Wang Q, Long Y, Yao L, Ye M, Xu L. C18-COOH Silica: Preparation, Characterisation and Its Application in Purification of Quaternary Ammonium Alkaloids from Coptis chinensis.
PHYTOCHEMICAL ANALYSIS : PCA 2017;
28:332-343. [PMID:
28198057 DOI:
10.1002/pca.2680]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
INTRODUCTION
Traditional methods for isolating and purifying quaternary ammonium alkaloids from Coptis chinensis do not discriminate the target alkaloids from co-extractives. Mixed-mode analytical chromatography has the potential to improve the separation of analytes in more complex extracts and, when used in a solid-phase extraction mode, improve the purity of isolated compounds.
OBJECTIVE
To examine the high-performance liquid chromatographic separation capabilities of a mixed-mode, silica-based adsorbent and its application to the purification of quaternary ammonium alkaloids from Coptis chinensis based on solid-phase extraction.
METHODOLOGY
The C18-COOH silica was prepared via "thiol-ene" click chemistry. Its chromatographic performance was firstly investigated. It was employed as the solid-phase extraction sorbent to purify quaternary ammonium alkaloids.
RESULTS
Hydrophobic, attractive/repulsive electrostatic and ion-exchange interactions were demonstrated to be the possible retention mechanisms of a C18-COOH silica stationary phase, which could separate analytes of various properties. In addition, to purify quaternary ammonium alkaloids from Coptis chinensis, the solid-phase extraction approach based on the C18-COOH silica provided a slightly higher purification efficiency (6.7%) than an alkaloid-salt precipitation protocol (5.3%). The method had satisfactory reproducibility, re-using the same solid-phase extraction column three times, with relative standard deviations ranging from 1.99% to 8.02% for the six target alkaloids.
CONCLUSION
A multi-functionalised silica was synthesised via "click chemistry". As the high-performance liquid chromatographic stationary phase, the C18-COOH silica could be operated in trimodal reversed-phase/weak cation exchange/hydrophilic interaction mode. The C18-COOH silica also exhibited potential as solid-phase extraction sorbent in the purification of quaternary ammonium alkaloids from complex matrices. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse