1
|
Kohansal F, Mobed A, Aletaha N, Ghaseminasab K, Dolati S, Hasanzadeh M. Biosensing of telomerase antigen using sandwich type immunosensor based on poly(β-Cyclodextrin) decorated by Au@Pt nanoparticles: An innovative immune-platform toward early-stage identification of cancer. Microchem J 2023; 190:108649. [DOI: 10.1016/j.microc.2023.108649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
2
|
Yuan W, Wang X, Sun Z, Liu F, Wang D. A Synergistic Dual-Channel Sensor for Ultrasensitive Detection of Pseudomonas aeruginosa by DNA Nanostructure and G-Quadruplex. BIOSENSORS 2022; 13:24. [PMID: 36671859 PMCID: PMC9856186 DOI: 10.3390/bios13010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas aeruginosa is one of the foodborne pathogenic bacteria that greatly threatens human health. An ultrasensitive technology for P. aeruginosa detection is urgently demanded. Herein, based on the mechanism of aptamer-specific recognition, an electrochemical-colorimetric dual-mode ultrasensitive sensing strategy for P. aeruginosa is proposed. The vertices of DNA tetrahedral nanoprobes (DTNPs), that immobilized on the gold electrode were modified with P. aeruginosa aptamers. Furthermore, the G-quadruplex, which was conjugated with a P. aeruginosa aptamer, was synthesized via rolling circle amplification (RCA). Once P. aeruginosa is captured, a hemin/G-quadruplex, which possesses peroxidase-mimicking activity, will separate from the P. aeruginosa aptamer. Then, the exfoliated hemin/G-quadruplexes are collected for oxidation of the 3,3',5',5'-tetramethylbenzidine for colorimetric sensing. In the electrochemical mode, the hemin/G-quadruplex that is still bound to the aptamer catalyzes polyaniline (PANI) deposition and leads to a measurable electrochemical signal. The colorimetric and electrochemical channels demonstrated a good forward and reverse linear response for P. aeruginosa within the range of 1-108 CFU mL-1, respectively. Overall, compared with a traditional single-mode sensor for P. aeruginosa, the proposed dual-mode sensor featuring self-calibration not only avoids false positive results but also improves accuracy and sensitivity. Furthermore, the consistency of the electrochemical/colorimetric assay was verified in practical meat samples and showed great potential for applications in bioanalysis.
Collapse
Affiliation(s)
- Wei Yuan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinxia Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoying Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
3
|
Guo T, Xiang Y, Lu H, Huang M, Liu F, Fang M, Liu J, Tang Y, Li X, Yang F. Interfacial DNA Framework-Enhanced Background-to-Signal Transition for Ultrasensitive and Specific Micro-RNA Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18209-18218. [PMID: 35416047 DOI: 10.1021/acsami.2c03075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfacial DNA self-assembly is fundamental to solid nucleic acid biosensors, whereas how to improve the signal-to-noise ratio has always been a challenge, especially in the charge-based electrochemical DNA sensors because of the large noise from the negatively charged DNA capture probes. Here, we report a DNA framework-reversed signal-gain strategy through background-to-signal transition for ultrasensitive and highly specific electrical detection of microRNAs (miRNAs) in blood. By using a model of enzyme-catalyzed deposition of conductive molecules (polyaniline) targeting to DNA, we observed the highest signal contribution per unit area by the highly charged three-dimensional (3D) tetrahedral DNA framework probe, relative to the modest of two-dimensional (2D) polyA probe and the lowest of one-dimensional (1D) single-stranded (ss)DNA probe, suggesting the positive correlation of background DNA charge with signal enhancement. Using such an effective signal-transition design, the DNA framework-based electrochemical sensor achieves ultrasensitive miRNAs detection with sensitivity up to 0.29 fM (at least 10-fold higher than that with 1D ssDNA or 2D polyA probes) and high specificity with single-base resolution. More importantly, this high-performance sensor allows for a generalized sandwich detection of tumor-associated miRNAs in the complex matrices (multiple cell lysates and blood serum) and further distinguishes the tumor patients (e.g., breast, lung, and liver cancer) from the normal individuals. These advantages signify the promise of this miRNA sensor as a versatile tool in precision diagnosis.
