1
|
Xue X, Wang Z, Zhao C, Qiao Y, Wang P, Wang J, Shi J, Zhang J. Mesoporous Cu 2O coated Au/Ag plasmonic nanocomposites as SERS sensing platform for ultrasensitive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126061. [PMID: 40090109 DOI: 10.1016/j.saa.2025.126061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Surface enhanced Raman scattering (SERS) is a suited detection technique for trace and ultrasensitive detection that extends even to single molecule levels. However, SERS application is currently limited by three main factors: 1) how to create more hotspots to enhance the sensitivity of SERS; 2) how to enrich trace target molecules in SERS hotspots; and 3) how to maintain the stability and reproducibility of SERS detection under environmental interference. In this study, mesoporous Cu2O coated Au/Ag plasmonic nanocomposites (NCs) were designed and prepared as SERS substrates. The tightly packed Au/Ag nanoaggregates (NAs) create more hotspots, oxygen vacancies in Cu2O can also enhances Raman signal by photoinduced charge transferring. Meanwhile, mesoporous Cu2O coating is beneficial for enriching more target molecules, so the as-prepared Au/Ag@Cu2O NCs showed excellent SERS sensitivity. When the target molecules 4-mercaptobenzoic acid (4-MBA) was detected on the Au/Ag@Cu2O substrate, the substrate showed high SERS activity. The enhancement factor reached as high as 3.78 × 106, and the detection limit was as low as 10-11 M. Meanwhile, the SERS spectra demonstrate excellent selectivity and reproducibility. In addition, the Au/Ag@Cu2O NCs substrate was applied to detect volatile organic compounds (VOC) pyridine molecules in the air, and when it was naturally adsorbed in air for 20 min, it showed an obvious SERS signal of pyridine. Therefore, these Au/Ag@Cu2O NCs with high SERS detection performance have important practical value in applications of volatile organic gas molecule.
Collapse
Affiliation(s)
- Xiangxin Xue
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China; The Joint Laboratory of Intelligent Manufacturing of Energy and Environmental Materials, Changchun 130103, PR China.
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Cuimei Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Yu Qiao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China.
| | - Ping Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Jing Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Jinghui Shi
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Jie Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
2
|
Ghosal S, Nandi S, Giri PK. Recent advances in semiconductor nanostructure-based surface-enhanced Raman scattering sensors. NANOTECHNOLOGY 2025; 36:202002. [PMID: 40215997 DOI: 10.1088/1361-6528/adcbaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has become a transformative analytical tool, attracting growing interest for its wide-ranging applications. The development of SERS-active materials is now a central research area, spurring innovation in various types of SERS substrates. While noble metal-based substrates remain extensively studied, semiconductor-based, non-metal substrates are garnering attention due to their unique advantages: excellent chemical stability, high carrier mobility, biocompatibility, and precise fabrication control. However, their generally weaker enhancement effects limit their utility, underscoring the need for strategies to boost their SERS activity. Understanding the complex enhancement mechanisms in semiconductor-based SERS substrates is critical for designing next-generation materials with metal-like enhancement factors (EFs). The interplay of charge transfer, localized surface plasmon resonance, and photonic effects makes the enhancement process inherently challenging to unravel. Therefore, the search for new materials with exciting optoelectronic properties, as well as more innovative solutions to increase their SERS sensitivity, continues to grow. In this review, we explore the latest advancements in semiconductor-based SERS substrates, dissecting the complex enhancement mechanisms and various modification strategies aimed at achieving metal-like high EFs. We present a comprehensive analysis of the methods used to improve the SERS performance of semiconductor substrates and conclude with potential future directions for advancing this dynamic field.
Collapse
Affiliation(s)
- Sirsendu Ghosal
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanju Nandi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Tan L, Lu X, Yue S, Cao Y, Zhou Y, Jin B, Zhu JJ. Nitrogen-doped graphene quantum dot-intensified tungsten oxide nanosheets as a SERS substrate for antibiotics detection. Chem Commun (Camb) 2024; 60:13360-13363. [PMID: 39465655 DOI: 10.1039/d4cc05052e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In this study, tungsten oxide nanosheets loaded with nitrogen-doped graphene oxide quantum dots (NGQDs/WO3 NSs) were fabricated as SERS substrates. The promoted photo-induced charge transfer (PICT) and the strong π-π stacking effect resulting from the unique structure of the NGQDs contributed to the enhanced SERS signal.
