1
|
Pandit NT, Kamble SB. The Petasis Reaction: Applications and Organic Synthesis-A Comprehensive Review. Top Curr Chem (Cham) 2025; 383:7. [PMID: 39856385 DOI: 10.1007/s41061-025-00491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
The Petasis reaction has introduced significant advancements through the use of various catalysts, solvents, methodologies, and substrates in diverse areas of chemistry, including medicinal, organic, combinatorial, biochemical, and heterocyclic chemistry. It is a prominent method for synthesizing compounds such as α-amino acids, β-amino alcohols, Aza-beta-lactams, alkylaminophenols, α-arylglycines, 2H-chromenes, aminophenols, and hydrazide alcohols. With the increasing demand for medicines, drugs, industrial products, insecticides, and pesticides, the Petasis reaction has become an indispensable and versatile tool. This review explores the range of reaction components, key mechanisms, and reaction conditions associated with the Petasis reaction. Additionally, the paper delves into the potential future directions of this reaction and highlights its various applications.
Collapse
Affiliation(s)
- Nilesh T Pandit
- Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India
| | - Santosh B Kamble
- Department of Chemistry, Yashavantrao Chavan Institute of Science, Lead College, Karmaveer Bhaurao Patil University, Satara, Maharashtra, 415001, India.
| |
Collapse
|
2
|
Gonzalez KJ, Cerione C, Stoltz BM. Strategies for the Development of Asymmetric and Non-Directed Petasis Reactions. Chemistry 2024; 30:e202401936. [PMID: 38922740 PMCID: PMC11776500 DOI: 10.1002/chem.202401936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The Petasis reaction is a multicomponent reaction of aldehydes, amines and organoboron reagents and is a useful method for the construction of substituted amines. Despite the significant advancement of the Petasis reaction since its invention in 1993, strategies for asymmetric and non-directed Petasis reactions remain limited. To date, there are very few catalytic asymmetric Petasis reactions and almost all asymmetric reports employ a chiral auxiliary. Likewise, the aldehyde component often requires a directing group, ultimately limiting the reaction's scope. In this Concept, key methods for asymmetric and non-directed Petasis reactions are discussed, focusing on how these conceptual advances can be applied to solve long-standing gaps in the Petasis literature.
Collapse
Affiliation(s)
| | | | - Brian M. Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., MC 101-20, Pasadena, CA 91125 (USA)
| |
Collapse
|
3
|
Song X, Bai S, Li Y, Yi T, Long X, Pu Q, Dang T, Ma M, Ren Q, Qin X. Expedient and divergent synthesis of unnatural peptides through cobalt-catalyzed diastereoselective umpolung hydrogenation. SCIENCE ADVANCES 2023; 9:eadk4950. [PMID: 38117889 PMCID: PMC10732522 DOI: 10.1126/sciadv.adk4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
The development of a reliable method for asymmetric synthesis of unnatural peptides is highly desirable and particularly challenging. In this study, we present a versatile and efficient approach that uses cobalt-catalyzed diastereoselective umpolung hydrogenation to access noncanonical aryl alanine peptides. This protocol demonstrates good tolerance toward various functional groups, amino acid sequences, and peptide lengths. Moreover, the versatility of this reaction is illustrated by its successful application in the late-stage functionalization and formal synthesis of various representative chiral natural products and pharmaceutical scaffolds. This strategy eliminates the need for synthesizing chiral noncanonical aryl alanines before peptide formation, and the hydrogenation reaction does not result in racemization or epimerization. The underlying mechanism was extensively explored through deuterium labeling, control experiments, HRMS identification, and UV-Vis spectroscopy, which supported a reasonable CoI/CoIII catalytic cycle. Notably, acetic acid and methanol serve as safe and cost-effective hydrogen sources, while indium powder acts as the terminal electron source.
Collapse
Affiliation(s)
- Xinjian Song
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Shuangyi Bai
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Yuan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Tong Yi
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xinyu Long
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qinghua Pu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Ting Dang
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Mengjie Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qiao Ren
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xurong Qin
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, No. 94 Wei Jin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
4
|
Gukathasan S, Obisesan OA, Saryazdi S, Ratliff L, Parkin S, Grossman RB, Awuah SG. A Conformationally Restricted Gold(III) Complex Elicits Antiproliferative Activity in Cancer Cells. Inorg Chem 2023; 62:13118-13129. [PMID: 37530672 PMCID: PMC11268950 DOI: 10.1021/acs.inorgchem.3c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Diamine ligands are effective structural scaffolds for tuning the reactivity of transition-metal complexes for catalytic, materials, and phosphorescent applications and have been leveraged for biological use. In this work, we report the synthesis and characterization of a novel class of cyclometalated [C^N] Au(III) complexes bearing secondary diamines including a norbornane backbone, (2R,3S)-N2,N3-dibenzylbicyclo[2.2.1]heptane-2,3-diamine, or a cyclohexane backbone, (1R,2R)-N1,N2-dibenzylcyclohexane-1,2-diamine. X-ray crystallography confirms the square-planar geometry and chirality at nitrogen. The electronic character of the conformationally restricted norbornane backbone influences the electrochemical behavior with redox potentials of -0.8 to -1.1 V, atypical for Au(III) complexes. These compounds demonstrate promising anticancer activity, particularly, complex 1, which bears a benzylpyridine organogold framework, and supported by the bicyclic conformationally restricted diaminonorbornane, shows good potency in A2780 cells. We further show that a cellular response to 1 evokes reactive oxygen species (ROS) production and does not induce mitochondrial dysfunction. This class of complexes provides significant stability and reactivity for different applications in protein modification, catalysis, and therapeutics.