Collapse
Affiliation(s)
- Tongtong Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuanhang Xiang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| | - Minmin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| | - Fengfei Liu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Min Fang
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jia Liu
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yujin Tang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xinchun Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Center for Translational Medicine, Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-Value Utilization Engineering Research Center, Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Liu S, Wu J, He M, Chen B, Kang Q, Xu Y, Yin X, Hu B. DNA Tetrahedron-Based MNAzyme for Sensitive Detection of microRNA with Elemental Tagging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59076-59084. [PMID: 34851610 DOI: 10.1021/acsami.1c17234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterogeneous immunoassay based on magnetic separation is commonly used in inductively coupled plasma-mass spectrometry (ICP-MS)-based biomedical analysis with elemental labeling. However, the functionalized magnetic beads (MBs) often suffer from non-specific adsorption and random distribution of the functional probes. To overcome these problems, DNA tetrahedron (DT)-functionalized MBs were designed and further conjugated with substrate modified Au NPs (Sub-AuNP). Based on the prepared MB-DT-AuNP probes, an MB-DT based multicomponent nucleic acid enzyme (MNAzyme) system involving Au NPs as the elemental tags was proposed for highly sensitive quantification of miRNA-155 by ICP-MS. Target miRNA would trigger the assembly of MNAzyme, and Sub-AuNP would be cleaved from the MB-DT-AuNP probe, resulting in a cyclic amplification. Single-stranded DNA-functionalized MB (MB-ssDNA)-AuNP probes were prepared as well. Comparatively, the amount of Au NPs grafted onto MB-ssDNA-AuNP probes was higher than that grafted onto MB-DT-AuNP probes. Meanwhile, a higher signal-to-noise ratio was obtained by using MB-DT-AuNP probes over MB-ssDNA-AuNP probes in the MNAzyme system. Under the optimal experimental conditions, the limit of detection for target miRNA obtained by using MB-DT-AuNP probes was 1.15 pmol L-1, improved by 23 times over that obtained by the use of MB-ssDNA-AuNP probes. The proposed MB-DT-MNAzyme-ICP-MS method was applied to the analysis of miRNA-155 in serum samples, and recoveries of 86.7-94.6% were obtained. This method is featured with high sensitivity, good specificity, and simple operation, showing a great application potential in biomedical analysis.
Collapse
Affiliation(s)
- Shaocheng Liu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jingyi Wu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qi Kang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yan Xu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao Yin
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Yuan W, Lu L, Lu Y, Xiong X, Li Y, Cui X, Liu Y, Xiong X. Synergistic Effects of DNA Structure for Ultrasensitive Detecting OTA in Grains. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Copp W, Pontarelli A, Wilds CJ. Recent Advances of DNA Tetrahedra for Therapeutic Delivery and Biosensing. Chembiochem 2021; 22:2237-2246. [PMID: 33506614 DOI: 10.1002/cbic.202000835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/16/2021] [Indexed: 11/11/2022]
Abstract
The chemical and self-assembly properties of nucleic acids make them ideal for the construction of discrete structures and stimuli-responsive devices for a diverse array of applications. Amongst the various three-dimensional assemblies, DNA tetrahedra are of particular interest, as these structures have been shown to be readily taken up by the cell, by the process of caveolin-mediated endocytosis, without the need for transfection agents. Moreover, these structures can be readily modified with a diverse range of pendant groups to confer greater functionality. This minireview highlights recent advances related to applications of this interesting DNA structure including the delivery of therapeutic agents ranging from small molecules to oligonucleotides in addition to its use for sensing and imaging various species within the cell.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
7
|
Transport of environmental natural organic matter coated silver nanoparticle across cell membrane based on membrane etching treatment and inhibitors. Sci Rep 2021; 11:507. [PMID: 33436771 PMCID: PMC7803783 DOI: 10.1038/s41598-020-79901-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Environmental natural organic matters (NOMs) have great effects on the physicochemical properties of engineering nanoparticles, which may impact the transport of nanoparticles across plasma membrane and the cytotoxicity. Therefore, the kinetics, uptake pathway and mass of transporting into A549 cell membrane of silver nanoparticles (AgNPs) coated with citric acid (CA), tartaric acid (TA) and fulvic acid (FA) were investigated, respectively. CA, FA and TA enhanced the colloidal stability of AgNPs in culture medium and have greatly changed the surface plasmon resonance spectrum of AgNPs due to the absorption of CA, FA and TA on surface of AgNPs. Internalizing model showed that velocity of CA-, TA- and FA-nAg transporting into A549 cell were 5.82-, 1.69- and 0.29-fold higher than those of the control group, respectively. Intracellular mass of Ag was dependent on mass of AgNPs delivered to cell from suspension, which obeyed Logistic model and was affected by NOMs that CA- and TA-nAg showed a large promotion on intracellular mass of Ag. The lipid raft/caveolae-mediated endocytosis (LME) of A549 cell uptake of AgNPs were susceptible to CA, TA and FA that uptake of CA-, TA- and FA-nAg showed lower degree of dependent on LME than that of the control (uncoated AgNPs). Actin-involved uptake pathway and macropinocytosis would have less contribution to uptake of FA-nAg. Overall, transmembrane transport of NOMs-coated AgNPs differs greatly from that of the pristine AgNPs.
