Affiliation(s)
- Huayun Chen
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Qiming Qiu
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Sumaira Sharif
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Shengna Ying
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
| | - Yibin Ying
- School of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , P. R. China
- Zhejiang A&F University , Hangzhou 311300 , P. R. China
| |
Collapse
|
30
|
Yang R, Zou K, Li Y, Meng L, Zhang X, Chen J. Co3O4–Au Polyhedra: A Multifunctional Signal Amplifier for Sensitive Photoelectrochemical Assay. Anal Chem 2018; 90:9480-9486. [DOI: 10.1021/acs.analchem.8b02134] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ruiying Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Kang Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Yanmei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Leixia Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| |
Collapse
|
31
|
Wu J, Li S, Wei H. Integrated nanozymes: facile preparation and biomedical applications. Chem Commun (Camb) 2018; 54:6520-6530. [PMID: 29564455 DOI: 10.1039/c8cc01202d] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China. and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China. and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
32
|
Sun H, Zhou Y, Ren J, Qu X. Kohlenstoff-Nanozyme: Enzymatische Eigenschaften, Katalysemechanismen und Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Science and Technology of China; Hefei Anhui 230026 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
33
|
Sun H, Zhou Y, Ren J, Qu X. Carbon Nanozymes: Enzymatic Properties, Catalytic Mechanism, and Applications. Angew Chem Int Ed Engl 2018; 57:9224-9237. [DOI: 10.1002/anie.201712469] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/01/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hanjun Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
- University of Science and Technology of China; Hefei Anhui 230026 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
34
|
Dare NA, Brammer L, Bourne SA, Egan TJ. Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal–Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorg Chem 2018; 57:1171-1183. [DOI: 10.1021/acs.inorgchem.7b02612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola A. Dare
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Lee Brammer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Susan A. Bourne
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
35
|
|
36
|
Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H. Growth of Au Nanoparticles on 2D Metalloporphyrinic Metal-Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700102. [PMID: 28634989 DOI: 10.1002/adma.201700102] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Indexed: 05/19/2023]
Abstract
Inspired by the multiple functions of natural multienzyme systems, a new kind of hybrid nanosheet is designed and synthesized, i.e., ultrasmall Au nanoparticles (NPs) grown on 2D metalloporphyrinic metal-organic framework (MOF) nanosheets. Since 2D metalloporphyrinic MOF nanosheets can act as the peroxidase mimics and Au NPs can serve as artificial glucose oxidase, the hybrid nanosheets are used to mimic the natural enzymes and catalyze the cascade reactions. Furthermore, the synthesized hybrid nanosheets are used to detect biomolecules, such as glucose. This study paves a new avenue to design nanomaterial-based biomimetic catalysts with multiple complex functions.
Collapse
Affiliation(s)
- Ying Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Meiting Zhao
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shikui Han
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuangchai Lai
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Yang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chaoliang Tan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qinglang Ma
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qipeng Lu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junze Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiao Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhicheng Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing Li
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yun Zong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
37
|
Liu Q, Wang H, Shi X, Wang ZG, Ding B. Self-Assembled DNA/Peptide-Based Nanoparticle Exhibiting Synergistic Enzymatic Activity. ACS NANO 2017; 11:7251-7258. [PMID: 28657711 DOI: 10.1021/acsnano.7b03195] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Designing enzyme-mimicking active sites in artificial systems is key to achieving catalytic efficiencies rivaling those of natural enzymes and can provide valuable insight in the understanding of the natural evolution of enzymes. Here, we report the design of a catalytic hemin-containing nanoparticle with self-assembled guanine-rich nucleic acid/histidine-rich peptide components that mimics the active site and peroxidative activity of hemoproteins. The chemical complementarities between the folded nucleic acid and peptide enable the spatial arrangement of essential elements in the active site and effective activation of hemin. As a result, remarkable synergistic effects of nucleic acid and peptide on the catalytic performances were observed. The turnover number of peroxide reached the order of that of natural peroxidase, and the catalytic efficiency is comparable to that of myoglobin. These results have implications in the precise design of supramolecular enzyme mimetics, particularly those with hierarchical active sites. The assemblies we describe here may also resemble an intermediate in the evolution of contemporary enzymes from the catalytic RNA of primitive cells.
