1
|
Oza D, Ivich F, Deprey K, Bittner K, Bailey K, Goldman S, Yu M, Niedre M, Tu HC, Amiji MM. Treatment of Acute Liver Injury through Selective Tropism of High Mobility Group Box 1 Gene-Silenced Large Peritoneal Macrophages. ACS NANO 2025; 19:12102-12118. [PMID: 40099379 PMCID: PMC11966748 DOI: 10.1021/acsnano.4c18345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Tissue-resident macrophages (TRMs) are attractive cells to therapeutically deliver oligonucleotide and other gene-expression modifying modalities to treat a wide array of diseases ranging from inflammatory to autoimmune, and even cancer. Here, we focus on TRMs located inside the peritoneal cavity lining the abdomen that selectively express a transcription factor GATA6 called large peritoneal macrophages (GLPMs) and successfully demonstrate functional GLPM-selective delivery of a Cy5-fluorophore-labeled siRNA encapsulated in C12-200 cationic-lipidoid-based nanoparticles (siRNA-Cy5 (C12-200)). Despite being TRMs, GLPMs possess a specific migratory ability to peritoneally located liver tissue upon injury incited by acetaminophen (APAP) overdose in mice. A rapid, liver injury-driven tropism of GLPMs carrying siRNA-Cy5 (C12-200) was seen via systemic circulation, which was elegantly demonstrated by using a noninvasive live-cell tracking technique called diffuse in vivo flow cytometry (DiFC). Finally, RNAi-mediated silencing of a well-known pro-inflammatory damage-associated molecular pattern (DAMP) High Mobility Group Box-1 (HMGB1) gene in GLPMs led to the mitigation of liver injury and inflammation via prevention of GLPM modulation to a pro-inflammatory state, which further translated into significant protection from APAP-driven liver injury and a reduction in liver circulating pro-inflammatory cytokines owing to a muted inflammatory response to acute liver injury. Moreover, silencing HMGB1 by a GalNAc-conjugated hepatocyte-targeting siRNA did not reciprocate the findings, further solidifying our results. Together, our data suggested that GLPMs act as delivery carriers by rapidly bringing lipid nanoparticle-encapsulated RNAi modalities to the injured liver and have emerged as a therapeutically viable strategy to address inflammatory diseases, especially those that are more acute in nature.
Collapse
Affiliation(s)
- Dhaval Oza
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Alnylam
Pharmaceuticals, 675
West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Fernando Ivich
- Department
of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kirsten Deprey
- Alnylam
Pharmaceuticals, 675
West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Kelsey Bittner
- Alnylam
Pharmaceuticals, 675
West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Keith Bailey
- Alnylam
Pharmaceuticals, 675
West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Sarah Goldman
- Alnylam
Pharmaceuticals, 675
West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Mikyung Yu
- Alnylam
Pharmaceuticals, 675
West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Mark Niedre
- Department
of Bioengineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ho-Chou Tu
- Alnylam
Pharmaceuticals, 675
West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Mansoor M. Amiji
- Department
of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical
Sciences, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Svadlakova T, Kolackova M, Kulich P, Kotoucek J, Rosecka M, Krejsek J, Fiala Z, Andrýs C. Human Primary Monocytes as a Model for in vitro Immunotoxicity Testing: Evaluation of the Regulatory Properties of TiO 2 Nanoparticles. Int J Nanomedicine 2025; 20:1171-1189. [PMID: 39902067 PMCID: PMC11789775 DOI: 10.2147/ijn.s498690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 02/05/2025] Open
Abstract
Introduction A critical step preceding the potential biomedical application of nanoparticles is the evaluation of their immunomodulatory effects. Such nanoparticles are expected to enter the bloodstream where they can be recognized and processed by circulating monocytes. Despite the required biocompatibility, this interaction can affect intracellular homeostasis and modulate physiological functions, particularly inflammation. This study focuses on titanium dioxide (TiO2) as an example of relatively low cytotoxic nanoparticles with potential biomedical use and aims to evaluate their possible modulatory effects on the inflammasome-based response in human primary monocytes. Methods Monocyte viability, phenotypic changes, and cytokine production were determined after exposure to TiO2 (diameter, 25 nm; P25) alone. In the case of the modulatory effects, we focused on NLRP3 activation. The production of IL-1β and