Collapse
Affiliation(s)
| | | | - Setareh Saryazdi
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Libby Ratliff
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Robert B. Grossman
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
5
|
Evans C, Berkey WJ, Jones CW, France S. Zr-Catalyzed Synthesis of Tetrasubstituted 1,3-Diacylpyrroles from N-Acyl α-Aminoaldehydes and 1,3-Dicarbonyls. J Org Chem 2023. [PMID: 37294689 DOI: 10.1021/acs.joc.3c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A Zr-catalyzed synthesis of tetrasubstituted 1,3-diacylpyrroles is reported that employs the direct use of N-acyl α-aminoaldehydes with 1,3-dicarbonyl compounds. The products were formed in up to 88% yield and shown to be hydrolytically and configurationally stable under the reaction conditions (THF/1,4-dioxane and H2O). The N-acyl α-aminoaldehydes were readily prepared from the corresponding α-amino acids. The reaction tolerates a wide array of substrate types including alkyl-, aryl-, heteroaryl-, and heteroatom-containing groups on the aminoaldehyde side chain. A variety of 1,3-dicarbonyls proved amenable to the reaction along with an aldehyde derived from a l,l-dipeptide, an aldehyde generated in situ, and an N-acylated glucosamine.
Collapse
Affiliation(s)
- Caria Evans
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William J Berkey
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable Bioproducts Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Beretta M, Rouchaud E, Nicolas L, Vors JP, Dröge T, Es-Sayed M, Beau JM, Norsikian S. N-Glycosylation with sulfoxide donors for the synthesis of peptidonucleosides. Org Biomol Chem 2021; 19:4285-4291. [PMID: 33885694 DOI: 10.1039/d1ob00493j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of glycopyranosyl nucleosides modified in the sugar moiety has been less frequently explored, notably because of the lack of a reliable method to glycosylate pyrimidine bases. Herein we report a solution in the context of the synthesis of peptidonucleosides. They were obtained after glycosylation of different pyrimidine nucleobases with glucopyranosyl donors carrying an azide group at the C4 position. A methodological study involving different anomeric leaving groups (acetate, phenylsulfoxide and ortho-hexynylbenzoate) showed that a sulfoxide donor in combination with trimethylsilyl triflate as the promoter led to the best yields.
Collapse
Affiliation(s)
- Margaux Beretta
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li Y, Xu MH. Applications of Asymmetric Petasis Reaction in the Synthesis of Chiral Amines. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21080391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Hwang J, Borgelt L, Wu P. Multicomponent Petasis Reaction for the Synthesis of Functionalized 2-Aminothiophenes and Thienodiazepines. ACS COMBINATORIAL SCIENCE 2020; 22:495-499. [PMID: 32985878 PMCID: PMC7584359 DOI: 10.1021/acscombsci.0c00173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Multicomponent
Petasis reaction has been widely applied for the synthesis of functionalized
amine building blocks and biologically active compounds. Employing
primary aromatic amines that are not typical reactive substrates contributes
to expand the application scope of the Petasis reaction. In this study,
we demonstrated the synthesis of functionalized 2-aminothiophenes
using Gewald-reaction-derived 2-aminothiophenes as the amine substrates,
whose low reactivity in the Petasis reaction was overcome using hexafluoro-2-propanol
as the solvent in a mild condition. The obtained Petasis products
are amenable for further transformations owing to the presence of
multiple functional handles. A following intramolecular cyclization
of selected Petasis products afforded substituted tricyclic heterocycles
that incorporate a pharmaceutically interesting thienodiazepine moiety.
Collapse
Affiliation(s)
- Jimin Hwang
- Chemical Genomics Centre and Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Lydia Borgelt
- Chemical Genomics Centre and Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre and Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| |
Collapse
|
9
|
Simonetti SO, Pellegrinet SC. Theoretical Study of the Borono-Mannich Reaction with Pinacol Allenylboronate. J Org Chem 2020; 85:7494-7500. [PMID: 32364384 DOI: 10.1021/acs.joc.0c01003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A density functional theory study of the mechanism of the Borono-Mannich reaction using benzylamine and piperidine as representative examples of primary and secondary amines with pinacol allenylboronate is presented. The study shows that both reactions progress through coordination between the boron and the phenolic oxygen. Ring size strain and hydrogen bond activation appear to determine the observed divergent regioselectivity. In the case of benzylamine, the eight-membered ring transition structure that leads to the propargylamine exhibits a hydrogen bond between the hydrogen attached to the nitrogen and the phenolic oxygen (γ-attack), whereas for piperidine a hydrogen bond between the hydrogen on the imine carbon and one of the oxygens of the pinacol group was observed in the six-membered ring transition structure toward the allenylamine (α-attack).