Collapse
Affiliation(s)
- Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| |
Collapse
|
38
|
Zhang L, Ma F, Lei J, Liu J, Ju H. Target-triggered cascade assembly of a catalytic network as an artificial enzyme for highly efficient sensing. Chem Sci 2017; 8:4833-4839. [PMID: 28959405 PMCID: PMC5602372 DOI: 10.1039/c7sc01453h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/25/2017] [Indexed: 11/21/2022] Open
Abstract
Determining the catalytic activity of artificial enzymes is an ongoing challenge. In this work, we design a porphyrin-based enzymatic network through the target-triggered cascade assembly of catalytic nanoparticles. The nanoparticles are synthesized via the covalent binding of hemin to amino-coated gold nanoparticles and then the axial coordination of the Fe center with a dual-functional imidazole or pyridine derivative. The network, which is specifically formed by coordination polymerization triggered by Hg2+ as the target, shows high catalytic activity due to the triple amplification of enzymatic activity during the cascade assembly. The catalytic dynamics are comparable to those of natural horseradish peroxidase. The catalytic characteristics can be ultrasensitively regulated by the target, leading to a selective methodology for the analysis of sub-attomolar Hg2+. It has also been used for "signal-on" imaging of reactive oxygen species in living cells. This work provides a new avenue for the design of enzyme mimics, and a powerful biocatalyst with signal switching for the development of biosensing protocols.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 89681922
| | - Fengjiao Ma
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 89681922
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 89681922
| | - Jintong Liu
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 89681922
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China . ; ; Tel: +86 25 89681922
| |
Collapse
|
39
|
Sun A, Mu L, Hu X. Graphene Oxide Quantum Dots as Novel Nanozymes for Alcohol Intoxication. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12241-12252. [PMID: 28322544 DOI: 10.1021/acsami.7b00306] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alcohol overconsumption as a worldwide issue results in alcoholic liver disease (ALD), such as steatosis, alcoholic hepatitis, and cirrhosis. The treatment of ALD has been widely investigated but remains challenging. In this work, the protective effects of graphene oxide quantum dots (GOQDs) as novel nanozymes against alcohol overconsumption are discovered, and the specific mechanisms underlying these effects are elucidated via omics analysis. GOQDs dramatically alleviate the reduction of cell viability induced by ethanol and can act as nanozymes to accelerate ethanol metabolism and avoid the accumulation of toxic intermediates in cells. Mitochondrial damage and the excessive generation of free radicals were mitigated by GOQDs. The mechanisms underlying the cellular protective effects were also related to alterations in metabolic and protein signals, especially those involved in lipid metabolism. The moderately increased autophagy induced by GOQDs explained the removal of accumulated lipids and the subsequent elimination of excessive GOQDs. These findings suggest that GOQDs have an antagonistic capacity against the adverse effects caused by ethanol and provide new insights into the direct applications of GOQDs. In addition to traditional antioxidation, this work also establishes metabolomics and proteomics techniques as effective tools to discover the multiple functions of nanozymes.
Collapse
Affiliation(s)
- Anqi Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Li Mu
- Institute of Agro-environmental Protection, Ministry of Agriculture , Tianjin 300191, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
40
|
Wang X, Hou C, Qiu W, Ke Y, Xu Q, Liu XY, Lin Y. Protein-Directed Synthesis of Bifunctional Adsorbent-Catalytic Hemin-Graphene Nanosheets for Highly Efficient Removal of Dye Pollutants via Synergistic Adsorption and Degradation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:684-692. [PMID: 27997107 DOI: 10.1021/acsami.6b12495] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Herein, for the first time, we report a "green", one-pot reduction/decoration method for the synthesis of bifunctional adsorbent-catalytic hemin-graphene nanosheets by using a common available protein (bovine serum albumin, BSA) as both a reductant and a stabilizer. Our prepared nanosheets are highly stable and possess intrinsic peroxidase-like catalytic activity due to the decoration of BSA and hemin. Furthermore, benefiting from the combined advantages of graphene and BSA, these nanosheets are able to efficiently adsorb dye pollutants from aqueous solution. More importantly, due to their adsorption and catalytic ability, these adsorbent-catalytic nanosheets can be applied to highly efficient dye removal via synergistic adsorption and degradation. Specifically, our catalysts can easily bring organic dyes to their surface by adsorption, and then activate H2O2 to generate hydroxyl radicals, leading to the degradation of the dyes. Such catalytic mechanism of our as-prepared nanosheets was analogous to that of natural enzymes, in which the extremely high catalytic efficiency is largely dependent upon their ability to bring substrates in close proximity to the active sites of enzymes. Our finding may open new potential applications of hemin-graphene hybrid nanosheets in environmental chemistry, biotechnology, and medicine.
