1
|
Fallah A, Imani Fooladi AA, Havaei SA, Mahboobi M, Sedighian H. Recent advances in aptamer discovery, modification and improving performance. Biochem Biophys Rep 2024; 40:101852. [PMID: 39525567 PMCID: PMC11546948 DOI: 10.1016/j.bbrep.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aptamers are nucleic acid (Ribonucleic acid (RNA) and single strand deoxyribonucleic acid (ssDNA)) with a length of approximately 25-80 bases that can bind to particular target molecules, similar to monoclonal antibodies. Due to their many benefits, which include a long shelf life, minimal batch-to-batch variations, extremely low immunogenicity, the possibility of chemical modifications for improved stability, an extended serum half-life, and targeted delivery, they are receiving a lot of attention in a variety of clinical applications. The development of high-affinity modification approaches has attracted significant attention in aptamer applications. Stable three-dimensional aptamers that have undergone chemical modification can engage firmly with target proteins through improved non-covalent binding, potentially leading to hundreds of affinity improvements. This review demonstrates how cutting-edge methodologies for aptamer discovery are being developed to consistently and effectively construct high-performing aptamers that need less money and resources yet have a high chance of success. Also, High-affinity aptamer modification techniques were discussed.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Mahboobi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
4
|
Liu D, Tang J, Xu H, Yuan K, Aryee AA, Zhang C, Meng H, Qu L, Li Z. Split-aptamer mediated regenerable temperature-sensitive electrochemical biosensor for the detection of tumour exosomes. Anal Chim Acta 2022; 1219:340027. [DOI: 10.1016/j.aca.2022.340027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
|
5
|
Zhang H, Qiao B, Guo Q, Jiang J, Cai C, Shen J. A facile and label-free electrochemical aptasensor for tumour-derived extracellular vesicle detection based on the target-induced proximity hybridization of split aptamers. Analyst 2021; 145:3557-3563. [PMID: 32309839 DOI: 10.1039/d0an00066c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Facile detection of tumour-derived extracellular vesicles (EVs) is crucial to cancer diagnosis. Herein, a facile and label-free electrochemical aptasensor was fabricated to detect tumour-derived EVs based on the target-induced proximity hybridization of split aptamers. In this assay, two designed oligonucleotide probes containing fragments of a protein tyrosine kinase-7 (PTK7) aptamer were used to recognize and capture EVs containing PTK7. In the presence of target EVs, the aptamer-target ternary complex could induce proximity hybridization and form a DNA duplex on the electrode. The DNA duplex could bind more electroactive Ru(NH3)63+ through electrostatic attraction, resulting in an increased cathodic current signal. By virtue of the excellent electrochemical signal reporter RuHex, the specificity of the aptamer and proximity ligation, a facile EV electrochemical aptasensor with a detection limit of 6.607 × 105 particles per mL was realized. Furthermore, this aptasensor showed good selectivity to distinguish different tumour-derived EVs and was applied to detect EVs in complex biological samples. The proposed electrochemical aptasensor can be further extended to the detection of other EVs, thus showing great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Bin Qiao
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Qunqun Guo
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Juqian Jiang
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chenxin Cai
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jian Shen
- Jiangsu Key Laboratory of Biomedical Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
6
|
Qi X, Yan X, Zhao Y, Li L, Wang S. Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Li S, Zheng Y, Zou Q, Liao G, Liu X, Zou L, Yang X, Wang Q, Wang K. Engineering and Application of a Myoglobin Binding Split Aptamer. Anal Chem 2020; 92:14576-14581. [PMID: 33052657 DOI: 10.1021/acs.analchem.0c02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Given that a split aptamer provides a chance for the development of a sandwich assay for targets with only one aptamer, it has received extensive attention in biosensing. However, due to the lack of binding mechanisms and reliable methods, there were still a few split aptamers that bind to proteins. In this work, cardiac biomarker myoglobin (Myo) was selected as a model, a new strategy of engineering split aptamers was explored with atomic force spectroscopy (AFM), and split aptamers against target protein could be achieved by choosing the optimal binding probability between split aptamers and target. Then, the obtained split aptamers were designed for Myo detection based on dynamic light scattering (DLS). The results demonstrated that the obtained split aptamers could be used to detect targets in human serum. The strategy of engineering split aptamers has the advantages of being intuitive and reliable and could be a general strategy for obtaining split aptamers.