Collapse
Affiliation(s)
- Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Silvina C Pellegrinet
- Instituto de Química Rosario (IQUIR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
10
|
Wu P, Givskov M, Nielsen TE. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem Rev 2019; 119:11245-11290. [PMID: 31454230 PMCID: PMC6813545 DOI: 10.1021/acs.chemrev.9b00214] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The Petasis boron-Mannich reaction, simply referred to as the Petasis reaction, is a powerful multicomponent coupling reaction of a boronic acid, an amine, and a carbonyl derivative. Highly functionalized amines with multiple stereogenic centers can be efficiently accessed via the Petasis reaction with high levels of both diastereoselectivity and enantioselectivity. By drawing attention to examples reported in the past 8 years, this Review demonstrates the breadth of the reactivity and synthetic applications of Petasis reactions in several frontiers: the expansion of the substrate scope in the classic three-component process; nonclassic Petasis reactions with additional components; Petasis-type reactions with noncanonical substrates, mechanism, and products; new asymmetric versions assisted by chiral catalysts; combinations with a secondary or tertiary transformation in a cascade- or sequence-specific manner to access structurally complex, natural-product-like heterocycles; and the synthesis of polyhydroxy alkaloids and biologically interesting molecules.
Collapse
Affiliation(s)
- Peng Wu
- Chemical
Genomics Center of the Max Planck Society, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine and Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Michael Givskov
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Thomas E. Nielsen
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
11
|
Jain P, Raji IO, Chamakuri S, MacKenzie KR, Ebright BT, Santini C, Young DW. Synthesis of Enantiomerically Pure 5-Substituted Piperazine-2-Acetic Acid Esters as Intermediates for Library Production. J Org Chem 2019; 84:6040-6064. [DOI: 10.1021/acs.joc.9b00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Prashi Jain
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Idris O. Raji
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Srinivas Chamakuri
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kevin R. MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Brandon T. Ebright
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Conrad Santini
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W. Young
- Center for Drug Discovery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Kondo M, Omori M, Hatanaka T, Funahashi Y, Nakamura S. Catalytic Enantioselective Reaction of Allenylnitriles with Imines Using Chiral Bis(imidazoline)s Palladium(II) Pincer Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Masaru Kondo
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Masashi Omori
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Tsubasa Hatanaka
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yasuhiro Funahashi
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
13
|
Kondo M, Omori M, Hatanaka T, Funahashi Y, Nakamura S. Catalytic Enantioselective Reaction of Allenylnitriles with Imines Using Chiral Bis(imidazoline)s Palladium(II) Pincer Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201702429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Masaru Kondo
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Masashi Omori
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Tsubasa Hatanaka
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yasuhiro Funahashi
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
- Frontier Research Institute for Material Science; Nagoya Institute of Technology; Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
14
|
Norsikian S, Beretta M, Cannillo A, Auvray M, Martin A, Retailleau P, Iorga BI, Beau JM. Stereoselective Synthesis of 1,2-trans
-Diamines Using the Three-Component Borono-Mannich Condensation - Reaction Scope and Mechanistic Insights. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stéphanie Norsikian
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
| | - Margaux Beretta
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
| | - Alexandre Cannillo
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
| | - Marie Auvray
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
| | - Amélie Martin
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
| | - Jean-Marie Beau
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud; Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif sur Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud and CNRS; Université Paris-Saclay; 91405 Orsay France
| |
Collapse
|
15
|
Paul J, Presset M, Le Gall E. Multicomponent Mannich-Like Reactions of Organometallic Species. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jérôme Paul
- Electrochimie et Synthèse Organique; Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC; 2-8 rue Henri Dunant 94320 Thiais France
| | - Marc Presset
- Electrochimie et Synthèse Organique; Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC; 2-8 rue Henri Dunant 94320 Thiais France
| | - Erwan Le Gall
- Electrochimie et Synthèse Organique; Université Paris Est, ICMPE (UMR 7182), CNRS, UPEC; 2-8 rue Henri Dunant 94320 Thiais France
| |
Collapse
|
16
|
Guerrera CA, Ryder TR. The Petasis Borono-Mannich Multicomponent Reaction. BORON REAGENTS IN SYNTHESIS 2016. [DOI: 10.1021/bk-2016-1236.ch009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cessandra A. Guerrera
- Department of Chemistry, Southern Connecticut State University, New Haven, Connecticut 06515, United States
| | - Todd R. Ryder
- Department of Chemistry, Southern Connecticut State University, New Haven, Connecticut 06515, United States
| |
Collapse
|