Collapse
Affiliation(s)
- Xiaopei Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University , Xiamen 361005, China
| | - Chen Hou
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University , Xiamen 361005, China
| | - Wu Qiu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University , Xiamen 361005, China
| | - Yuepeng Ke
- Xiamen Si De Biological Technology Company, Ltd. , Xiamen 361101, China
| | - Qingchi Xu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University , Xiamen 361005, China
| | - Xiang Yang Liu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University , Xiamen 361005, China
- Department of Physics, National University of Singapore , 2 Science Drive 3, Singapore 117542, Singapore
| | - Youhui Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University , Xiamen 361005, China
| |
Collapse
|
41
|
Zhao S, Xu M, Cao C, Yu Q, Zhou Y, Liu J. A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. J Mater Chem B 2017; 5:6908-6919. [DOI: 10.1039/c7tb00613f] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Co-delivery of gene and drug therapies for cancer treatment remains a major goal of nanocarrier research.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Mengmeng Xu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Chengwen Cao
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Qianqian Yu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yanhui Zhou
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jie Liu
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
42
|
Kong J, Yu X, Hu W, Hu Q, Shui S, Li L, Han X, Xie H, Zhang X, Wang T. A biomimetic enzyme modified electrode for H2O2 highly sensitive detection. Analyst 2016; 140:7792-8. [PMID: 26462299 DOI: 10.1039/c5an01335f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient catalyst based on artificial bionic peroxidase was synthesized for electrocatalysis. A poly(ethyleneimine)/Au nanoparticle composite (PEI-AuNP) was prepared and it was then linked to hemin via a coupling reaction between carboxyl groups in hemin and amino groups in PEI without the activation of a carboxyl group by carbodiimide. Fourier transform infrared (FTIR) spectroscopy verified the formation of amido bonds within the structure. The presence of AuNPs contributed greatly in establishing the amido bonds within the composite. Transmission electron microscopy (TEM) and UV-visible spectroscopy were also used to characterize the PEI-AuNP-hemin catalyst. PEI-AuNP-hemin exhibited intrinsic peroxidase-like catalytic activities. The PEI-AuNP-hemin deposited on a glass carbon electrode had strong sensing for H2O2 with a well-defined linear relationship between the amperometric response and H2O2 concentration in the range from 1 μM to 0.25 mM. The detection limit was 0.247 nM with a high sensitivity of 0.347 mA mM(-1) cm(-2). The peroxidase-like catalytic activity of PEI-AuNP-hemin is discussed in relation to its microstructure. The study suggests that PEI-AuNP-hemin may have promising application prospects in biocatalysis and bioelectronics.
Collapse
Affiliation(s)
- Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Xuehua Yu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Weiwen Hu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Qiong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Sailan Shui
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Lianzhi Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Huifang Xie
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Xueji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China. and Chemistry Department, College of Arts and Sciences, University of South Florida, East Fowler Ave, Tampa, Florida 33620-4202, USA
| | - Tianhe Wang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
43
|
Yan K, Yang Y, Okoth OK, Cheng L, Zhang J. Visible-Light Induced Self-Powered Sensing Platform Based on a Photofuel Cell. Anal Chem 2016; 88:6140-4. [DOI: 10.1021/acs.analchem.6b01600] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kai Yan
- Key Laboratory
of Material
Chemistry for Energy Conversion and Storage (Ministry of Education),
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yaohua Yang
- Key Laboratory
of Material
Chemistry for Energy Conversion and Storage (Ministry of Education),
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Otieno Kevin Okoth
- Key Laboratory
of Material
Chemistry for Energy Conversion and Storage (Ministry of Education),
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Ling Cheng
- Key Laboratory
of Material
Chemistry for Energy Conversion and Storage (Ministry of Education),
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jingdong Zhang
- Key Laboratory
of Material
Chemistry for Energy Conversion and Storage (Ministry of Education),
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
44
|
Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H. Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains. Anal Chem 2016; 88:5489-5497. [PMID: 27067749 DOI: 10.1021/acs.analchem.6b00975] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanozymes, the nanostructures with enzymatic activities, have attracted considerable attention because, in comparison with natural enzymes, they offer the possibility of lowered cost, improved stability, and excellent recyclability. However, the specificity and catalytic activity of current nanozymes are still far lower than that of their natural counterparts, which in turn has limited their use such as in bioanalysis. To address these challenges, herein we report the design and development of integrated nanozymes (INAzymes) by simultaneously embedding two cascade catalysts (i.e., a molecular catalyst hemin and a natural enzyme glucose oxidase, GOx) inside zeolitic imidazolate framework (ZIF-8) nanostructures. Such integrated design endowed the INAzymes with major advantage in improved catalytic efficiency as the first enzymatic reaction occurred in close (nanoscale) proximity to the second enzyme, so products of the first reaction can be used immediately as substrates for the second reaction, thus overcoming the problems of diffusion-limited kinetics and product instability. The considerable high catalytic activity and stability enabled the INAzymes to efficiently draw a colorimetric detection of glucose with good sensitivity and selectivity. When facilitated with in vivo microdialysis, the INAzyme was successfully used for facile colorimetric visualization of cerebral glucose in the brain of living rats. Moreover, when further combined with microfluidic technology, an integrative INAzyme-based online in vivo analytical platform was constructed. The promising application of the platform was successfully illustrated by continuously monitoring the dynamic changes of striatum glucose in living rats' brain following ischemia/reperfusion. This study developed a useful approach to not only functional nanomaterial design but also advanced platforms developments for diverse targets monitoring.