IL-10 was evaluated after (a) simultaneous activation of monocytes with bacterial stimuli muramyl dipeptide (MDP), or lipopolysaccharide (LPS), and TiO2 (co-exposure model), (b) prior activation with TiO2 alone and subsequent exposure to bacterial stimuli MDP or LPS. The differentiation of TiO2-treated monocytes into macrophages and their polarization were also assessed. Results The selected TiO2 concentration range (30-120 µg/mL) did not induce any significant cytotoxic effects. The highest dose of TiO2 promoted monocyte survival and differentiation into macrophages, with the M2 subset being the most prevalent. Nanoparticles alone did not induce substantial production of inflammatory cytokines IL-1β, IL-6, or TNF-α. The immunomodulatory effect on NLRP3 depended on the type of costimulant used. While co-exposure of monocytes to MDP and TiO2 boosted NLRP3 activity, co-exposure to LPS and TiO2 inhibited NLRP3 by enhancing IL-10 release. The inhibitory effect of TiO2 on NLRP3 based on the promotion of IL-10 was confirmed in a post-exposure model for both costimulants. Conclusion This study confirmed a non-negligible modulatory effect on primary monocytes in their inflammasome-based response and differentiation ability.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Kotoucek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Michaela Rosecka
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Zdeněk Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
A Biomonitoring Pilot Study in Workers from a Paints Production Plant Exposed to Pigment-Grade Titanium Dioxide (TiO 2). TOXICS 2022; 10:toxics10040171. [PMID: 35448433 PMCID: PMC9028136 DOI: 10.3390/toxics10040171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022]
Abstract
Among particulate matter composing paints, titanium dioxide (TiO2) forms about 20% of the final suspension. Although TiO2 is broadly used in many applications, TiO2 powders represent an established respiratory hazard for workers with long-term exposure. In 35 workers of a paints production plant (15 exposed and 20 not exposed), we assessed pro-inflammatory cytokines (IL-1β, TNF-α, IL-10, IL-17), surfactant protein D (SP-D) and Krebs von den Lungen-6 glycoprotein (KL-6) in exhaled breath condensate (EBC). In urine samples, we measured 8-isoprostane (Isop) and Malondialdehyde (MDA) as biomarkers of oxidative stress, and Titanium (Ti-U) as a biomarker of exposure. Health status, habits and occupational history were recorded. Airborne respirable dusts and Ti were quantified. Particle number concentration and average diameter (nm) were detected by a NanoTracer™ monitoring device. Ti was measurable in filters collected at the respiratory breathing zone (0.11−0.44 µg/m3 8-h TWA). IL-1β and IL-10 values were significantly higher in exposed workers, whereas SP-D was significantly lower (p < 0.001). KL-6 was significantly higher in workers than in controls (p < 0.01). MDA levels were significantly increased in exposed workers and were positively correlated with Ti-U. Exposure to TiO2 in paint production is associated with the subtle alterations of lung pathobiology. These findings suggest the need for an integrated approach relying on both personal exposure and biomarker assessment to improve the hazard characterisation in occupational settings.
Collapse
|
5
|
Gimondi S, Guimarães CF, Vieira SF, Gonçalves VMF, Tiritan ME, Reis RL, Ferreira H, Neves NM. Microfluidicmixing system for precise PLGA-PEG nanoparticles size control. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102482. [PMID: 34748958 DOI: 10.1016/j.nano.2021.102482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
In this study, a microfluidic device was employed to produce polymeric nanoparticles (NPs) with well-controlled sizes. The influence of several parameters in the synthesis process, namely, polymer concentration, flow rate and flow rate ratio between the aqueous and organic solutions was investigated. To evaluate the NPs size effect, three diameters were selected (30, 50 and 70nm). Their cytocompatibility was demonstrated on endothelial cells and macrophages. Additionally, their efficacy to act as drug carriers was assessed in an in vitro inflammatory scenario. NPs loaded and released diclofenac (DCF) in a size-dependent profile (smaller sizes presented lower DCF content and higher release rate). Moreover, 30nm NPs were the most effective in reducing prostaglandin E2 concentration. Therefore, this study demonstrates that microfluidics can generate stable NPs with controlled sizes, high monodispersity and enhanced batch-to-batch reproducibility. Indeed, NPs size is a crucial parameter for drug encapsulation, release and overall biological efficacy.