Collapse
Affiliation(s)
- Lu Tan
- Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| | - Yue Cao
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, P. R. China.
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, P. R. China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, P. R. China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China.
| |
Collapse
|
4
|
Yang J, Dang T, Ma S, Tang S, Ding Y, Seki M, Tabata H, Matsui H. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using α-Type MoO 3 Semiconductor Nanorods with Strong Light Scattering in the Visible Regime. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39048517 DOI: 10.1021/acsami.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO3 (α-MoO3) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 108 and a low detection limit of 5 × 10-9 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO3 NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tang Dang
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuting Ma
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Siyi Tang
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yan Ding
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Munetoshi Seki
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hitoshi Tabata
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Matsui
- Department of Bioengineering, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Electric Engineering and Information Systems, The University of Tokyo, 1-3-7 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Han XM, Dan J, Chen HQ, Wang Q, Luo LP, Feng JX, Wang TY, Sun J, Wang JL, Gu Y, Zhang W. Engineering an enzyme-like catalytic sensor for on-site dual-mode evaluation of total antioxidant capacity. Mikrochim Acta 2024; 191:465. [PMID: 39012354 DOI: 10.1007/s00604-024-06537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
A novel Fe-MoOx nanozyme, engineered with enhanced peroxidase (POD)-like activity through strategic doping and the creation of oxygen vacancies, is introduced to catalyze the oxidation of TMB with high efficiency. Furthermore, Fe-MoOx is responsive to single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms related to antioxidants and can serve as a desirable nanozyme for total antioxidant capacity (TAC) determination. The TAC colorimetric platform can reach a low LOD of 0.512 μM in solution and 24.316 μM in the smartphone-mediated RGB hydrogel (AA as the standard). As proof of concept, the practical application in real samples was explored. The work paves a promising avenue to design diverse nanozymes for visual on-site inspection of food quality.
Collapse
Affiliation(s)
- Xi Mei Han
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jie Dan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Hao Qian Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qian Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Lin Pin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jian Xing Feng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Tian Yu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, 130000, China
| | - Jian Long Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Wu K, Wang Z, Zhang X, Sun C, Li Q, Zhang H, Bai X, Khosla A, Zhao Z. Antimony-Doped Wide Bandgap Molybdenum Trioxide with Enhanced Localized Surface Plasmon Resonance for Nitrogen Photofixation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13603-13612. [PMID: 38875214 DOI: 10.1021/acs.langmuir.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Plasmonic metal oxides are promising photocatalysts for the artificial photosynthesis of green ammonia due to localized surface plasmon resonance (LSPR) enhanced photoconversion and rich surface oxygen vacancies improved chemisorption and activation of dinitrogen molecules. However, these oxygen vacancies are unstable during the photocatalytic process and could be oxidized by photogenerated holes, leading to the vanishing of the LSPR. Here, we fabricated antimony-doped molybdenum trioxide nanosheets with stable plasmonic absorption extending into the near-infrared (NIR) range, even after harsh treatment in oxidative atmospheric conditions at high temperatures. For undoped plasmonic MoO3-x nanosheets, the LSPR originates from the abundant oxygen vacancies that vanish after heat treatment at high temperatures in air, leading to the disappearance of the LSPR absorption. Sb doping does not significantly increase the concentration of oxygen vacancies while donating more free electrons because Sb can keep a lower oxidation state. Heat treatment diminished the oxygen vacancies while not affecting the low oxidation state of Sb. As a result, heat-treated Sb-doped MoO3-x nanosheets still show strong LSPR absorption in the NIR range. Both experimental results and theoretical calculations demonstrated that add-on states close to the Fermi level are formed due to the Sb doping and high concentration of oxygen vacancies. The prepared samples were used for photocatalytic nitrogen reduction and showed an LSPR-dependent photocatalytic performance. The present work has provided an effective strategy to stabilize the LSPR of plasmonic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Keming Wu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Zheng Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Xiaonan Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Congcong Sun
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Qiang Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Hui Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Xiaoxia Bai
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Ajit Khosla
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, P. R. China
| | - Zhenhuan Zhao
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Yang J, Yan P, Chen Z, Liu W, Liu Z, Ma Z, Xu Q. Interfacial Bonding Induced Charge Transfer in Two-Dimensional Amorphous MoO 3-x/Graphdiyne Oxide Non-Van der Waals Heterostructures for Dominant SERS Enhancement. Chemistry 2024; 30:e202400227. [PMID: 38501673 DOI: 10.1002/chem.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
Two-dimensional semiconductor-based nanomaterials have shown to be an effective substrate for Surface-enhanced Raman Scattering (SERS) spectroscopy. However, the enhancement factor (EF) tends to be relatively weak compared to that of noble metals and does not allow for trace detection of molecules. In this work, we report the successful preparation of two-dimensional (2D) amorphous non-van der Waals heterostructures MoO3-x/GDYO nanomaterials using supercritical CO2. Due to the synergistic effect of the localized surface plasmon resonance (LSPR) effect and the charge transfer effect, it exhibits excellent SERS performance in the detection of methylene blue (MB) molecules, with a detection limit as low as 10-14 M while the enhancement factor (EF) can reach an impressive 2.55×1011. More importantly, the chemical bond bridging at the MoO3-x/GDYO heterostructures interface can accelerate the electron transfer between the interfaces, and the large number of defective surface structures on the heterostructures surface facilitates the chemisorption of MB molecules. And the charge recombination lifetime can be proved by a ~1.7-fold increase during their interfacial electron-transfer process for MoO3-x/GDYO@MB mixture, achieving highly sensitive SERS detection.
