1
|
Dillemuth P, Karskela T, Ayo A, Ponkamo J, Kunnas J, Rajander J, Tynninen O, Roivainen A, Laakkonen P, Airaksinen AJ, Li XG. Radiosynthesis, structural identification and in vitro tissue binding study of [ 18F]FNA-S-ACooP, a novel radiopeptide for targeted PET imaging of fatty acid binding protein 3. EJNMMI Radiopharm Chem 2024; 9:16. [PMID: 38393497 PMCID: PMC10891031 DOI: 10.1186/s41181-024-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Fatty acid binding protein 3 (FABP3) is a target with clinical relevance and the peptide ligand ACooP has been identified for FABP3 targeting. ACooP is a linear decapeptide containing a free amino and thiol group, which provides opportunities for conjugation. This work is to develop methods for radiolabeling of ACooP with fluorine-18 (18F) for positron emission tomography (PET) applications, and evaluate the binding of the radiolabeled ACooP in human tumor tissue sections with high FABP3 expression. RESULTS The prosthetic compound 6-[18F]fluoronicotinic acid 4-nitrophenyl ester was conveniently prepared with an on-resin 18F-fluorination in 29.9% radiochemical yield and 96.6% radiochemical purity. Interestingly, 6-[18F]fluoronicotinic acid 4-nitrophenyl ester conjugated to ACooP exclusively by S-acylation instead of the expected N-acylation, and the chemical identity of the product [18F]FNA-S-ACooP was confirmed. In the in vitro binding experiments, [18F]FNA-S-ACooP exhibited heterogeneous and high focal binding in malignant tissue sections, where we also observed abundant FABP3 positivity by immunofluorescence staining. Blocking study further confirmed the [18F]FNA-S-ACooP binding specificity. CONCLUSIONS FABP3 targeted ACooP peptide was successfully radiolabeled by S-acylation using 6-[18F]fluoronicotinic acid 4-nitrophenyl ester as the prosthetic compound. The tissue binding and blocking studies together with anti-FABP3 immunostaining confirmed [18F]FNA-S-ACooP binding specificity. Further preclinical studies of [18F]FNA-S-ACooP are warranted.
Collapse
Affiliation(s)
- Pyry Dillemuth
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Tuomas Karskela
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jesse Ponkamo
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Jonne Kunnas
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Sciences and Engineering, Åbo Akademi University, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Åbo Akademi University, Turku, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, HiLIFE University of Helsinki, Helsinki, Finland
- iCAN Flagship Program, University of Helsinki, Helsinki, Finland
| | - Anu J Airaksinen
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland.
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- InFLAMES Research Flagship, University of Turku, Turku, Finland.
| |
Collapse
|
2
|
Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021; 26:5925. [PMID: 34641475 PMCID: PMC8512084 DOI: 10.3390/molecules26195925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.
Collapse
Affiliation(s)
| | | | - Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| |
Collapse
|
3
|
Fibrosis in hypertrophic cardiomyopathy: role of novel echo techniques and multi-modality imaging assessment. Heart Fail Rev 2021; 26:1297-1310. [PMID: 33990907 DOI: 10.1007/s10741-020-10058-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) represents one of the primary cardiomyopathies and may lead to heart failure and sudden cardiac death. Among various histologic features of the disease examined, assessment of myocardial fibrosis may offer valuable information, since it may be considered the common nominator for all HCM connected complications. Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) has emerged as the reference noninvasive method for visualizing and quantifying myocardial fibrosis in patients with HCM. T1 mapping, a promising new CMR technique, may provide an advantage over conventional LGE-CMR, by permitting a more valid quantification of diffuse fibrosis. On the other hand, echocardiography offers a significantly more portable, affordable, and easily accessible solution for the study of fibrosis. Various echocardiographic techniques ranging from integrated backscatter and contrast-enhanced ultrasound to two- (2D) or three-dimensional (3D) deformation and shear wave imaging may offer new insights into substrate characterization in HCM. The aim of this review is to describe thoroughly all different modalities that may be used in everyday clinical practice for HCM fibrosis evaluation (with special focus on echocardiographic techniques), to concisely present available evidence and to argue in favor of multi-modality imaging application. It is essential to understand that the role of various imaging modalities is not competitive but complementary, since the information provided by each one is necessary to illuminate the complex pathophysiologic pathways of HCM, offering a personalized approach and treatment in every patient.