Collapse
Affiliation(s)
- S Gimondi
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C F Guimarães
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S F Vieira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - V M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal
| | - M E Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra PRD, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - H Ferreira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
6
|
Pyrogenic and Precipitated Amorphous Silica Nanoparticles Differentially Affect Cell Responses to LPS in Human Macrophages. NANOMATERIALS 2020; 10:nano10071395. [PMID: 32708373 PMCID: PMC7407657 DOI: 10.3390/nano10071395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
Previous work has demonstrated that precipitated (NM-200) and pyrogenic (NM-203) Amorphous Silica Nanoparticles (ASNPs) elicit the inflammatory activation of murine macrophages, with more pronounced effects observed with NM-203. Here, we compare the effects of low doses of NM-200 and NM-203 on human macrophage-like THP-1 cells, assessing how the pre-exposure to these nanomaterials affects the cell response to lipopolysaccharide (LPS). Cell viability was affected by NM-203, but not by NM-200, and only in the presence of LPS. While NM-203 stimulated mTORC1, neither ASNPs activated NFκB or the transcription of its target genes PTGS2 and IL1B. NM-200 and NM-203 caused a block of the autophagic flux and inhibited the LPS-dependent increase of Glutamine Synthetase (GS) expression. Both ASNPs suppressed the activation of caspase-1, delaying the LPS-dependent secretion of IL-1β. Thus, ASNPs modulate several important pathways in human macrophages, altering their response to LPS. NM-203 had larger effects on autophagy, mTORC1 activity and GS expression than NM-200, confirming the higher biological activity of pyrogenic ASNPs when compared with precipitated ASNPs.
Collapse
|
7
|
Paesano L, Marmiroli M, Bianchi MG, White JC, Bussolati O, Zappettini A, Villani M, Marmiroli N. Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122430. [PMID: 32155524 DOI: 10.1016/j.jhazmat.2020.122430] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Cadmium is toxic to humans, although Cd-based quantum dots exerts less toxicity. Human hepatocellular carcinoma cells (HepG2) and macrophages (THP-1) were exposed to ionic Cd, Cd(II), and cadmium sulfide quantum dots (CdS QDs), and cell viability, cell integrity, Cd accumulation, mitochondrial function and miRNome profile were evaluated. Cell-type and Cd form-specific responses were found: CdS QDs affected cell viability more in HepG2 than in THP-1; respective IC20 values were ∼3 and ∼50 μg ml-1. In both cell types, Cd(II) exerted greater effects on viability. Mitochondrial membrane function in HepG2 cells was reduced 70 % with 40 μg ml-1 CdS QDs but was totally inhibited by Cd(II) at corresponding amounts. In THP-1 cells, CdS QDs has less effect on mitochondrial function; 50 μg ml-1 CdS QDs or equivalent Cd(II) caused 30 % reduction or total inhibition, respectively. The different in vitro effects of CdS QDs were unrelated to Cd uptake, which was greater in THP-1 cells. For both cell types, changes in the expression of miRNAs (miR-222, miR-181a, miR-142-3p, miR-15) were found with CdS QDs, which may be used as biomarkers of hazard nanomaterial exposure. The cell-specific miRNome profiles were indicative of a more conservative autophagic response in THP-1 and as apoptosis as in HepG2.
Collapse
Affiliation(s)
- Laura Paesano
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marta Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Massimiliano G Bianchi
- University of Parma, Department of Medicine and Surgery, Laboratory of General Pathology, Via Volturno 39, 43125 Parma, Italy
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06504, United States
| | - Ovidio Bussolati
- University of Parma, Department of Medicine and Surgery, Laboratory of General Pathology, Via Volturno 39, 43125 Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM-CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 11/A, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze 93/A, 43124 Parma, Italy.