Collapse
Affiliation(s)
- Jian Yang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Pengfei Yan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Wei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhaoxi Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zijian Ma
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P.R. China
| |
Collapse
|
8
|
Yang Y, Kong L, Ding Y, Xia L, Song P. Surface-enhanced Raman scattering spectroscopy monitoring and degradation of organic pollutants using a novel nanowire. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121045. [PMID: 38703653 DOI: 10.1016/j.jenvman.2024.121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
A multifunctional Ag/AlOOH nanowires (ANW) composite substrate was constructed, which not only accomplishes highly sensitive detection of organic dye molecules, but also has excellent performance in the degradation of pollutants. The ANW in the Ag/ANW substrate possesses a high aspect ratio, which extends the distribution area of Ag and enables a large number of hot spots on the active substrate. Additionally, due to the abundant OH groups on the ANW, there is an increased number of anchor sites for adsorbed metal ions in the Ag/ANW compound, thus contributing to the enhancement and degradation of molecules. Moreover, the constructed multifunctional Ag/ANW nanocomplexes also show great promise for practical applications, providing a reference for the detection and degradation of contaminants.
Collapse
Affiliation(s)
- Yanqiu Yang
- Department of Physics, Liaoning University, Shenyang, 110036, China
| | - Lingru Kong
- Department of Physics, Liaoning University, Shenyang, 110036, China
| | - Yong Ding
- Department of Physics, Liaoning University, Shenyang, 110036, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, China; Yingkou Institute of Technology, Yingkou, 115014, China
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
9
|
Bezerra LS, Belhout SA, Wang S, Quiroz J, de Oliveira PFM, Shetty S, Rocha G, Santos HLS, Frindy S, Oropeza FE, de la Peña O'Shea VA, Kallio AJ, Huotari S, Huo W, Camargo PHC. Triple Play of Band Gap, Interband, and Plasmonic Excitations for Enhanced Catalytic Activity in Pd/H xMoO 3 Nanoparticles in the Visible Region. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11467-11478. [PMID: 38382920 PMCID: PMC11393804 DOI: 10.1021/acsami.3c17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (HxMoO3) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/HxMoO3 and optimizing photocatalytic activities in the visible range. We investigated the effect of HxMoO3 band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and HxMoO3 localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.
Collapse
Affiliation(s)
- Leticia S Bezerra
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Samir A Belhout
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Shiqi Wang
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Jhon Quiroz
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Paulo F M de Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo. Av. Lineu Prestes 748, São Paulo 05508000, Brazil
| | - Shwetha Shetty
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Guilherme Rocha
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Hugo L S Santos
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Sana Frindy
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| | - Freddy E Oropeza
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Mostoles, Madrid 28935, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Mostoles, Madrid 28935, Spain
| | - Antti-Jussi Kallio
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Simo Huotari
- Department of Physics, University of Helsinki, P.O. Box 64, Helsinki 00014, Finland
| | - Wenyi Huo
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- NOMATEN Centre of Excellence, National Centre for Nuclear Research. Otwock 05-400, Poland
| | - Pedro H C Camargo
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, Helsinki 00014, Finland
| |
Collapse
|
10
|
Gilad Barzilay Y, Yucknovsky A, Amdursky N. Light-Triggered Reversible Change in the Electronic Structure of MoO 3 Nanosheets via an Excited-State Proton Transfer Mechanism. NANO LETTERS 2024; 24:1936-1943. [PMID: 38289664 PMCID: PMC10870760 DOI: 10.1021/acs.nanolett.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Light is an attractive source of energy for regulating stimulus-responsive chemical systems. Here, we use light as a gating source to control the redox state, the localized surface plasmonic resonance (LSPR) peak, and the structure of molybdenum oxide (MoO3) nanosheets, which are important for various applications. However, the light excitation is not that of the MoO3 nanosheets but rather that of pyranine (HPTS) photoacids, which in turn undergo an excited-state proton transfer (ESPT) process. We show that the ESPT process from HPTS to the nanosheets and the intercalation of protons within the MoO3 nanosheets trigger the reduction of the nanosheets and the broadening of the LSPR peak, a process that is reversible, meaning that in the absence of light, the LSPR peak diminishes and the nanosheets return to their oxidized form. We further show that this reversible process is accompanied by a change in the nanosheet size and morphology.