Collapse
Affiliation(s)
- Hanjun Cheng
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing, Jiangsu 210093, China
- Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Lei Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu 210008, China
| | - Wenjing Guo
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, Jiangsu 210008, China
| | - Xuejin Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing, Jiangsu 210093, China
| | - Shuming Nie
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing, Jiangsu 210093, China
- Department of Biomedical Engineering, Emory University , Atlanta, Georgia 30322, United States
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University , Nanjing, Jiangsu 210093, China
- Collaborative Innovation Center of Chemistry for Life Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University , Nanjing, Jiangsu 210093, China
| |
Collapse
|
45
|
Konował E, Modrzejewska-Sikorska A, Motylenko M, Klapiszewski Ł, Wysokowski M, Bazhenov VV, Rafaja D, Ehrlich H, Milczarek G, Jesionowski T. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate. Int J Biol Macromol 2016; 85:74-81. [DOI: 10.1016/j.ijbiomac.2015.12.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 11/15/2022]
|
46
|
Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H. Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.12.005] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Huang Y, Lin Y, Ran X, Ren J, Qu X. Self-Assembly and Compartmentalization of Nanozymes in Mesoporous Silica-Based Nanoreactors. Chemistry 2016; 22:5705-11. [DOI: 10.1002/chem.201504704] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Changchun; Jilin 130022 P.R. China
- Graduate School of the University of the; Chinese Academy of Sciences; Beijing 100039 China
| | - Youhui Lin
- Laboratory of Chemical Biology and; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Changchun; Jilin 130022 P.R. China
- Graduate School of the University of the; Chinese Academy of Sciences; Beijing 100039 China
| | - Xiang Ran
- Laboratory of Chemical Biology and; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Changchun; Jilin 130022 P.R. China
- Graduate School of the University of the; Chinese Academy of Sciences; Beijing 100039 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Changchun; Jilin 130022 P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences, Changchun; Jilin 130022 P.R. China
| |
Collapse
|
48
|
|
49
|
Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00240k] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which have found broad applications in various areas including bionanotechnology and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Yihui Hu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|
50
|
Zhang B, Wang X, Zhu A, Ma K, Lv Y, Wang X, An Z. Enzyme-Initiated Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01893] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Baohua Zhang
- Institute of Nanochemistry
and Nanobiology, ‡College of Environmental Science
and Chemical Engineering, and §Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Xinjun Wang
- Institute of Nanochemistry
and Nanobiology, ‡College of Environmental Science
and Chemical Engineering, and §Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Anqi Zhu
- Institute of Nanochemistry
and Nanobiology, ‡College of Environmental Science
and Chemical Engineering, and §Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Kai Ma
- Institute of Nanochemistry
and Nanobiology, ‡College of Environmental Science
and Chemical Engineering, and §Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Yue Lv
- Institute of Nanochemistry
and Nanobiology, ‡College of Environmental Science
and Chemical Engineering, and §Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Xiao Wang
- Institute of Nanochemistry
and Nanobiology, ‡College of Environmental Science
and Chemical Engineering, and §Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry
and Nanobiology, ‡College of Environmental Science
and Chemical Engineering, and §Department of Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|