| |
Collapse
|
8
|
Shetab Boushehri MA, Dietrich D, Lamprecht A. Nanotechnology as a Platform for the Development of Injectable Parenteral Formulations: A Comprehensive Review of the Know-Hows and State of the Art. Pharmaceutics 2020; 12:pharmaceutics12060510. [PMID: 32503171 PMCID: PMC7356945 DOI: 10.3390/pharmaceutics12060510] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Within recent decades, the development of nanotechnology has made a significant contribution to the progress of various fields of study, including the domains of medical and pharmaceutical sciences. A substantially transformed arena within the context of the latter is the development and production of various injectable parenteral formulations. Indeed, recent decades have witnessed a rapid growth of the marketed and pipeline nanotechnology-based injectable products, which is a testimony to the remarkability of the aforementioned contribution. Adjunct to the ability of nanomaterials to deliver the incorporated payloads to many different targets of interest, nanotechnology has substantially assisted to the development of many further facets of the art. Such contributions include the enhancement of the drug solubility, development of long-acting locally and systemically injectable formulations, tuning the onset of the drug’s release through the endowment of sensitivity to various internal or external stimuli, as well as adjuvancy and immune activation, which is a desirable component for injectable vaccines and immunotherapeutic formulations. The current work seeks to provide a comprehensive review of all the abovementioned contributions, along with the most recent advances made within each domain. Furthermore, recent developments within the domains of passive and active targeting will be briefly debated.
Collapse
Affiliation(s)
- Maryam A. Shetab Boushehri
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- Correspondence: ; Tel.: +49-228-736428; Fax: +49-228-735268
| | - Dirk Dietrich
- Department of Neurosurgery, University Clinic of Bonn, 53105 Bonn, Germany;
| | - Alf Lamprecht
- Department of Pharmaceutics, Faculty of Pharmacy, University of Bonn, 53121 Bonn, Germany;
- PEPITE EA4267, Institute of Pharmacy, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
9
|
Bianchi MG, Campagnolo L, Allegri M, Ortelli S, Blosi M, Chiu M, Taurino G, Lacconi V, Pietroiusti A, Costa AL, Poland CA, Baird D, Duffin R, Bussolati O, Bergamaschi E. Length-dependent toxicity of TiO 2 nanofibers: mitigation via shortening. Nanotoxicology 2019; 14:433-452. [PMID: 31726913 DOI: 10.1080/17435390.2019.1687775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Length and aspect ratio represent important toxicity determinants of fibrous nanomaterials. We have previously shown that anatase TiO2 nanofibers (TiO2 NF) cause a dose-dependent decrease of cell viability as well as the loss of epithelial barrier integrity in polarized airway cell monolayers. Herein we have investigated the impact of fiber shortening, obtained by ball-milling, on the biological effects of TiO2 NF of industrial origin. Long TiO2 NF (L-TiO2 NF) were more cytotoxic than their shortened counterparts (S-TiO2 NF) toward alveolar A549 cells and bronchial 16HBE cells. Moreover, L-TiO2 NF increased the permeability of 16HBE monolayers and perturbed the distribution of tight-junction proteins, an effect also mitigated by fiber shortening. Raw264.7 macrophages efficiently internalized shortened but not long NF, which caused cell stretching and deformation. Compared with L-TiO2 NF, S-TiO2 NF triggered a more evident macrophage activation, an effect suppressed by the phagocytosis inhibitor cytochalasin B. Conversely, a significant increase of inflammatory markers was detected in either the lungs or the peritoneal cavity of mice exposed to L-TiO2 NF but not to S-TiO2 NF, suggesting that short-term macrophage activation in vitro may not be always a reliable indicator of persistent inflammation in vivo. It is concluded that fiber shortening mitigates NF detrimental effects on cell viability and epithelial barrier competence in vitro as well as inflammation development in vivo. These data suggest that fiber shortening may represent an effective safe-by-design strategy for mitigating TiO2 NF toxic effects.