Collapse
Affiliation(s)
- Yuval Gilad Barzilay
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
11
|
Zheng X, Ye Z, Akmal Z, He C, Zhang J, Wang L. Recent progress in SERS monitoring of photocatalytic reactions. Chem Soc Rev 2024; 53:656-683. [PMID: 38165865 DOI: 10.1039/d3cs00462g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique renowned for its ultra-high sensitivity. Extensive research in SERS has led to the development of a wide range of SERS substrates, including plasmonic metals, semiconductors, metal organic frameworks, and their assemblies. Some of these materials are also excellent photocatalysts, and by taking advantage of their bifunctional characteristics, the photocatalytic processes that occur on their surface can be monitored in situ via SERS. This provides us with unique opportunities to gain valuable insights into the intricate details of the photocatalytic processes that are challenging to access using other techniques. In this review, we highlight key development in in situ and/or real-time SERS-tracking of photocatalytic reactions. We begin by providing a brief account of recent developments in SERS substrates, followed by discussions on how SERS can be used to elucidate crucial aspects of photocatalytic processes, including: (1) the influence of the surrounding media on charge carrier extraction; (2) the direction of charge carrier transfer; (3) the pathway of photocatalytic activation; and (4) differentiation between the effects of photo-thermal and energetic electrons. Additionally, we discuss the benefits of tip-enhanced Raman spectroscopy (TERS) due to the ability to achieve high-spatial-resolution measurements. Finally, we address major challenges and propose potential directions for the future of SERS monitoring of photocatalytic reactions. By leveraging the capabilities of SERS, we can uncover new insights into photocatalytic processes, paving the way for advancements in sustainable energy and environmental remediation.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ziwei Ye
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Zeeshan Akmal
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chun He
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
Tan L, Yue S, Lou Y, Zhu JJ. Enhancing charge transfer in a W 18O 49/g-C 3N 4 heterostructure via band structure engineering for effective SERS detection and flexible substrate applications. Analyst 2023; 149:180-187. [PMID: 38009267 DOI: 10.1039/d3an01690k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Chemical mechanism (CM)-related surface-enhanced Raman spectroscopy (SERS) has received tremendous interest due to its exceptional stability and excellent uniformity. Nevertheless, there remains a demand for ingenious methodologies for promoting effective charge transfer (CT) to improve SERS sensitivity further. Herein, a band structure engineered W18O49/g-C3N4 heterostructure (WCN) was first employed as a CM-based SERS substrate with remarkable enhancement and sensitivity. To investigate the Raman enhancement properties of the substrate, malachite green (MG) was employed as the Raman probe with the excitation of a 633 nm laser. The WCN substrate exhibits a Raman enhancement factor (EF) of 2.6 × 107, achieving a limit of detection (LOD) of 1.9 × 10-10 M for MG. The outstanding Raman amplification behavior can be attributed to the heterojunction-induced efficient CT process, energy band matching resonance due to minor doping with g-C3N4 serving as a band gap modifier, and improved photo-induced charge transfer (PICT) efficiency via the oxygen vacancies in the W18O49 units. Additionally, a flexible SERS substrate based on WCN was constructed using a vacuum filtration method and utilized to detect prohibited pharmaceutical residues on fish skin. The integration of this WCN and a nylon membrane not only preserves the Raman activity of the WCN for sensitive detection but also endows the Raman substrate with high flexibility and good mechanical durability, making it a potential candidate for in situ detection in particular environments.
Collapse
Affiliation(s)
- Lu Tan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
13
|
Wulandari C, Septiani NLW, Gumilar G, Nuruddin A, Nugraha, Iqbal M, Wasisto HS, Yuliarto B. Surface plasmon resonance biosensor chips integrated with MoS 2-MoO 3 hybrid microflowers for rapid CFP-10 tuberculosis detection. J Mater Chem B 2023; 11:11588-11599. [PMID: 38018444 DOI: 10.1039/d3tb01327h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This study reports on the modification of surface plasmon resonance (SPR) chips with molybdenum disulfide-molybdenum trioxide (MoS2-MoO3) microflowers to detect the tuberculosis (TB) markers of CFP-10. The MoS2-MoO3 microflowers were prepared by hydrothermal methods with variations in the pH and amount of trisodium citrate (Na3Ct), which were projected to influence the shape and size of microflower particles. The analysis shows that optimum MoS2-MoO3 hybrid microflowers were obtained at neutral pH using 0.5 g Na3Ct. The modified SPR biosensor exhibits a ten times higher response than the bare Au. Moreover, increasing MoS2-MoO3 thickness results in a higher detection response, sensitivity, and a smaller limit of detection (LOD). Using the optimized material composition, the Au/MoS2-MoO3-integrated SPR sensor can demonstrate sensitivity and LOD of 1.005 and 3.45 ng mL-1, respectively. This biosensor also has good selectivity, stability, and reproducibility based on cross-sensitivity characterization with other analytes and repeated measurements on several chips with different storing times and fabrication batch. Therefore, this proposed SPR biosensor possesses high potential to be further developed and applied as a detection technology for CFP-10 in monitoring and diagnosing TB.
Collapse
Affiliation(s)
- Chandra Wulandari
- Doctoral Program of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- PT Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Ni Luh Wulan Septiani
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- Research Center for Advanced Materials, National Research, and Innovation Agency (BRIN), Kawasan Puspiptek, South Tangerang 15134, Indonesia
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Gilang Gumilar
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- Research Center of Electronics, National Research and Innovation Agency (BRIN), Bandung, 40135, Indonesia
| | - Ahmad Nuruddin
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
| | - Nugraha
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| | - Muhammad Iqbal
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
| | | | - Brian Yuliarto
- Advanced Functional Materials Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia.
- BRIN and ITB Collaboration Research Center for Biosensor and Biodevices, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 41032, Indonesia
| |
Collapse
|
14
|
Guan X, Wang J, Zheng H, Meng W, Jiang R, Zhao L, Huang T, Zhao P, Jia S, Wang J. Unexpected Two-Dimensional Polarons Induced by Oxygen Vacancies in Layered Structure MoO 3-x. J Phys Chem Lett 2023:11152-11159. [PMID: 38054437 DOI: 10.1021/acs.jpclett.3c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Unveiling the effects of oxygen vacancies on the structural stability of layered α-MoO3 is critical for optimizing its physical and chemical properties. Herein, we present experimental evidence regarding the phase stability of α-MoO3 with ∼2% oxygen vacancy concentrations. Interestingly, we report a previously ignored oxygen-deficient orthorhombic MoO3-x phase in space group Cmcm. Further density functional theory calculations reveal a detailed phase transition mechanism from α-MoO3 to MoO3-x. More importantly, we demonstrate that two-dimensional (2D) large polarons must exist to stabilize the MoO3-x crystal structure. 2D large polarons are suspected to exist in numerous quasi-2D systems but have never been found in layered α-MoO3 or other molybdenum oxides. Our work contributes to a basic understanding of the polaronic behavior in MoO3-x and may broaden the application realm of molybdenum oxides.