Collapse
|
8
|
Lu L, Yuan W, Xiong Q, Wang M, Liu Y, Cao M, Xiong X. One-step grain pretreatment for ochratoxin A detection based on bipolar electrode-electrochemiluminescence biosensor. Anal Chim Acta 2021; 1141:83-90. [DOI: 10.1016/j.aca.2020.10.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 11/28/2022]
|
9
|
Wang D, Xue W, Ren X, Xu Z. A review on sensing mechanisms and strategies for telomerase activity detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Xiong X, Yuan W, Li Y, Lu Y, Xiong X, Li Y, Liu Y, Lu L. Sensitive electrochemical detection of aflatoxin B1 using DNA tetrahedron-nanostructure as substrate of antibody ordered assembly and template of aniline polymerization. Food Chem 2020; 331:127368. [PMID: 32569962 DOI: 10.1016/j.foodchem.2020.127368] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
A novel strategy for AFB1 detection in grains was proposed based on DNA tetrahedron-structured probe (DTP) and horseradish peroxidase (HRP) triggered polyaniline (PANI) deposition. Briefly, the DNA tetrahedron nanostructures were assembled on the gold electrode, with carboxylic group designed on top vertex of them. The carboxylic group was conjugated with the AFB1 monoclonal antibody (mAb) to form DTP. The test sample and a known fixed concentration of HRP-labeled AFB1 were mixed and they compete for binding to DTP. The HRP assembled on the gold electrode catalyzed the polymerization of aniline on DTP. AFB1 in grains could be determined by using PANI as electrochemical signal molecules. Interestingly, DNA tetrahedron-structure, which has mechanical rigidity and structural stability, can improve antigen-antibody specific recognition and binding efficiency through the use of mAb ordered assembly. Meanwhile, nucleic acid backbone with a large amount of negative charge is good template for aniline polymerization under mild conditions.
Collapse
Affiliation(s)
- Xiaohui Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Wei Yuan
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yafei Li
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yichen Lu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Xiong Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yi Li
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China
| | - Yuanjian Liu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China.
| | - Lixia Lu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Yan XL, Jiang MM, Hu Y, Wu L, Zhao K, Xue XX, Zheng XJ. A new chemiluminescence method for the determination of 8-hydroxyguanine based on l-histidine bound nickel nanoparticles. Chem Commun (Camb) 2020; 56:6535-6538. [PMID: 32395729 DOI: 10.1039/d0cc01746a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A new chemiluminescence aptasensor for sensitive and efficient detection of 8-hydroxyguanine based on the synergistic interaction of Ni NPs@l-histidine@aptamer@MBs has been developed, and it has been applied in the real urine samples of cancer patients.
Collapse
Affiliation(s)
- Xi-Luan Yan
- College of Resources, Environment and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
DNA framework-engineered electrochemical biosensors. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1130-1141. [PMID: 32253588 DOI: 10.1007/s11427-019-1621-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
Self-assembled DNA nanostructures have shown remarkable potential in the engineering of biosensing interfaces, which can improve the performance of various biosensors. In particular, by exploiting the structural rigidity and programmability of the framework nucleic acids with high precision, molecular recognition on the electrochemical biosensing interface has been significantly enhanced, leading to the development of highly sensitive and specific biosensors for nucleic acids, small molecules, proteins, and cells. In this review, we summarize recent advances in DNA framework-engineered biosensing interfaces and the application of corresponding electrochemical biosensors.
Collapse
|
13
|
Zhao H, Wang M, Xiong X, Liu Y, Chen X. Simultaneous fluorescent detection of multiplexed miRNA of liver cancer based on DNA tetrahedron nanotags. Talanta 2020; 210:120677. [DOI: 10.1016/j.talanta.2019.120677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 02/08/2023]
|
14
|
Xiong X, Li Y, Yuan W, Lu Y, Xiong X, Li Y, Chen X, Liu Y. Screen printed bipolar electrode for sensitive electrochemiluminescence detection of aflatoxin B1 in agricultural products. Biosens Bioelectron 2019; 150:111873. [PMID: 31748193 DOI: 10.1016/j.bios.2019.111873] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022]
Abstract
In order to avoid the occurrence of false positives and false negatives caused by improper pretreatment during the detection of aflatoxin B1 by enzyme linked immunosorbent assay (ELISA). In this paper, we developed a screen printed bipolar electrode (BPE) for sensitive electrochemiluminescence (ECL) detection of aflatoxin B1 in agricultural products. The sensor uses a cathode of closed BPE as a functional sensing interface and an anode as a signal collection interface. In this way, the analyte does not need to participate in the ECL reaction of the anode. It avoids direct contact of photoactive molecules with complex reaction systems and greatly broadens the range of applications for ECL. After mixing the test sample with a known fixed concentration of horseradish peroxidase-labeled AFB1 (HRP-AFB1), they compete for binding to monoclonal antibodies. HRP catalyzes the polymerization of aniline to form polyaniline (PANI). Thereby causing a change in the oxidation-reduction potential and the ECL intensity in the electrochemical system, and then achieve the purpose of detecting the AFB1 concentration in the sample. As a result, the sensor has a good analytical performance for AFB1 with a linear range of 0.1-100 ng mL-1 and a detection limit of 0.033 ng mL-1. The sensor avoids the direct contact between the reaction system and the signal measurement system. In recovery experiment for six grains, the results demonstrate that the recovery rate and accuracy of this sensor is better than that of ELISA. This method provides a new idea for the detection of other mycotoxins in grains.