Collapse
|
4
|
Sirén S, Dahlström KM, Puttreddy R, Rissanen K, Salminen TA, Scheinin M, Li XG, Liljeblad A. Candida antarctica Lipase A-Based Enantiorecognition of a Highly Strained 4-Dibenzocyclooctynol (DIBO) Used for PET Imaging. Molecules 2020; 25:molecules25040879. [PMID: 32079253 PMCID: PMC7070869 DOI: 10.3390/molecules25040879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 11/24/2022] Open
Abstract
The enantiomers of aromatic 4-dibenzocyclooctynol (DIBO), used for radiolabeling and subsequent conjugation of biomolecules to form radioligands for positron emission tomography (PET), were separated by kinetic resolution using lipase A from Candida antarctica (CAL-A). In optimized conditions, (R)-DIBO [(R)-1, ee 95%] and its acetylated (S)-ester [(S)-2, ee 96%] were isolated. In silico docking results explained the ability of CAL-A to differentiate the enantiomers of DIBO and to accommodate various acyl donors. Anhydrous MgCl2 was used for binding water from the reaction medium and, thus, for obtaining higher conversion by preventing hydrolysis of the product (S)-2 into the starting material. Since the presence of hydrated MgCl2·6H2O also allowed high conversion or effect on enantioselectivity, Mg2+ ion was suspected to interact with the enzyme. Binding site predictions indicated at least two sites of interest; one in the lid domain at the bottom of the acyl binding pocket and another at the interface of the hydrolase and flap domains, just above the active site.
Collapse
Affiliation(s)
- Saija Sirén
- Laboratory of Synthetic Drug Chemistry, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, FI-20520 Turku, Finland
| | - Käthe M. Dahlström
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, FI-20520 Turku, Finland; (K.M.D.); (T.A.S.)
| | - Rakesh Puttreddy
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland (K.R.)
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland (K.R.)
| | - Tiina A. Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6 A, FI-20520 Turku, Finland; (K.M.D.); (T.A.S.)
| | - Mika Scheinin
- Institute of Biomedicine, University of Turku, and Unit of Clinical Pharmacology, Turku University Hospital, FI-20521 Turku, Finland;
| | - Xiang-Guo Li
- Turku PET Centre, Åbo Akademi University and University of Turku, Kiinamyllynkatu 4-8, FI-20521 Turku, Finland
- Turku PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20521 Turku, Finland
- Correspondence: (X.-G.L.); (A.L.)
| | - Arto Liljeblad
- Laboratory of Synthetic Drug Chemistry, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland;
- Correspondence: (X.-G.L.); (A.L.)
| |
Collapse
|
5
|
Wang M, McNitt CD, Wang H, Ma X, Scarry SM, Wu Z, Popik VV, Li Z. The efficiency of 18F labelling of a prostate specific membrane antigen ligand via strain-promoted azide-alkyne reaction: reaction speed versus hydrophilicity. Chem Commun (Camb) 2018; 54:7810-7813. [PMID: 29946609 DOI: 10.1039/c8cc03999b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here we report the 18F labeling of a prostate specific membrane antigen (PSMA) ligand via a strain promoted oxa-dibenzocyclooctyne (ODIBO)- or bicyclo[6.1.0]nonyne (BCN)-azide reaction. Although ODIBO reacts with azide 20 fold faster than BCN, in vivo PET imaging suggests that 18F-BCN-azide-PSMA demonstrated much higher tumor uptake and a much higher tumor to background contrast.
Collapse
Affiliation(s)
- Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Silvola JMU, Li XG, Virta J, Marjamäki P, Liljenbäck H, Hytönen JP, Tarkia M, Saunavaara V, Hurme S, Palani S, Hakovirta H, Ylä-Herttuala S, Saukko P, Chen Q, Low PS, Knuuti J, Saraste A, Roivainen A. Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography. Sci Rep 2018; 8:9720. [PMID: 29946129 PMCID: PMC6018703 DOI: 10.1038/s41598-018-27618-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/07/2018] [Indexed: 11/09/2022] Open
Abstract
Inflammation plays an important role in the development of atherosclerosis and its complications. Because the folate receptor β (FR-β) is selectively expressed on macrophages, an FR targeted imaging agent could be useful for assessment of atherosclerotic inflammation. We investigated aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid conjugated folate (18F-FOL) for the detection of atherosclerotic plaque inflammation. We studied atherosclerotic plaques in mice, rabbits, and human tissue samples using 18F-FOL positron emission tomography/computed tomography (PET/CT). Compound 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) was used as a comparison. Firstly, we found that the in vitro binding of 18F-FOL co-localized with FR-β-positive macrophages in carotid endarterectomy samples from patients with recent ischemic symptoms. We then demonstrated specific accumulation of intravenously administered 18F-FOL in atherosclerotic plaques in mice and rabbits using PET/CT. We noticed that the 18F-FOL uptake correlated with the density of macrophages in plaques and provided a target-to-background ratio as high as 18F-FDG, but with considerably lower myocardial uptake. Thus, 18F-FOL PET/CT targeting of FR-β-positive macrophages presents a promising new tool for the in vivo imaging of atherosclerotic inflammation.
Collapse
Affiliation(s)
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Jenni Virta
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jarkko P Hytönen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Miikka Tarkia
- Turku PET Centre, University of Turku, Turku, Finland
| | - Virva Saunavaara
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Saija Hurme
- Department of Biostatistics, University of Turku, Turku, Finland
| | | | - Harri Hakovirta
- Department of Vascular Surgery, Turku University Hospital, Turku, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Pekka Saukko
- Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland
| | - Qingshou Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Åbo Akademi University, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Heart Center, Turku University Hospital, Turku, Finland.,Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland. .,Turku Center for Disease Modeling, University of Turku, Turku, Finland. .,Turku PET Centre, Turku University Hospital, Turku, Finland.
| |
Collapse
|
7
|
Riomet M, Decuypere E, Porte K, Bernard S, Plougastel L, Kolodych S, Audisio D, Taran F. Design and Synthesis of Iminosydnones for Fast Click and Release Reactions with Cycloalkynes. Chemistry 2018; 24:8535-8541. [DOI: 10.1002/chem.201801163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/04/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Margaux Riomet
- Service de Chimie Bio-organique et de Marquage; CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Elodie Decuypere
- Service de Chimie Bio-organique et de Marquage; CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Karine Porte
- Service de Chimie Bio-organique et de Marquage; CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Sabrina Bernard
- Service de Chimie Bio-organique et de Marquage; CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Lucie Plougastel
- Service de Chimie Bio-organique et de Marquage; CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Sergii Kolodych
- Syndivia SAS; 650 Boulevard Gonthier d'Andernach 67400 Illkirch France
| | - Davide Audisio
- Service de Chimie Bio-organique et de Marquage; CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Frédéric Taran
- Service de Chimie Bio-organique et de Marquage; CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| |
Collapse
|
8
|
Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 2018; 68-69:490-506. [PMID: 29371055 DOI: 10.1016/j.matbio.2018.01.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
Cardiac fibrosis, characterized by excessive deposition of extracellular matrix (ECM) proteins in the myocardium, distorts the architecture of the myocardium, facilitates the progression of arrhythmia and cardiac dysfunction, and influences the clinical course and outcome in patients with heart failure. This review describes the composition and homeostasis in normal cardiac interstitial matrix and introduces cellular and molecular mechanisms involved in cardiac fibrosis. We also characterize the ECM alteration in the fibrotic response under diverse cardiac pathological conditions and depict the role of matricellular proteins in the pathogenesis of cardiac fibrosis. Moreover, the diagnosis of cardiac fibrosis based on imaging and biomarker detection and the therapeutic strategies are addressed. Understanding the comprehensive molecules and pathways involved in ECM homeostasis and remodeling may provide important novel potential targets for preventing and treating cardiac fibrosis.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
9
|
Gyöngyösi M, Winkler J, Ramos I, Do QT, Firat H, McDonald K, González A, Thum T, Díez J, Jaisser F, Pizard A, Zannad F. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail 2017; 19:177-191. [PMID: 28157267 PMCID: PMC5299507 DOI: 10.1002/ejhf.696] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/07/2016] [Accepted: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Myocardial fibrosis refers to a variety of quantitative and qualitative changes in the interstitial myocardial collagen network that occur in response to cardiac ischaemic insults, systemic diseases, drugs, or any other harmful stimulus affecting the circulatory system or the heart itself. Myocardial fibrosis alters the architecture of the myocardium, facilitating the development of cardiac dysfunction, also inducing arrhythmias, influencing the clinical course and outcome of heart failure patients. Focusing on myocardial fibrosis may potentially improve patient care through the targeted diagnosis and treatment of emerging fibrotic pathways. The European Commission funded the FIBROTARGETS consortium as a multinational academic and industrial consortium with the primary aim of performing a systematic and collaborative search of targets of myocardial fibrosis, and then translating these mechanisms into individualized diagnostic tools and specific therapeutic pharmacological options for heart failure. This review focuses on those methodological and technological aspects considered and developed by the consortium to facilitate the transfer of the new mechanistic knowledge on myocardial fibrosis into potential biomedical applications.
Collapse
Affiliation(s)
| | | | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), Bizkaia, Spain
| | | | | | | | - Arantxa González
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Germany.,National Heart and Lung Institute, Imperial College London, UK
| | - Javier Díez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, University of Navarra, Pamplona, Spain
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France
| | - Anne Pizard
- UMRS U1116 Inserm, CIC 1433, Pierre Drouin, CHU, Université de Lorraine, Nancy, France
| | - Faiez Zannad
- UMRS U1116 Inserm, CIC 1433, Pierre Drouin, CHU, Université de Lorraine, Nancy, France
| |
Collapse
|
10
|
Krishnan HS, Ma L, Vasdev N, Liang SH. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography. Chemistry 2017; 23:15553-15577. [PMID: 28704575 PMCID: PMC5675832 DOI: 10.1002/chem.201701581] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted.