Collapse
Affiliation(s)
- Xiaoxi Guan
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jiaheng Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - He Zheng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Weiwei Meng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Renhui Jiang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ligong Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tianlong Huang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Peili Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuangfeng Jia
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- Core Facility of Wuhan University, Wuhan 430072, China
| |
Collapse
|
15
|
Annušová A, Labudová M, Truchan D, Hegedűšová V, Švajdlenková H, Mičušík M, Kotlár M, Pribusová Slušná L, Hulman M, Salehtash F, Kálosi A, Csáderová L, Švastová E, Šiffalovič P, Jergel M, Pastoreková S, Majková E. Selective Tumor Hypoxia Targeting Using M75 Antibody Conjugated Photothermally Active MoO x Nanoparticles. ACS OMEGA 2023; 8:44497-44513. [PMID: 38046334 PMCID: PMC10688043 DOI: 10.1021/acsomega.3c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
Photothermal therapy (PTT) mediated at the nanoscale has a unique advantage over currently used cancer treatments, by being spatially highly specific and minimally invasive. Although PTT combats traditional tumor treatment approaches, its clinical implementation has not yet been successful. The reasons for its disadvantage include an insufficient treatment efficiency or low tumor accumulation. Here, we present a promising new PTT platform combining a recently emerged two-dimensional (2D) inorganic nanomaterial, MoOx, and a tumor hypoxia targeting element, the monoclonal antibody M75. M75 specifically binds to carbonic anhydrase IX (CAIX), a hypoxia marker associated with many solid tumors with a poor prognosis. The as-prepared nanoconjugates showed highly specific binding to cancer cells expressing CAIX while being able to produce significant photothermal yield after irradiation with near-IR wavelengths. Small aminophosphonic acid linkers were recognized to be more effective over the combination of poly(ethylene glycol) chain and biotin-avidin-biotin bridge in constructing a PTT platform with high tumor-binding efficacy. The in vitro cellular uptake of nanoconjugates was visualized by high-resolution fluorescence microscopy and label-free live cell confocal Raman microscopy. The key to effective cancer treatment may be the synergistic employment of active targeting and noninvasive, tumor-selective therapeutic approaches, such as nanoscale-mediated PTT. The use of active targeting can streamline nanoparticle delivery increasing photothermal yield and therapeutic success.
Collapse
Affiliation(s)
- Adriana Annušová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Martina Labudová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Daniel Truchan
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Université
Sorbonne Paris Nord, Université Paris
Cité, Laboratory for Vascular Translational Science, LVTS,
INSERM, UMR 1148, Bobigny F-93017, France
| | - Veronika Hegedűšová
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
| | - Helena Švajdlenková
- Faculty
of Natural Sciences, Comenius University
in Bratislava, Ilkovičova
6, 842 15 Bratislava, Slovakia
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Matej Mičušík
- Polymer
Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Mário Kotlár
- Centre
for Nanodiagnostics of Materials, Slovak
University of Technology in Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Lenka Pribusová Slušná
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Martin Hulman
- Institute
of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Farnoush Salehtash
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Anna Kálosi
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Lucia Csáderová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eliška Švastová
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Matej Jergel
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| | - Silvia Pastoreková
- Institute
of Virology, Biomedical Research Center,
Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Eva Majková
- Institute
of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
- Centre
for Advanced Materials Application, Slovak
Academy of Sciences, Dúbravská cesta 9, 845
11 Bratislava, Slovakia
| |
Collapse
|
16
|
Tan Y, Qi M, Jiang H, Wang B, Zhang X. Determination of uric acid in serum by SERS system based on V O-MnCo 2O 4/Ag nanozyme. Anal Chim Acta 2023; 1274:341584. [PMID: 37455071 DOI: 10.1016/j.aca.2023.341584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The level of uric acid is crucial to human health. Octahedral oxygen vacancy MnCo2O4/Ag (VO-MnCo2O4/Ag) nanozyme was successfully prepared by simple hydrothermal, calcination and self-reduction methods. VO-MnCo2O4/Ag nanozyme is rich in Mn2+/Mn3+ and CO2+/CO3+ redox electron pairs, large specific surface area and oxygen vacancies. VO-MnCo2O4/Ag nanozyme showed high uricase-like activity and peroxidase-like activity. At the same time, the SERS signal of the detected molecule could be significantly enhanced after the catalytic reaction of the VO-MnCo2O4/Ag nanozyme. The Km values of VO-MnCo2O4/Ag nanozyme for H2O2 and TMB were 0.04 mM and 0.027 mM respectively. Based on the uric acid oxidase-like and peroxidase-like activities of VO-MnCo2O4/Ag, we developed a label-free, sensitive, and reliable SERS uric acid detection system. The detection linear range of uric acid is 0.01 μM-1000 μM and the detection of limit is 7.8 × 10-9 M. The results show that the sensing system has good accuracy, sensitivity, selectivity, and stability. It can be applied to the determination of samples under different conditions. This study provides profound insights into the design of enzyme-like activity regulation and SERS properties regulation of nanozymes, provides guidance for the study of reaction kinetics and catalytic mechanism of nanozymes, and has broad application prospects in the field of nanozymes and SERS sensing analysis.