Collapse
Affiliation(s)
- Xiaohui Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China
| | - Yafei Li
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Yuan
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China
| | - Yichen Lu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China
| | - Xiong Xiong
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China
| | - Yi Li
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaoye Chen
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China.
| | - Yuanjian Liu
- Coll Food Sci & Light Ind, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
15
|
Li X, Wang S, Meng Y, Wang X, Zhang Y, Hun X. Photoelectrochemical determination of ractopamine based on inner filter effect between gold nanoparticles and graphitic carbon nitride-copper(II) polyphthalocyanine coupled with 3D DNA stabilizer. Mikrochim Acta 2019; 186:552. [PMID: 31325046 DOI: 10.1007/s00604-019-3687-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
Copper(II) polyphthalocyanine (CuPPc) was combined with graphitic carbon nitride (g-C3N4) to form a heterojunction with enhanced photoelectrochemical (PEC) signal. A sensitive PEC method was developed for determination of ractopamine based on a PEC inner filter effect between gold nanoparticles (AuNPs) and the g-C3N4/CuPPc. A gold electrode was modified with g-C3N4/CuPPc and the DNA was linked to the AuNPs. Initially, the PEC signal is weak due to the inner filter effect between the AuNPs and g-C3N4/CuPPc. In the presence of ractopamine, it interacts with the aptamer and the complementary chain (C chain) is released. This triggers the entropy-driven cyclic amplification and results in the release of the substrate B chain (SB chain) from three-dimensional DNA stabilizer. The probe is released from the electrode due to the interaction of probe DNA and the SB chain. As a result, the PEC signal increases linearly in the 0.1 pmol·L-1 to 1000 pmol·L-1 ractopamine concentration range. The detection limit is 0.03 pM, and the relative standard deviation is 3.4% (at a 10 pmol·L-1 level; for n = 11). The method has been successfully applied to the determination of ractopamine in pork samples. Graphical abstract Schematic presentation of detection method based on PEC inner filter effect between AuNPs and the g-C3N4/CuPPc being fabricated for ractopamine. 3D DNA was used as stabilizer to decrease the PEC blank signal.
Collapse
Affiliation(s)
- Xiaohua Li
- School of Chemistry and Environmental Engineering, Shanxi Datong University, Shanxi, 037009, China
| | - Shanshan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuchan Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao Wang
- Ocean university of China; State key laboratory of marine coatings, Qingdao, 266042, China
| | - Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering; College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
16
|
|
17
|
Ma F, Wang TT, Jiang L, Zhang CY. Ultrasensitive detection of telomerase activity in lung cancer cells with quencher-free molecular beacon-assisted quadratic signal amplification. Anal Chim Acta 2019; 1053:122-130. [DOI: 10.1016/j.aca.2018.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
|
18
|
Hu Q, Kong J, Han D, Niu L, Zhang X. Electrochemical DNA Biosensing via Electrochemically Controlled Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS Sens 2019; 4:235-241. [PMID: 30620562 DOI: 10.1021/acssensors.8b01357] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sensitive and selective sensing of biological molecules is fundamental to disease diagnosis and infectious disease surveillance. Herein, an ultrasensitive and highly selective electrochemical DNA biosensor is described by exploiting the electrochemically controlled reversible addition-fragmentation chain-transfer (eRAFT) polymerization as a signal amplification strategy and the peptide nucleic acid (PNA) probes as the recognition elements. Specifically, the PNA probes with a thiol at their 5'-terminals are anchored to a gold electrode surface (via gold-sulfur self-assembly) for sequence-specific recognition of target DNA (tDNA) fragments, of which the phosphate sites serve as the anchorages for the targeted labeling (via the well-established phosphate-Zr4+-carboxylate chemistry) of the carboxyl-group-containing chain-transfer agents (CTAs) for the succedent eRAFT polymerization, wherein the initiating radicals are generated through electrochemical reduction of aryl diazonium salts under a potentiostatic condition. In the presence of ferrocenylmethyl methacrylate (FcCH═CH2) as the monomer, the grafting of polymer chains from the CTA-anchored sites as a result of the eRAFT polymerization brings numerous electroactive Fc tags to the electrode surface, outputting a high electrochemical sensing signal even in the presence of trace amounts of tDNA fragments. Under the optimized conditions, the linear range of the described electrochemical DNA biosensor spans from 10 aM to 10 pM ( R2 = 0.998), with an attomolar detection limit (4.1 aM) being achieved. Moreover, the described electrochemical DNA biosensor is highly selective and applicable to the sensing of tDNA fragments in complex serum samples. Given its high efficiency, easy operation, and low cost, this biosensor shows great promise in real applications.