Collapse
Affiliation(s)
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Manfredi Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Ortelli
- ISTEC-CNR, Institute of Science and Technology for Ceramics - National Research Council of Italy, Faenza, Italy
| | - Magda Blosi
- ISTEC-CNR, Institute of Science and Technology for Ceramics - National Research Council of Italy, Faenza, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Anna L Costa
- ISTEC-CNR, Institute of Science and Technology for Ceramics - National Research Council of Italy, Faenza, Italy
| | - Craig A Poland
- Centre for Inflammation Research, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh, UK
| | - Daniel Baird
- Centre for Inflammation Research, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research Institute, the University of Edinburgh, Edinburgh, UK
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Science and Pediatrics, University of Turin, Turin
| |
Collapse
|
10
|
Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol Pharm 2018; 15:4777-4800. [DOI: 10.1021/acs.molpharmaceut.8b00691] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany
- PEPITE EA4267, Univ. Bourgonge Franch-Comte, 25030 Besançon, France
| |
Collapse
|
11
|
Marucco A, Pellegrino F, Oliaro-Bosso S, Maurino V, Martra G, Fenoglio I. Indoor illumination: A possible pitfall in toxicological assessment of photo-active nanomaterials. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Bianchi MG, Allegri M, Chiu M, Costa AL, Blosi M, Ortelli S, Bussolati O, Bergamaschi E. Lipopolysaccharide Adsorbed to the Bio-Corona of TiO 2 Nanoparticles Powerfully Activates Selected Pro-inflammatory Transduction Pathways. Front Immunol 2017; 8:866. [PMID: 28824614 PMCID: PMC5540950 DOI: 10.3389/fimmu.2017.00866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
It is known that the adsorption of bioactive molecules provides engineered nanoparticles (NPs) with novel biological activities. However, the biological effects of the adsorbed molecules may also be modified by the interaction with NP. Bacterial lipopolysaccharide (LPS), a powerful pro-inflammatory compound, is a common environmental contaminant and is present in several body compartments such as the gut. We recently observed that the co-incubation of LPS with TiO2 NPs markedly potentiates its pro-inflammatory effects on murine macrophages, suggesting that, when included in a NP bio-corona, LPS activity is enhanced. To distinguish the effects of adsorbed LPS from those of the free endotoxin, a pellet fraction, denominated P25/LPS, was isolated by centrifugation from a mixture of P25 TiO2 NP (128 µg/ml) and LPS (10 ng/ml) in the presence of fetal bovine serum. Western blot analysis of the pellet eluate indicated that the P25/LPS fraction contained, besides proteins, also LPS, pointing to the presence of LPS-doped NP. The effects of adsorbed or free LPS were then compared in Raw264.7 murine macrophages. RT-PCR was used to evaluate the induction of cytokine genes, whereas active, phosphorylated isoforms of proteins involved in signaling pathways were assessed with western blot. At a nominal LPS concentration of 40 pg/ml, P25/LPS induced the expression of both NF-κB and IRF3-dependent cytokines at levels comparable with those observed with free LPS (10 ng/ml), although with different time courses. Moreover, compared to free LPS, P25/LPS caused a more sustained phosphorylation of p38 MAPK and a more prolonged induction of STAT1-dependent genes. Cytochalasin B partially inhibited the induction of Tnfa by P25/LPS, but not by free LPS, and suppressed the induction of IRF3-dependent genes by either P25/LPS or free LPS. These data suggest that, when included in the bio-corona of TiO2 NP, LPS exhibits enhanced and time-shifted pro-inflammatory effects. Thus, in assessing the hazard of NP in real life, the enhanced effects of adsorbed bioactive molecules should be taken into account.
Collapse
Affiliation(s)
| | - Manfredi Allegri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna L Costa
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Magda Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Simona Ortelli
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Faenza, Ravenna, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Science and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Huang C, Sun M, Yang Y, Wang F, Ma X, Li J, Wang Y, Ding Q, Ying H, Song H, Wu Y, Jiang Y, Jia X, Ba Q, Wang H. Titanium dioxide nanoparticles prime a specific activation state of macrophages. Nanotoxicology 2017; 11:737-750. [PMID: 28669258 DOI: 10.1080/17435390.2017.1349202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in foods, cosmetics, and medicine. Although the inhalation toxicity of TiO2 NPs has been studied, the potential adverse effects of oral exposure of low-dose TiO2 NPs are largely unclear. Herein, with macrophage cell lines, primary cells, and mouse models, we show that TiO2 NPs prime macrophages into a specific activation state characterized by excessive inflammation and suppressed innate immune function. After a month of dietary exposure in mice or exposure in vitro to TiO2 NPs (10 and 50 nm), the expressions of pro-inflammatory genes in macrophages were increased, and the expressions of anti-inflammatory genes were decreased. In addition, for macrophages exposed to TiO2 NPs in vitro and in vivo, their chemotactic, phagocytic, and bactericidal activities were lower. This imbalance in the immune system could enhance the susceptibility to infections. In mice, after a month of dietary exposure to low doses of TiO2 NPs, an aggravated septic shock occurred in response to lipopolysaccharide challenge, leading to elevated levels of inflammatory cytokines in serum and reduced overall survival. Moreover, TLR4-deficient mice and primary macrophages, or TLR4-independent stimuli, showed less response to TiO2 NPs. These results demonstrate that TiO2 NPs induce an abnormal state of macrophages characterized by excessive inflammation and suppressed innate immune function in a TLR4-dependent manner, which may suggest a potential health risk, particularly for those with additional complications, such as bacterial infections.
