1
|
Dragone M, Shitaye G, D’Abrosca G, Russo L, Fattorusso R, Isernia C, Malgieri G, Iacovino R. Inclusions of Pesticides by β-Cyclodextrin in Solution and Solid State: Chlorpropham, Monuron, and Propanil. Molecules 2023; 28:molecules28031331. [PMID: 36771001 PMCID: PMC9920956 DOI: 10.3390/molecules28031331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Persistence and degradation are important factors in determining the safe use of such synthetic products, and numerous studies have been addressed to develop pesticide remediation methods aimed at ameliorating these features. In this frame, the use of different cyclodextrins (CDs) molecules has attracted considerable attention due to their well-known non-toxic nature, limited environmental impact, and capability to reduce the environmental and health risks of pesticides. CDs appear to be a valuable tool for the elimination of pesticides from polluted areas as well as for better pesticide formulations that positively influence their hydrolysis or degradation. The present work investigates the interaction between β-cyclodextrins and three commonly used pesticides (i.e., chlorpropham, monuron, and propanil) both in solution and in the solid state by means of UV-Vis, FT-IR, and X-ray powder diffractometry. We show that such interactions result in all three cases in the formation of inclusion complexes with a 1:1 stoichiometry and binding constants (Kb) of 369.9 M-1 for chlorpropham, 292.3 M-1 for monuron, and 298.3 M-1 for propanil. We also report the energy-minimized structures in silico for each complex. Our data expand and complement the available literature data in indicating CDs as a low-cost and very effective tool capable of modulating the properties that determine the environmental fate of pesticides.
Collapse
Affiliation(s)
- Martina Dragone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Getasew Shitaye
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Department of Biomedical Sciences, School of Medical Sciences, Bahir Dar University, Bahir Dar 6000, Ethiopia
| | - Gianluca D’Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Rosa Iacovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Antonio Vivaldi 43, 81100 Caserta, Italy
- Correspondence: ; Tel.: +39-0823-2746363
| |
Collapse
|
2
|
Birk B, Haake V, Sperber S, Herold M, Wallisch SK, Huener HA, Verlohner A, Amma MM, Walk T, Hernandez TR, Hewitt NJ, Kamp H, van Ravenzwaay B. Use of in vitro metabolomics in NRK cells to help predicting nephrotoxicity and differentiating the MoA of nephrotoxicants. Toxicol Lett 2021; 353:43-59. [PMID: 34626816 DOI: 10.1016/j.toxlet.2021.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
We describe a strategy using an in vitro metabolomics assay with tubular rat NRK-52E cells to investigate the Modes of Action (MoAs) of nephrotoxic compounds. Chemicals were selected according to their MoAs based on literature information: acetaminophen, 4-aminophenol and S-(trichlorovinyl-)L-cysteine (TCVC), (covalent protein binding); gentamycin, vancomycin, polymycin B and CdCl2 (lysosomal overload) and tenofovir and cidofovir (mitochondrial DNA-interaction). After treatment and harvesting of the cells, intracellular endogenous metabolites were quantified relative to vehicle control. Metabolite patterns were evaluated in a purely data-driven pattern generation process excluding published information. This strategy confirmed the assignment of the chemicals to the respective MoA except for TCVC and CdCl2. Finally, TCVC was defined as unidentified and CdCl2 was reclassified to the MoA "covalent protein binding". Hierarchical cluster analysis of 58 distinct metabolites from the patterns enabled a clear visual separation of chemicals in each MoA. The assay reproducibility was very good and metabolic responses were consistent. These results support the use of metabolome analysis in NRK-52E cells as a suitable tool for understanding and investigating the MoA of nephrotoxicants. This assay could enable the early identification of nephrotoxic compounds and finally reduce animal testing.
Collapse
Affiliation(s)
- Barbara Birk
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany.
| | | | - Saskia Sperber
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | | | - Meike M Amma
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | | | | | - Hennicke Kamp
- Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany; BASF Metabolome Solutions GmbH, Berlin, Germany
| | | |
Collapse
|
3
|
Frazier KS, Ryan AM, Peterson RA, Obert LA. Kidney Pathology and Investigative Nephrotoxicology Strategies Across Species. Semin Nephrol 2019; 39:190-201. [DOI: 10.1016/j.semnephrol.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Shah H, Patel M, Shrivastava N. Gene expression study of phase I and II metabolizing enzymes in RPTEC/TERT1 cell line: application in in vitro nephrotoxicity prediction. Xenobiotica 2016; 47:837-843. [PMID: 27616666 DOI: 10.1080/00498254.2016.1236299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The phase I and II metabolizing enzymes of kidneys play an important role in the metabolism of xenobiotic as well as endogenous compounds and proximal tubules of kidney constitute high concentration of these metabolizing enzymes compared with the other parts. 2. It has been shown previously that differential enzyme expression among human and rodent/non-rodent species can be a roadblock in drug discovery and development process. Currently, proximal tubule cell lines of human origin such as RPTEC/TERT1 and HK-2 are used to understand the pathophysiology of kidney diseases, therapeutic efficacy of drugs, and nephrotoxicity of compounds. 3. The purpose of the present study is to understand the metabolic enzymes present in RPTEC/TERT1 and HK-2 cell lines that would help to interpret and predict probable in vitro behavior of the molecule being tested. 4. We analyzed the expression of phase I and II metabolizing enzymes of RPTEC/TERT1 and HK-2 cell lines. We found equal expression of CYP1B1, 2J2, 3A4, 3A5, UGT1A9, SULT2A1 and GSTA, higher expression of 2B6, 2D6, 4A11, 4F2, 4F8, 4F11, UGT2B7, SULT1E1 in RPTEC/TERT1 and absence of GSTT in RPTEC/TERT1 compared to HK-2 at mRNA level. Such differences can affect the outcome of in vitro nephrotoxicity prediction.
Collapse
Affiliation(s)
- Heta Shah
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and
| | - Manish Patel
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and
| | - Neeta Shrivastava
- a Department of Biotechnology , National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad , Ahmedabad , Gujarat , India and.,b Department of Pharmacognosy and Phytochemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Center , Ahmedabad , Gujarat , India
| |
Collapse
|