Collapse
Affiliation(s)
- Qiong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
| |
Collapse
|
19
|
Yang H, Li Y, Wang D, Liu Y, Wei W, Zhang Y, Liu S, Li P. Quartz crystal microbalance for telomerase sensing based on gold nanoparticle induced signal amplification. Chem Commun (Camb) 2019; 55:5994-5997. [DOI: 10.1039/c9cc02610j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mass-sensitive quartz crystal microbalance biosensor was constructed for telomerase sensing based on gold nanoparticle induced signal amplification.
Collapse
Affiliation(s)
- Haitang Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Ying Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou 450001
- China
| | - Yong Liu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou 450001
- China
| |
Collapse
|
20
|
Wang C, Yang H, Wu S, Liu Y, Wei W, Zhang Y, Wei M, Liu S. Manifold methods for telomerase activity detection based on various unique probes. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Xu X, Wang L, Li K, Huang Q, Jiang W. A Smart DNA Tweezer for Detection of Human Telomerase Activity. Anal Chem 2018; 90:3521-3530. [PMID: 29446916 DOI: 10.1021/acs.analchem.7b05373] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG) n. TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold-mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/μL for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and ≥5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.
Collapse
|
22
|
Convertible DNA ends-based silver nanoprobes for colorimetric detection human telomerase activity. Talanta 2018; 178:458-463. [DOI: 10.1016/j.talanta.2017.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022]
|
23
|
Su D, Huang X, Dong C, Ren J. Quantitative Determination of Telomerase Activity by Combining Fluorescence Correlation Spectroscopy with Telomerase Repeat Amplification Protocol. Anal Chem 2017; 90:1006-1013. [PMID: 29211436 DOI: 10.1021/acs.analchem.7b04256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Telomerase is a key enzyme for maintaining the telomere length and is regarded as a versatile cancer biomarker and a potential drug target due to its important role in cancer and aging. It is necessary to develop a sensitive and reliable method for detection of telomerase activity due to its very low level in cells. In this Article, we propose an ultrasensitive and robust method for quantitative determination of telomerase activity by combining single molecule fluorescence correlation spectroscopy (FCS) with telomerase repeat amplification protocol (TRAP). The principle of this new method (FCS-TRAP) is based on measurement of the change in characteristic diffusion time and molecule number of TRAP products by FCS. The characteristic diffusion time is related to the length of TRAP products, and the molecule number represents the concentration of TRAP products. We optimized the conditions of TRAP procedure and FCS measurements. We observed that the telomerase activities are positively correlated to characteristic diffusion time and molecule number of TRAP products at optimal conditions. This method was successfully used for determination of telomerase activity of different cells, and detection of a single cell was realized. Meanwhile, this method was used to evaluate the inhibition efficiency of inhibitors, and the IC50 values obtained were in good agreement with the references. Compared to current TRAP methods, this method shows reliable quantification, ultrahigh sensitivity, and short detection time and is without separation. We believe that the FCS-TRAP method has a potential application in clinical diagnosis and screening of telomerase inhibitors.
Collapse
Affiliation(s)
- Di Su
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
24
|
Liu S, Zhao S, Tu W, Wang X, Wang X, Bao J, Wang Y, Han M, Dai Z. A “Signal On” Photoelectrochemical Biosensor Based on Bismuth@N,O-Codoped-Carbon Core-Shell Nanohybrids for Ultrasensitive Detection of Telomerase in HeLa Cells. Chemistry 2017; 24:3677-3682. [DOI: 10.1002/chem.201704251] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Shanshan Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Shulin Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Wenwen Tu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Xiaoying Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Xiao Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Jianchun Bao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Yu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Min Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science; Nanjing Normal University; Nanjing 210023 P. R. China
| |
Collapse
|
25
|
Liu Y, Fan J, Shangguan L, Liu Y, Wei Y, Wei W, Liu S. Ultrasensitive electrochemical detection of poly (ADP-ribose) polymerase-1 via polyaniline deposition. Talanta 2017; 180:127-132. [PMID: 29332790 DOI: 10.1016/j.talanta.2017.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Recent findings have thrust poly ADP (ADP: adenosine diphosphate)-ribose polymerase-1 (PARP-1) into the limelight as potential chemotherapeutic target because it is closely related to the development of tumor. So, studies on its detection and inhibitors evaluation have attracted more attention. It is interesting that poly (ADP-ribose) (PAR), the catalytic product of PARP-1 in the existence of nicotinamide adenine dinucleotide (NAD+), possess twice charge density of DNA strands. PAR contain 200 units, i.e., about 400bp bases, and multiple branched strands. So, plentiful negative charges on PAR supplied exquisite environment for PANI deposition, which was triggered by horseradish peroxidase (HRP). Because of the unique electrochemical property of PANI, ultrasensitive electrochemical detection of PARP-1 was proposed. Under optimum conditions, DPV intensity linearly increased with the increment of PARP-1 in the range of 0.005-1.0 U. The detection limit was 0.002 U, which was comparable or more sensitive than that obtained from previously reported strategies.