Collapse
Affiliation(s)
- Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
8
|
Tang J, Lei Y, He X, Liu J, Shi H, Wang K. Recognition-Driven Remodeling of Dual-Split Aptamer Triggering In Situ Hybridization Chain Reaction for Activatable and Autonomous Identification of Cancer Cells. Anal Chem 2020; 92:10839-10846. [PMID: 32618183 DOI: 10.1021/acs.analchem.0c02524] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proximity-dependent hybridization chain reaction (HCR) has shown great potential in sensing biomolecules on the cell surface. However, the requirement of two adjacent bioevents occurring simultaneously limits its application. To solve the problem, split aptamers with target binding ability were introduced to combine with split triggers for initiating HCR, thus producing a novel dual-split aptamer probe (DSAP). By employing cancer-related receptors as models, in situ HCR on a cancer cell surface induced by recognition-driven remodeling of the DSAP was demonstrated. The DSAP consisted of two sequences. Each contained two segments; one derived from split aptamers and the other originated in split triggers. In the presence of target cells, split aptamers reassembled on the cell surface under the "induced-fit effect", thus forcing two split triggers close to each other. The remodeled DSAP worked as an intact trigger, which opened the H1 hairpin probe and then hybridized with the H2 hairpin probe, thus initiating HCR to produce an activated fluorescence signal. As a proof of concept, human liver cancer SMMC-7721 cells and their split ZY11 aptamer were used to construct the DSAP. Results indicated that the DSAP realized sensitive analysis of target cells, permitting the actual detection of 20 cells in the buffer. Moreover, the specific identification of target cells in mixed cell samples and the quantitative analysis of target cells in serum were also achieved. The DSAP strategy is facile and universal, which not only would expand the application range of HCR but also might be developed as a multitarget detection technique for bioanalysis.
Collapse
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China.,Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, P. R. China
| |
Collapse
|
9
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
10
|
|
11
|
Liu J, Liu W, Zhang K, Shi J, Zhang Z. A Magnetic Drug Delivery System with "OFF-ON" State via Specific Molecular Recognition and Conformational Changes for Precise Tumor Therapy. Adv Healthc Mater 2020; 9:e1901316. [PMID: 31858730 DOI: 10.1002/adhm.201901316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Indexed: 11/07/2022]
Abstract
To enhance the tumor-targeting and tumor cell-specific drug-release capacity of nano drug delivery systems, a magnetic resonance imaging-traceable, magnetic-targeted nanoplatform is developed, and the nanoplatform is prepared by capping mesoporous silica (MSN)-coated iron oxide nanoparticles (IONPs) with programmable DNA hairpin sensor "gates." In normal cells (HL-7702, human liver cells), the nanoplatform is able to entrap the loaded drugs, showing an "OFF" state; the nanoplatform is activated by endogenous miRNA-21 overexpressed in tumor cells (HepG2, human liver tumor cells), which serve as an exclusive key to unlock the nanoplatform through hybridization with programmable DNA hairpin, leading to a rapid drug release, showing an "ON" state. The nanoplatform exhibits high antitumor efficacy and low toxicity in in vitro and in vivo studies owing to its magnetic targeting and tumor cell-activated properties, paving the way for targeted and personalized tumor treatment and showing potential for clinical applications.
Collapse
Affiliation(s)
- Junjie Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Wei Liu
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou Henan Province 450001 P. R. China
- Key laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou Henan Province 450001 P. R. China
| |
Collapse
|
12
|
Chen J, Tang J, Meng HM, Liu Z, Wang L, Geng X, Wu Y, Qu L, Li Z. Recognition triggered assembly of split aptamers to initiate a hybridization chain reaction for wash-free and amplified detection of exosomes. Chem Commun (Camb) 2020; 56:9024-9027. [DOI: 10.1039/d0cc02337j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel split aptamer-based system was developed for the amplified detection of exosomes in situ assisted by a target-induced HCR.
Collapse
Affiliation(s)
- Juan Chen
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Jinlu Tang
- School of Basic Medical Sciences
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Hong-Min Meng
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Zhuo Liu
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Lin Wang
- The Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xin Geng
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Yanan Wu
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Lingbo Qu
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| | - Zhaohui Li
- College of Chemistry
- Green Catalysis Center
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
| |
Collapse
|
13
|
Li S, Zheng Y, Liu Y, Geng X, Liu X, Zou L, Wang Q, Yang X, Wang K. Investigation of the interaction between split aptamer and vascular endothelial growth factor 165 using single molecule force spectroscopy. J Mol Recognit 2019; 33:e2829. [PMID: 31816660 DOI: 10.1002/jmr.2829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/17/2019] [Accepted: 11/28/2019] [Indexed: 01/06/2023]
Abstract
Understanding the binding of split aptamer/its target could become a breakthrough in the application of split aptamer. Herein, vascular endothelial growth factor (VEGF), a major biomarker of human diseases, was used as a model, and its interaction with split aptamer was explored with single molecule force spectroscopy (SMFS). SMFS demonstrated that the interaction force of split aptamer/VEGF165 was 169.44 ± 6.59 pN at the loading rate of 35.2 nN/s, and the binding probability of split aptamer/VEGF165 was dependent on the concentration of VEGF165 . On the basis of dynamic force spectroscopy results, one activation barrier in the dissociation process of split aptamer/VEGF165 complexes was revealed, which was similar to that of the intact aptamer/VEGF165 . Besides, the dissociation rate constant (koff ) of split aptamer/VEGF165 was close to that of intact aptamer/VEGF165 , and the interaction force of split aptamer/VEGF165 was higher than the force of intact aptamer/VEGF165 . It indicated that split aptamer also possessed high affinity with VEGF165 . The work can provide a new method for exploring the interaction of split aptamer/its targets at single-molecule level.
Collapse
Affiliation(s)
- Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Yaqin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| |
Collapse
|
14
|
Kang B, Park SV, Soh HT, Oh SS. A Dual-Sensing DNA Nanostructure with an Ultrabroad Detection Range. ACS Sens 2019; 4:2802-2808. [PMID: 31547650 DOI: 10.1021/acssensors.9b01503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite considerable interest in the development of biosensors that can measure analyte concentrations with a dynamic range spanning many orders of magnitude, this goal has proven difficult to achieve. We describe here a modular biosensor architecture that integrates two different readout mechanisms into a single-molecule construct that can achieve target detection across an extraordinarily broad dynamic range. Our dual-mode readout DNA biosensor combines an aptamer and a DNAzyme to quantify adenosine triphosphate (ATP) with two different mechanisms, which respond to low (micromolar) and high (millimolar) concentrations by generating distinct readouts based on changes in fluorescence and absorbance, respectively. Importantly, we have also devised regulatory strategies to fine-tune the target detection range of each sensor module by controlling the target-sensitivity of each readout mechanism. Using this strategy, we report the detection of ATP at a dynamic range spanning 1-500 000 μM, more than 5 orders of magnitude, representing the largest dynamic range reported to date with a single biosensor construct.
Collapse
Affiliation(s)
| | | | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Canary Center at Stanford University, 3155 Porter Drive, Stanford, California 94305, United States
| | | |
Collapse
|
15
|
Wang SS, Zhao XP, Liu FF, Younis MR, Xia XH, Wang C. Direct Plasmon-Enhanced Electrochemistry for Enabling Ultrasensitive and Label-Free Detection of Circulating Tumor Cells in Blood. Anal Chem 2019; 91:4413-4420. [PMID: 30816698 DOI: 10.1021/acs.analchem.8b04908] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this work, we developed a simple electrochemical method for ultrasensitive and label-free detection of circulating tumor cells (CTCs) based on direct plasmon-enhanced electrochemistry (DPEE). After plasmonic gold nanostars (AuNSs) were modified on the glassy carbon (GC) electrode, the aptamer probe was immobilized on the AuNSs surface, which can selectively capture the CTCs in samples. Upon localized surface plasmon resonance (LSPR) excitation, the electrochemical current response can be enhanced remarkably due to efficient hot electrons transport from AuNSs to the external circuit. The captured cells on the AuNSs surface will influence the hot electrons transport efficiency, leading to a decreased current response. Using ascorbic acid (AA) as the electroactive probe, it was found that the current responses of the AuNSs/GC electrode upon light irradiation decrease with the cell concentration. Due to the special molecular recognition of the aptamer and enhanced electrochemical performance of the plasmon, the proposed method enables an ultrasensitive and label-free detection of CTCs with excellent selectivity. The experimental results show that CCRF-CEM cell concentrations as low as 5 cells/mL can be successfully detected, which is superior to most reported work up to now. Using the present method, MCF-7 cells as low as 10 cells/mL can be also successfully detected, indicating the universality of the proposed method for CTCs detection. Furthermore, the cytosensor can successfully distinguish CTCs from normal cells in blood samples. The as-proposed strategy provides a promising application of DPEE in the development of novel biosensors for nondestructive analysis of biological samples.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Xiao-Ping Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Fei-Fei Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| |
Collapse
|
16
|
Sun Y, Yuan B, Deng M, Wang Q, Huang J, Guo Q, Liu J, Yang X, Wang K. A light-up fluorescence assay for tumor cell detection based on bifunctional split aptamers. Analyst 2019; 143:3579-3585. [PMID: 29999048 DOI: 10.1039/c8an01008k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Light-up aptamers have attracted growing attention due to their advantages of being label-free and having low fluorescence background. In this work, we developed a light-up fluorescence assay for label-free detection of tumor cells based on a bifunctional split aptamer (BFSA) that contained two DNA strands (BFSA-a and BFSA-b). BFSA-a and BFSA-b were constructed by combining aptamers ZY11 and ThT.2-2, which could specifically bind to the tumor cell SMMC-7721 and activate the fluorescence of thioflavin T (ThT). A Helper strand was introduced to hybridize with BFSA-b, and then BFSA-a and BFSA-b were separated if the target cell was absent. Only when the target cell is present can BFSA-a approach and hybridize with BFSA-b due to the 'induced-fit effect', which made the Helper strand dissociate. Then ThT bound to BFSA and the fluorescence of ThT was activated. The results indicated that this fluorescence assay had a good linear response to the target cells in the range of 250-20 000 cells in 100 μL binding buffer; the lowest cell number actually detected was 125 cells in 100 μL buffer. This assay also displayed excellent selectivity and was successfully applied to detect target cells in 20% human serum samples. The design of bifunctional split aptamers realized no-washing, label-free, low-cost, one-step detection of tumor cells, which could generate detectable fluorescence signals just by mixing nucleic acid aptamers and fluorescent reporter molecules with target cells. Such a design of aptamer probes also has the potential to construct stimuli-responsive controlled drug delivery systems.
Collapse
Affiliation(s)
- Yuqiong Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Immunocytochemistry Based on a Cell-Type-Specific Aptamer for Rapid Immunostaining of Adenocarcinoma Cells in Clinical Serosal Fluids. Pathol Oncol Res 2018; 25:1143-1152. [PMID: 30478720 DOI: 10.1007/s12253-018-0555-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022]
Abstract
All too often, conventional immunocytochemistry (ICC) via an antibody on cytological samples is limited to a few smears due to scant cellularity. To circumvent these limitations, this study employed a cell-type-specific aptamer as the core tool in ICC protocols for a timely and highly specific ICC diagnosis. S6, an aptamer against A549 lung carcinoma cells, was adopted instead of antibodies in this study for differentiating cancer cells in serosal fluids. Here, we developed three different strategies for discriminating the adenocarcinoma cells in effusion cytology specimens using the S6 aptamer in ICC. These strategies included a biotin-labeled S6 aptamer, an FAM-labeled S6 aptamer, and an activatable S6 aptamer. A total of 112 serosal fluid specimens with known diagnoses were evaluated by all three modes of use of the S6 aptamer. ICC procedures based on biotin-labeled or FAM-labeled S6 aptamers required time-consuming washing to avoid interference from nonspecific adsorption. ICC procedures based on an activatable S6 aptamer probe showed a weak fluorescence signal in the absence of target cells, but the procedures showed a strong fluorescence signal due to alteration of the conformation without any complicated washing steps, in the presence of targets. The specificity and sensitivity are higher in all three different ICC protocols based on the S6 aptamer than those for antibody protocols for differentiating adenocarcinoma cells in clinical effusion cytology. ICC based on cell-type-specific aptamers, instead of on a panel of a set of antibodies, is promising as an auxiliary method for the diagnosis of cancer.
Collapse
|
18
|
Qin Y, Yang Y, Yao M, Xue X, Wang X, Huang H, Chen T, Wang D, Wan L. Self-assembly of an oligo( p-phenylenevinylene)-based molecule on an HOPG surface: insights from multi-scale simulation and STM observation. RSC Adv 2018; 8:31868-31873. [PMID: 35547496 PMCID: PMC9085817 DOI: 10.1039/c8ra05477k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/30/2018] [Indexed: 01/28/2023] Open
Abstract
To gain knowledge of the most important weak interactions for supramolecular self-assembly and observe molecular structure for self-assembled architectures, the two-dimensional self-assembly of an oligo(p-phenylenevinylene)-based molecule (AS-OPV) on highly oriented pyrolytic graphite has been investigated. Accurate atomic configuration for the AS-OPV self-assembled pattern has been identified by means of multi-scale simulation combined with scanning tunneling microscopy (STM) experiments. The weak interactions which contribute to the formation of AS-OPV self-assembly are studied by analysis of non-covalent interactions existing in the system and theoretical calculation of their energy values. Investigation of the molecular structure of self-assembly and STM images at a certain temperature range is performed by molecular dynamics and density functional theory simulations. This work paves the way to explore the contribution of weak interactions for the self-assembly system, as well as providing a reference to observe the possible self-assembled structure at temperatures not convenient for direct experimental observation.
Collapse
Affiliation(s)
- Yuan Qin
- School of Materials Science and Engineering, Dalian University of Technology Dalian 116024 China
| | - Yingying Yang
- School of Materials Science and Engineering, Dalian University of Technology Dalian 116024 China
| | - Man Yao
- School of Materials Science and Engineering, Dalian University of Technology Dalian 116024 China
| | - Xiaowan Xue
- School of Materials Science and Engineering, Dalian University of Technology Dalian 116024 China
| | - Xudong Wang
- School of Materials Science and Engineering, Dalian University of Technology Dalian 116024 China
| | - Hao Huang
- School of Materials Science and Engineering, Dalian University of Technology Dalian 116024 China
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| | - Lijun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences and Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
19
|
Tang J, He X, Lei Y, Shi H, Guo Q, Liu J, He D, Yan L, Wang K. Temperature-responsive split aptamers coupled with polymerase chain reaction for label-free and sensitive detection of cancer cells. Chem Commun (Camb) 2018; 53:11889-11892. [PMID: 29043317 DOI: 10.1039/c7cc06218d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A label-free and general thermo-controlled split apta-PCR strategy was first developed for the sensitive and specific detection of cancer cells. By integrating the temperature-responsive function of split aptamers with PCR amplification, a facile fluorescence assay of liver cancer SMMC-7721 cells was successfully realized with the detection of as low as 100 cells.
Collapse
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
QIN SY, CHEN ND, WANG Q, HUANG J, HE XX, LIU JB, GUO QP, YANG XH, WANG KM. Application of Nucleic Acid Aptamers in Polypeptides Researches. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Tang J, Yu Y, Shi H, He X, Lei Y, Shangguan J, Yang X, Qiao Z, Wang K. Polyvalent and Thermosensitive DNA Nanoensembles for Cancer Cell Detection and Manipulation. Anal Chem 2017; 89:6637-6644. [DOI: 10.1021/acs.analchem.7b00864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Yanru Yu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Jingfang Shangguan
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, College
of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology
and Molecular Engineering of Hunan Province, Changsha, Hunan 410082, China
| |
Collapse
|
22
|
Qin S, Chen N, Yang X, Wang Q, Wang K, Huang J, Liu J, Zhou M. Development of Dual-Aptamers for Constructing Sandwich-Type Pancreatic Polypeptide Assay. ACS Sens 2017; 2:308-315. [PMID: 28723135 DOI: 10.1021/acssensors.6b00836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pancreatic polypeptide (PP) is a specific biomarker of nonfunctional pancreatic neuroendocrine tumors (NF-pNETs). Clinical significance of PP inspires researchers to make great efforts in developing sensitive and specific sensors. However, there is no existing biosensor for detecting PP that combines facility and functionality. Addressing this challenge, a pair of aptamers which could be used to develop a sandwich assay for PP is reported. First, several high affinity aptamers are screened through graphene oxide-based SELEX, and appropriate dual-aptamers which could bind to different epitopes of PP are identified through fluorescence assays. Then the feasibility of the dual-aptamers for constructing the sandwich assay is validated via dynamic light scattering. This sandwich assay shows considerable sensitivity and specificity. The above results imply that the dual-aptamers have the potential toward developing novel sensors for PP in clinical samples.
Collapse
Affiliation(s)
- Shiya Qin
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Nandi Chen
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| | - Maogui Zhou
- State Key Laboratory
of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Key
Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan
Province, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Lei Y, Tang J, Shi H, Ye X, He X, Xu F, Yan L, Qiao Z, Wang K. Nature-Inspired Smart DNA Nanodoctor for Activatable In Vivo Cancer Imaging and In Situ Drug Release Based on Recognition-Triggered Assembly of Split Aptamer. Anal Chem 2016; 88:11699-11706. [PMID: 27807977 DOI: 10.1021/acs.analchem.6b03283] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA-based activatable theranostic nanoprobes are still unmet for in vivo applications. Here, by utilizing the "induced-fit effect", a smart split aptamer-based activatable theranostic probe (SATP) was first designed as "nanodoctor" for cancer-activated in vivo imaging and in situ drug release. The SATP assembled with quenched fluorescence and stable drug loading in its free state. Once binding to target proteins on cell surface, the SATP disassembled due to recognition-triggered reassembly of split aptamers with activated signals and freed drugs. As proof of concept, split Sgc8c against CEM cancer was used for theranostic studies. Benefiting from the design without blocking aptamer sequence, the SATP maintained an excellent recognition ability similar to intact Sgc8c. An "incubate-and-detect" assay showed that the SATP could significantly lower background and improve signal-to-background ratio (∼4.8 times of "always on" probes), thus affording high sensitivity for CEM cell analysis with 46 cells detected. Also, its high selectivity to target cells was demonstrated in analyzing mixed cell samples and serum samples. Then, using doxorubicin as a model, highly specific drug delivery and cell killing was realized with minimized toxicity to nontarget cells. Moreover, in vivo and ex vivo investigations also revealed that the SATP was specifically activated by CEM tumors inside mice. Especially, contrast-enhanced imaging was achieved in as short as 5 min, thus, laying a foundation for rapid diagnosis and timely therapy. As a biocompatible and target-activatable strategy, the SATP may be widely applied in cancer theranostics.
Collapse
Affiliation(s)
- Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Xiaosheng Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Fengzhou Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Lv'an Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Zhenzhen Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Changsha 410082, China
| |
Collapse
|