Collapse
Affiliation(s)
- Chao Huang
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Mayu Sun
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Yang Yang
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Feng Wang
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Xueqi Ma
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Jingquan Li
- b School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Yilong Wang
- c Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , Shanghai , China
| | - Qiurong Ding
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Hao Ying
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Haiyun Song
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Yongning Wu
- d Key Laboratory of Food Safety Risk Assessment , Ministry of Health , Beijing , China
| | - Yiguo Jiang
- e School of Public Health , Guangzhou Medical University , Guangdong , China
| | - Xudong Jia
- d Key Laboratory of Food Safety Risk Assessment , Ministry of Health , Beijing , China
| | - Qian Ba
- b School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Hui Wang
- a Key Laboratory of Food Safety Research , Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China.,b School of Public Health , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,f Shanghai Clinical Center , Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
14
|
Garbovskiy Y. Biological Contamination of Nanoparticles and Its Manifestation in Optical Absorbance Measurements. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuriy Garbovskiy
- UCCS BioFrontiers Center
and Department of Physics, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
15
|
Indirect effects of TiO2 nanoparticle on neuron-glial cell interactions. Chem Biol Interact 2016; 254:34-44. [PMID: 27216632 DOI: 10.1016/j.cbi.2016.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Although, titanium dioxide nanoparticles (TiO2NPs) are nanomaterials commonly used in consumer products, little is known about their hazardous effects, especially on central nervous systems. To examine this issue, ALT astrocyte-like, BV-2 microglia and differentiated N2a neuroblastoma cells were exposed to 6 nm of 100% anatase TiO2NPs. A lipopolysaccharide (LPS) was pre-treated to activate glial cells before NP treatment for mimicking NP exposure under brain injury. We found that ALT and BV-2 cells took up more NPs than N2a cells and caused lower cell viability. TiO2NPs induced IL-1β in the three cell lines and IL-6 in N2a. LPS-activated BV-2 took up more TiO2NPs than normal BV-2 and released more intra/extracellular reactive oxygen species (ROS), IL-1β, IL-6 and MCP-1 than did activated BV-2. Involvement of clathrin- and caveolae-dependent endocytosis in ALT and clathrin-dependent endocytosis and phagocytosis in BV-2 both had a slow NP translocation rate to lysosome, which may cause slow ROS production (after 24 h). Although TiO2NPs did not directly cause N2a viability loss, by indirect NP exposure to the bottom chamber of LPS-activated BV-2 in the Transwell system, they caused late apoptosis and loss of cell viability in the upper N2a chamber due to H2O2 and/or TNF-α release from BV-2. However, none of the adverse effects in N2a or BV-2 cells was observed when TiO2NPs were exposed to ALT-N2a or ALT-BV-2 co-culture. These results demonstrate that neuron damage can result from TiO2NP-mediated ROS and/or cytokines release from microglia, but not from astrocytes.
Collapse
|
16
|
David CA, Owen A, Liptrott NJ. Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches. Nanomedicine (Lond) 2016; 11:1447-64. [PMID: 27171671 DOI: 10.2217/nnm-2016-0017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user.
Collapse
Affiliation(s)
- Christopher Aw David
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Andrew Owen
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Neill J Liptrott
- European Nanotechnology Characterization Lab, University of Liverpool, Molecular & Clinical Pharmacology, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
17
|
Abstract
Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials. Given that several toxic effects of TiO2 nanofibres appear comparable to those observed with crocidolite, the possibility that they exert length dependent toxicity in vivo seems worthy of further investigation.