Collapse
Affiliation(s)
- Yong Liu
- Henan Key Laboratory of Polyoxometalat, Institute of Fine Chemistry and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China
| | - Jiahui Fan
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Li Shangguan
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanjian Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanqing Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
26
|
Wang L, Meng Z, Martina F, Shao H, Shao F. Fabrication of circular assemblies with DNA tetrahedrons: from static structures to a dynamic rotary motor. Nucleic Acids Res 2017; 45:12090-12099. [PMID: 29126166 PMCID: PMC5716610 DOI: 10.1093/nar/gkx1045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 01/07/2023] Open
Abstract
DNA tetrahedron as the simplest 3D DNA nanostructure has been applied widely in biomedicine and biosensing. Herein, we design and fabricate a series of circular assemblies of DNA tetrahedron with high purity and decent yields. These circular nanostructures are confirmed by endonuclease digestion, gel electrophoresis and atomic force microscopy. Inspired by rotary protein motor, we demonstrate these circular architectures can serve as a stator for a rotary DNA motor to achieve the circular rotation. The DNA motor can rotate on the stators for several cycles, and the locomotion of the motor is monitored by the real-time fluorescent measurements.
Collapse
Affiliation(s)
- Liying Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Zhenyu Meng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Felicia Martina
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Huilin Shao
- Biomedical Institute of Global Heath Research and Technology, Departments of Biomedical Engineering and Surgery, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Fangwei Shao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
27
|
Yang H, Liu A, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S. Visual, Label-Free Telomerase Activity Monitor via Enzymatic Etching of Gold Nanorods. Anal Chem 2017; 89:12094-12100. [DOI: 10.1021/acs.analchem.7b02608] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Haitang Yang
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Anran Liu
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Min Wei
- College
of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuanjian Liu
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bingjing Lv
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Wei
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu
Engineering Laboratory of Smart Carbon-Rich Materials and Device,
Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research,
School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
28
|
Zheng T, Feng E, Wang Z, Gong X, Tian Y. Mechanism of Surface-Enhanced Raman Scattering Based on 3D Graphene-TiO 2 Nanocomposites and Application to Real-Time Monitoring of Telomerase Activity in Differentiation of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36596-36605. [PMID: 28980796 DOI: 10.1021/acsami.7b11028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
With a burst development of new nanomaterials for plasmon-free surface-enhanced Raman scattering (SERS), the understanding of chemical mechanism (CM) and further applications have become more and more attractive. Herein, a novel SERS platform was specially designed through electrochemical deposition of graphene onto TiO2 nanoarrays (EG-TiO2). The developed EG-TiO2 nanocomposite SERS platform possessed remarkable Raman activity using copper phthalocyanine (CuPc) as a probe molecule. X-ray photoelectron spectroscopy measurement revealed that the chemical bond Ti-O-C was formed at the interface between graphene and TiO2 in EG-TiO2 nanocomposites. Both experimental and theoretical results demonstrated that the obvious Raman enhancement was attributed to TiO2-induced Fermi level shift of graphene, resulting in effective charge transfer between EG-TiO2 nanocomposites and molecules. Taking advantage of a marked Raman response of the CuPc molecule on the EG-TiO2 nanocomposite surface as well as specific recognition of CuPc toward multiple telomeric G-quadruplex, EG-TiO2 nanocomposites were tactfully employed as the SERS substrate for selective and ultrasensitive determination of telomerase activity, with a low detection limit down to 2.07 × 10-16 IU. Interestingly, the self-cleaning characteristic of EG-TiO2 nanocomposites under visible light irradiation successfully provided a recycling ability for this plasmon-free EG-TiO2 substrate. The present SERS biosensor with high analytical performance, such as high selectivity and sensitivity, has been further explored to determine telomerase activity in stem cells as well as to count the cell numbers. More importantly, using this useful tool, it was discovered that telomerase activity plays an important role in the proliferation and differentiation from human mesenchymal stem cells to neural stem cells. This work has not only established an approach for gaining fundamental insights into the chemical mechanism (CM) of Raman enhancement but also has opened a new way in the investigation of long-term dynamics of stem cell differentiation and clinical drug screening.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University , Dongchuan Road 500, Shanghai 200241, China
| | - Enduo Feng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University , Dongchuan Road 500, Shanghai 200241, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, Centre or computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre or computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | - Yang Tian
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University , Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
29
|
Wang K, Shangguan L, Liu Y, Jiang L, Zhang F, Wei Y, Zhang Y, Qi Z, Wang K, Liu S. In Situ Detection and Imaging of Telomerase Activity in Cancer Cell Lines via Disassembly of Plasmonic Core-Satellites Nanostructured Probe. Anal Chem 2017; 89:7262-7268. [PMID: 28561584 DOI: 10.1021/acs.analchem.7b01882] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The label-free localized surface plasmon resonance (LSPR) detection technique has been identified as a powerful means for in situ investigation of biological processes and localized chemical reactions at single particle level with high spatial and temporal resolution. Herein, a core-satellites assembled nanostructure of Au50@Au13 was designed for in situ detection and intracellular imaging of telomerase activity by combining plasmonic resonance Rayleigh scattering spectroscopy with dark-field microscope (DFM). The Au50@Au13 was fabricated by using 50 nm gold nanoparticles (Au50) as core and 13 nm gold nanoparticles (Au13) as satellites, both of them were functionalized with single chain DNA and gathered proximity through the highly specific DNA hybridization with a nicked hairpin DNA (O1) containing a telomerase substrate (TS) primer as linker. In the presence of telomerase, the telomeric repeated sequence of (TTAGGG)n extended at the 3'-end of O1 would hybridized with its complementary sequences at 5'-ends. This led the telomerase extension product of O1 be folded to form a rigid hairpin structure. As a result, the Au50@Au13 was disassembled with the releasing of O1 and Au13-S from Au50-L, which dramatically decreased the plasmon coupling effect. The remarkable LSPR spectral shift was observed accompanied by a detectable color change from orange to green with the increase of telomerase activity at single particle level with a detection limit of 1.3 × 10-13 IU. The ability of Au50@Au13 for in situ imaging intracellular telomerase activity, distinguishing cancer cells from normal cells, in situ monitoring the variation of cellular telomerase activity after treated with drugs were also demonstrated.