Collapse
Affiliation(s)
- Yaoyu Tan
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Mengyao Qi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huan Jiang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Baihui Wang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xia Zhang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
17
|
B RP, Varier MM, John NS. Fabrication of sandwich structures of Ag/analyte/MoO 3sea urchins for SERS detection of methylene blue dye molecules. NANOTECHNOLOGY 2023; 34:215701. [PMID: 36807225 DOI: 10.1088/1361-6528/acbcdb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
A substrate for surface-enhanced Raman spectroscopy (SERS) in a sandwich configuration, noble metal/analyte/defect-rich metal oxide, is demonstrated for the detection of methylene blue(MB). The sandwich structure (Ag/MB/SUMoO3) is fabricated by physical vapour deposition of Ag nanoparticles over the MB analytes that are adsorbed on sea urchin MoO3(SUMoO3). SUMoO3are grown on a glass substrate by chemical bath deposition. The morphology of the fabricated sandwich structures shows serrated spikes of MoO3from the core region decorated with strings of silver nanoparticles. The silver-decoration and the oxygen defects of SUMoO3promote absorption in the visible region and facilitate charge transfer between MB and SUMoO3, which are beneficial for achieving superior SERS properties in this configuration compared to the contribution from individual components alone. The sandwich structure is able to detect the MB molecule up to 100 nM with an enhancement factor of 8.1 × 106. The relative standard deviation of SERS intensity for the 1618 cm-1peak of MB across the substrate is 29.2%. The configuration offers stability to SERS substrate under ambient conditions. The combined effect of charge transfer, surface plasmon resonance, and MB resonance results in the improved SERS detection of MB molecules with the Ag/MB/SUMoO3sandwich structure.
Collapse
Affiliation(s)
- Ramya Prabhu B
- Center for Nano and Soft Matter Sciences (CeNS), Shivanapura Bengaluru-562162, India
| | - Meenakshi M Varier
- Center for Nano and Soft Matter Sciences (CeNS), Shivanapura Bengaluru-562162, India
| | - Neena S John
- Center for Nano and Soft Matter Sciences (CeNS), Shivanapura Bengaluru-562162, India
| |
Collapse
|
18
|
Plasmonic photocatalysis: mechanism, applications and perspectives. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
19
|
Saadati M, Akhavan O, Fazli H, Nemati S, Baharvand H. Controlled Differentiation of Human Neural Progenitor Cells on Molybdenum Disulfide/Graphene Oxide Heterojunction Scaffolds by Photostimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3713-3730. [PMID: 36633466 DOI: 10.1021/acsami.2c15431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ultrathin MoS2-MoO3-x heterojunction nanosheets with unique features were introduced as biocompatible, non-cytotoxic, and visible light-sensitive stimulator layers for the controlled differentiation of human neural progenitor cells (hNPCs) into nervous lineages. hNPC differentiation was also investigated on reduced graphene oxide (rGO)-containing scaffolds, that is, rGO and rGO/MoS2-MoO3-x nanosheets. In darkness, hNPC differentiation into neurons increased on MoS2-MoO3-x by a factor of 2.7 due to the excellent biophysical cues and further increased on rGO/MoS2-MoO3-x by a factor of 4.4 due to a synergistic effect induced by the rGO. The MoO3-x domains with antioxidant activity and LSPR absorption induced p-type doping in MoS2-MoO3-x. Under photostimulation, the hNPCs on the MoS2-MoO3-x exhibited higher differentiation into glial cells by a factor of 1.4, and the decrease in photo-electron current to hNPCs due to the induction of more p-type doping in the MoS2-MoO3-x. While the increase in neuronal differentiation of hNPCs on rGO/MoS2-MoO3-x by a factor of 1.8 was ascribed to the presence of rGO as an ultrafast electron transferor which quickly transferred photogenerated electrons to hNPCs before their transfer to free radicals, these results demonstrated the promising potential of MoS2-based scaffolds for applying in the controllable repair and/or regeneration of diseases/disorders related to the nervous system.