Collapse
Affiliation(s)
- Hema S. Krishnan
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Longle Ma
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
11
|
Schirrmacher R, Wängler B, Bailey J, Bernard-Gauthier V, Schirrmacher E, Wängler C. Small Prosthetic Groups in 18F-Radiochemistry: Useful Auxiliaries for the Design of 18F-PET Tracers. Semin Nucl Med 2017; 47:474-492. [PMID: 28826522 DOI: 10.1053/j.semnuclmed.2017.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prosthetic group (PG) applications in 18F-radiochemistry play a pivotal role among current 18F-labeling techniques for the development and availability of 18F-labeled imaging probes for PET (Wahl, 2002) (1). The introduction and popularization of PGs in the mid-80s by pioneers in 18F-radiochemistry has profoundly changed the landscape of available tracers for PET and has led to a multitude of new imaging agents based on simple and efficiently synthesized PGs. Because of the chemical nature of anionic 18F- (apart from electrophilic low specific activity 18F-fluorine), radiochemistry before the introduction of PGs was limited to simple nucleophilic substitutions of leaving group containing precursor molecules. These precursors were not always available, and some target compounds were either hard to synthesize or not obtainable at all. Even with the advent of recently introduced "late-stage fluorination" techniques for the 18F-fluorination of deactivated aromatic systems, PGs will continue to play a central role in 18F-radiochemistry because of their robust and almost universal usability. The importance of PGs in radiochemistry is shown by its current significance in tracer development and exemplified by an overview of selected methodologies for PG attachment to PET tracer molecules. Especially, click-chemistry approaches to PG conjugation, while furthering the historical evolution of PGs in PET tracer design, play a most influential role in modern PG utilization. All earlier and recent multifaceted approaches in PG development have significantly enriched the contingent of modern 18F-radiochemistry procedures and will continue to do so.
Collapse
Affiliation(s)
- Ralf Schirrmacher
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada.
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Germany
| | - Justin Bailey
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada
| | - Vadim Bernard-Gauthier
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada
| | - Esther Schirrmacher
- Medical Isotope and Cyclotron Facility, Cross Cancer Institute, University of Alberta, Alberta, Canada
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Germany
| |
Collapse
|
12
|
Li XG, Hagert C, Siitonen R, Virtanen H, Sareila O, Liljenbäck H, Tuisku J, Knuuti J, Bergman J, Holmdahl R, Roivainen A. (18)F-Labeling of Mannan for Inflammation Research with Positron Emission Tomography. ACS Med Chem Lett 2016; 7:826-30. [PMID: 27660685 DOI: 10.1021/acsmedchemlett.6b00160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Recently mannan from Saccharomyces cerevisiae has been shown to be able to induce psoriasis and psoriatic arthritis in mice, and the phenotypes resemble the corresponding human diseases. To investigate the pathological processes, we set out to label mannan with fluorine-18 ((18)F) and study the (18)F-labeled mannan in vitro and in vivo with positron emission tomography (PET). Accordingly, mannan has been transformed into (18)F-fluoromannan with (18)F-bicyclo[6.1.0]nonyne. In mouse aorta, the binding of [(18)F]fluoromannan to the atherosclerotic lesions was clearly visualized and was significantly higher compared to blocking assays (P < 0.001) or healthy mouse aorta (P < 0.001). In healthy rats the [(18)F]fluoromannan radioactivity accumulated largely in the macrophage-rich organs such as liver, spleen, and bone marrow and the excess excreted in urine. Furthermore, the corresponding (19)F-labeled mannan has been used to induce psoriasis and psoriatic arthritis in mice, which indicates that the biological function of mannan is preserved after the chemical modifications.
Collapse
Affiliation(s)
- Xiang-Guo Li
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku PET
Centre, Åbo Akademi University, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Cecilia Hagert
- Medical
Inflammation Research, Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland
- The National Doctoral Programme in Informational and Structural Biology, Tykistökatu 6, FI-20520 Turku, Finland
| | - Riikka Siitonen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Helena Virtanen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Outi Sareila
- Medical
Inflammation Research, Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland
| | - Jouni Tuisku
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Juhani Knuuti
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Jörgen Bergman
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku PET
Centre, Åbo Akademi University, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Rikard Holmdahl
- Medical
Inflammation Research, Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland
- Medical
Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Anne Roivainen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|