Collapse
Affiliation(s)
- Kan Wang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Li Shangguan
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Yuanjian Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Ling Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Fen Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Yuanqing Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Yuanjian Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Zhengjian Qi
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University , Nanjing, 211189, People's Republic of China
| |
Collapse
|
30
|
Chen C, Wei M, Liu Y, Xu E, Wei W, Zhang Y, Liu S. Visual and fluorometric determination of telomerase activity by using a cationic conjugated polymer and fluorescence resonance energy transfer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2362-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Liu X, Wei M, Xu E, Yang H, Wei W, Zhang Y, Liu S. A sensitive, label-free electrochemical detection of telomerase activity without modification or immobilization. Biosens Bioelectron 2017; 91:347-353. [DOI: 10.1016/j.bios.2016.12.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
|
32
|
Abstract
Telomerase plays a significantly important role in keeping the telomere length of a chromosome. Telomerase overexpresses in nearly all tumor cells, suggesting that telomerase could be not only a promising biomarker but also a potential therapeutic target for cancers. Therefore, numerous efforts focusing on the detection of telomerase activity have been reported from polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assays to PCR-free assays such as isothermal amplification in recent decade. In this review, we highlight the strategies for the detection of telomerase activity using isothermal amplification and discuss some of the challenges in designing future telomerase assays as well.
Collapse
|
33
|
Dai Z, Leung HM, Lo PK. Stimuli-Responsive Self-Assembled DNA Nanomaterials for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602881. [PMID: 28005298 DOI: 10.1002/smll.201602881] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Indexed: 05/23/2023]
Abstract
Stimuli-responsive DNA-based materials represent a major class of remarkable functional nanomaterials for nano-biotechnological applications. In this review, recent progress in the development of stimuli-responsive systems based on self-assembled DNA nanostructures is introduced and classified. Representative examples are presented in terms of their design, working principles and mechanisms to trigger the response of the stimuli-responsive DNA system upon expose to a large variety of stimuli including pH, metal ions, oligonucleotides, small molecules, enzymes, heat, and light. Substantial in vitro studies have clearly revealed the advantages of the use of stimuli-responsive DNA nanomaterials in different biomedical applications, particularly for biosensing, drug delivery, therapy and diagnostic purposes in addition to bio-computing. Some of the challenges faced and suggestions for further development are also highlighted.
Collapse
Affiliation(s)
- Ziwen Dai
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Hoi Man Leung
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
34
|
Zhang K, Wang K, Zhu X, Xie M. Entropy-driven reactions in living cells for assay let-7a microRNA. Anal Chim Acta 2017; 949:53-58. [DOI: 10.1016/j.aca.2016.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 01/08/2023]
|
35
|
Xie N, Liu S, Yang X, He X, Huang J, Wang K. DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst 2017; 142:3322-3332. [DOI: 10.1039/c7an01154g] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we review and summarise the development and biological applications of DNA tetrahedron, including cellular biosensors and drug delivery systems.
Collapse
Affiliation(s)
- Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| |
Collapse
|
36
|
Real-time and in situ enzyme inhibition assay for the flux of hydrogen sulfide based on 3D interwoven AuPd-reduced graphene oxide network. Biosens Bioelectron 2017; 87:53-58. [DOI: 10.1016/j.bios.2016.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/24/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022]
|
37
|
Xu X, Wei M, Liu Y, Liu X, Wei W, Zhang Y, Liu S. A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates. Biosens Bioelectron 2017; 87:600-606. [DOI: 10.1016/j.bios.2016.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
|
38
|
Li H, Chang J, Hou T, Li F. HRP-Mimicking DNAzyme-Catalyzed in Situ Generation of Polyaniline To Assist Signal Amplification for Ultrasensitive Surface Plasmon Resonance Biosensing. Anal Chem 2016; 89:673-680. [DOI: 10.1021/acs.analchem.6b02988] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Haiyin Li
- College of Chemistry and
Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Jiafu Chang
- College of Chemistry and
Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Ting Hou
- College of Chemistry and
Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and
Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|
39
|
Ćirić-Marjanović G, Milojević-Rakić M, Janošević-Ležaić A, Luginbühl S, Walde P. Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives. CHEMICKE ZVESTI 2016; 71:199-242. [PMID: 28775395 PMCID: PMC5495875 DOI: 10.1007/s11696-016-0094-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/16/2016] [Indexed: 11/28/2022]
Abstract
The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green" chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed.