Collapse
|
18
|
Di Cristo L, Movia D, Bianchi MG, Allegri M, Mohamed BM, Bell AP, Moore C, Pinelli S, Rasmussen K, Riego-Sintes J, Prina-Mello A, Bussolati O, Bergamaschi E. Proinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells. Toxicol Sci 2015; 150:40-53. [PMID: 26612840 DOI: 10.1093/toxsci/kfv258] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amorphous silica nanoparticles (ASNP) can be synthetized via several processes, 2 of which are the thermal route (to yield pyrogenic silica) and the wet route from a solution containing silicate salts (to obtain precipitated, colloidal, mesoporous silica, or silica gel). Both methods of synthesis lead to ASNP that are applied as food additive (E551). Current food regulation does not require that production methods of additives are indicated on the product label, and, thus, the ASNP are listed without mentioning the production method. Recent results indicate, however, that pyrogenic ASNP are more cytotoxic than ASNP synthesized through the wet route. The present study was aimed at clarifying if 2 representative preparations of ASNP, NM-203 (pyrogenic) and NM-200 (precipitated), of comparable size, specific surface area, surface charge, and hydrodynamic radius in complete growth medium, had different effects on 2 murine macrophage cell lines (MH-S and RAW264.7 cells). Our results show that, when incubated in protein-rich fluids, NM-203 adsorbed on their surface more proteins than NM-200 and, once incubated with macrophages, elicited a greater oxidative stress, assessed from Hmox1 induction and ROS production. Flow cytometry and helium ion microscopy indicated that pyrogenic NM-203 interacted with macrophages more strongly than the precipitated NM-200 and triggered a more evident inflammatory response, evaluated with Nos2 induction, NO production and the secretion of TNF-α, IL-6 and IL-1β. Moreover, both ASNP synergized macrophage activation by bacterial lipopolysaccharide (LPS), with a higher effect observed for NM-203. In conclusion, the results presented here demonstrate that, compared to precipitated, pyrogenic ASNP exhibit enhanced interaction with serum proteins and cell membrane, and cause a larger oxidative stress and stronger proinflammatory effects in macrophages. Therefore, these 2 nanomaterials should not be considered biologically equivalent.
Collapse
Affiliation(s)
- Luisana Di Cristo
- *Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy; School of Medicine and
| | - Dania Movia
- School of Medicine and AMBER centre (CRANN Institute), Trinity College Dublin, Dublin, Ireland
| | | | - Manfredi Allegri
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | | | - Alan P Bell
- Advanced Microscopy Laboratory, Trinity College Dublin, Dublin, Ireland
| | | | - Silvana Pinelli
- *Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Kirsten Rasmussen
- Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Juan Riego-Sintes
- Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Adriele Prina-Mello
- School of Medicine and AMBER centre (CRANN Institute), Trinity College Dublin, Dublin, Ireland
| | - Ovidio Bussolati
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, Italy;
| | - Enrico Bergamaschi
- *Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
19
|
Bergamaschi E, Murphy F, Poland CA, Mullins M, Costa AL, McAlea E, Tran L, Tofail SAM. Impact and effectiveness of risk mitigation strategies on the insurability of nanomaterial production: evidences from industrial case studies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:839-55. [PMID: 25808636 PMCID: PMC6680359 DOI: 10.1002/wnan.1340] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Workers involved in producing nanomaterials or using nanomaterials in manufacturing plants are likely to have earlier and higher exposure to manufactured/engineered nanomaterials (ENM) than the general population. This is because both the volume handled and the probability of the effluence of 'free' nanoparticles from the handled volume are much higher during a production process than at any other stage in the lifecycle of nanomaterials and nanotechnology-enabled products. Risk assessment (RA) techniques using control banding (CB) as a framework for risk transfer represents a robust theory but further progress on implementing the model is required so that risk can be transferred to insurance companies. Following a review of RA in general and hazard measurement in particular, we subject a Structural Alert Scheme methodology to three industrial case studies using ZrO2 , TiO2 , and multi-walled carbon nanotubes (MWCNT). The materials are tested in a pristine state and in a remediated (coated) state, and the respective emission and hazard rates are tested alongside the material performance as originally designed. To our knowledge, this is the first such implementation of a CB RA in conjunction with an ENM performance test and offers both manufacturers and underwriters an insight into future applications.
Collapse
Affiliation(s)
- Enrico Bergamaschi
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Parma, Parma, Italy
| | - Finbarr Murphy
- Kemmy Business School, University of Limerick, Limerick, Ireland
| | | | - Martin Mullins
- Kemmy Business School, University of Limerick, Limerick, Ireland
| | | | - Eamonn McAlea
- Kemmy Business School, University of Limerick, Limerick, Ireland
| | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Syed A M Tofail
- Materials and Surface Science Institute (MSSI), University of Limerick, Limerick, Ireland
| |
Collapse
|