Collapse
Affiliation(s)
- Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Maja Milojević-Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Aleksandra Janošević-Ležaić
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sandra Luginbühl
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| |
Collapse
|
40
|
Yan L, Hui J, Liu Y, Guo Y, Liu L, Ding L, Ju H. A cascade amplification approach for visualization of telomerase activity in living cells. Biosens Bioelectron 2016; 86:1017-1023. [DOI: 10.1016/j.bios.2016.07.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
|
41
|
Electrochemical gene sensor based on a glassy carbon electrode modified with hemin-functionalized reduced graphene oxide and gold nanoparticle-immobilized probe DNA. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1999-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
A label-free ultrasensitive assay of 8-hydroxy-2′-deoxyguanosine in human serum and urine samples via polyaniline deposition and tetrahedral DNA nanostructure. Anal Chim Acta 2016; 946:48-55. [DOI: 10.1016/j.aca.2016.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/27/2022]
|
43
|
Yang L, Wang Y, Li B, Jin Y. High-throughput identification of telomere-binding ligands based on the fluorescence regulation of DNA-copper nanoparticles. Biosens Bioelectron 2016; 87:915-920. [PMID: 27664411 DOI: 10.1016/j.bios.2016.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/06/2016] [Accepted: 09/16/2016] [Indexed: 01/08/2023]
Abstract
Formation of the G-quadruplex in the human telomeric DNA is an effective way to inhibit telomerase activity. Therefore, screening ligands of G-quadruplex has potential applications in the treatment of cancer by inhibit telomerase activity. Although several techniques have been explored for screening of telomeric G-quadruplexes ligands, high-throughput screening method for fast screening telomere-binding ligands from the large compound library is still urgently needed. Herein, a label-free fluorescence strategy has been proposed for high-throughput screening telomere-binding ligands by using DNA-copper nanoparticles (DNA-CuNPs) as a signal probe. In the absence of ligands, human telomeric DNA (GDNA) hybridized with its complementary DNA (cDNA) to form double stranded DNA (dsDNA) which can act as an efficient template for the formation of DNA-CuNPs, leading to the high fluorescence of DNA-CuNPs. In the presence of ligands, GDNA folded into G-quadruplex. Single-strdanded cDNA does not support the formation of DNA-CuNP, resulting in low fluorescence of DNA-CuNPs. Therefore, telomere-binding ligands can be high-throughput screened by monitoring the change in the fluorescence of DNA-CuNPs. Thirteen traditional chinese medicines were screened. Circular dichroism (CD) measurements demonstrated that the selected ligands could induce single-stranded telomeric DNA to form G-quadruplex. The telomere repeat amplification protocol (TRAP) assay demonstrated that the selected ligands can effectively inhibit telomerase activity. Therefore, it offers a cost-effective, label-free and reliable high-throughput way to identify G-quadruplex ligands, which holds great potential in discovering telomerase-targeted anticancer drugs.
Collapse
Affiliation(s)
- Luzhu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanjun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
44
|
Liu X, Wei M, Liu Y, Lv B, Wei W, Zhang Y, Liu S. Label-Free Detection of Telomerase Activity in Urine Using Telomerase-Responsive Porous Anodic Alumina Nanochannels. Anal Chem 2016; 88:8107-14. [DOI: 10.1021/acs.analchem.6b01817] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xu Liu
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Min Wei
- College
of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuanjian Liu
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Bingjing Lv
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Wei
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Key
Laboratory of Environmental Medicine and Engineering, Ministry of
Education, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical
Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
45
|
Zhao H, Jiang G, Weng J, Ma Q, Zhang H, Ito Y, Liu M. A signal-accumulating DNAzyme-crosslinked hydrogel for colorimetric sensing of hydrogen peroxide. J Mater Chem B 2016; 4:4648-4651. [DOI: 10.1039/c6tb00825a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A signal-accumulating DNAzyme-crosslinked hydrogel is designed and prepared for colorimetric sensing of hydrogen peroxide.
Collapse
Affiliation(s)
- Haixu Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Gangfeng Jiang
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Jinpeng Weng
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Qi Ma
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Hui Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Saitama
- Japan
- Emergent Bioengineering Materials Research Team
| | - Mingzhe Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery (Shenyang Pharmaceutical University) of Ministry of Education
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| |
Collapse
|