Collapse
Affiliation(s)
- Maryam Saadati
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran P932+FM4, Islamic Republic of Iran
| | - Hossein Fazli
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Shiva Nemati
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 16635-148, Tehran 1665659911, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, P.O. Box 16635-148, Tehran 1665659911, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran P8XM+PMV, Iran
| |
Collapse
|
20
|
Balouch A, Jagirani MS, Alveroglu E, Lal S, Sirajuddin, Mahar AM, Mal D. Ultra-Fast Degradation of Thymol Blue Dye Under Microwave Irradiation Technique Using Alpha-orthorhombic Molybdenum Trioxide (α-MoO3) Colloidal Nanoparticles. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Hu Y, Zhang BY, Haque F, Ren G, Ou JZ. Plasmonic metal oxides and their biological applications. MATERIALS HORIZONS 2022; 9:2288-2324. [PMID: 35770972 DOI: 10.1039/d2mh00263a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal oxides modified with dopants and defects are an emerging class of novel materials supporting the localized surface plasmon resonance across a wide range of optical wavelengths, which have attracted tremendous research interest particularly in biological applications in the past decade. Compared to conventional noble metal-based plasmonic materials, plasmonic metal oxides are particularly favored for their cost efficiency, flexible plasmonic properties, and improved biocompatibility, which can be important to accelerate their practical implementation. In this review, we first explicate the origin of plasmonics in dopant/defect-enabled metal oxides and their associated tunable localized surface plasmon resonance through the conventional Mie-Gans model. The research progress of dopant incorporation and defect generation in metal oxide hosts, including both in situ and ex situ approaches, is critically discussed. The implementation of plasmonic metal oxides in biological applications in terms of therapy, imaging, and sensing is summarized, in which the uniqueness of dopant/defect-driven plasmonics for inducing novel functionalities is particularly emphasized. This review may provide insightful guidance for developing next-generation plasmonic devices for human health monitoring, diagnosis and therapy.
Collapse
Affiliation(s)
- Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Farjana Haque
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Guanghui Ren
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
22
|
Ge H, Kuwahara Y, Yamashita H. Development of defective molybdenum oxides for photocatalysis, thermal catalysis, and photothermal catalysis. Chem Commun (Camb) 2022; 58:8466-8479. [PMID: 35861347 DOI: 10.1039/d2cc02658a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The localized surface plasmon resonance (LSPR) of noble metals has been investigated for decades for applications in various catalysis reactions and optical research studies, but its development has been hampered by inefficient light absorption and high costs. In comparison, the creation of less expensive semiconductors (metal oxides) with strong plasmonic absorption is an appealing option, particularly defective molybdenum oxide (HxMoO3-y) has received considerable attention and investigation as a promising plasmonic material for a variety of catalytic reactions (photocatalysis, thermocatalysis, photothermal catalysis, etc.).The LSPR effect of HxMoO3-y can be tuned throughout a broad spectrum range from visible to near-infrared (NIR) by altering the doping amount by electrochemical control, chemical reduction, or photochemical control. Notably, defects (oxygen vacancies) in HxMoO3-y arise in conjunction with the LSPR effect, resulting in the formation of unique and useful active sites in a range of catalytic processes. In this review, we explore the formation mechanism of HxMoO3-y with plasmonic features and discuss its applications in photocatalysis, thermocatalysis, and photothermal catalysis.
Collapse
Affiliation(s)
- Hao Ge
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan.
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,JST, PRESTO, 4-1-8 Hon-Cho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan. .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Yang M, Ye Z, Iqbal MA, Liang H, Zeng YJ. Progress on two-dimensional binary oxide materials. NANOSCALE 2022; 14:9576-9608. [PMID: 35766429 DOI: 10.1039/d2nr01076c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional van der Waals (2D vdW) materials have attracted much attention because of their unique electronic and optical properties. Since the successful isolation of graphene in 2004, many interesting 2D materials have emerged, including elemental olefins (silicene, germanene, etc.), transition metal chalcogenides, transition metal carbides (nitrides), hexagonal boron, etc. On the other hand, 2D binary oxide materials are an important group in the 2D family owing to their high structural diversity, low cost, high stability, and strong adjustability. This review systematically summarizes the research progress on 2D binary oxide materials. We discuss their composition and structure in terms of vdW and non-vdW categories in detail, followed by a discussion of their synthesis methods. In particular, we focus on strategies to tailor the properties of 2D oxides and their emerging applications in different fields. Finally, the challenges and future developments of 2D binary oxides are provided.
Collapse
Affiliation(s)
- Manli Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Zhixiang Ye
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Muhammad Ahsan Iqbal
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Huawei Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| |
Collapse
|
24
|
Li J, Jiao Z, Li J, Bai H, Xi G. Plasmonic rhenium trioxide self-assembled microtubes for highly sensitive, stable and reproducible surface-enhanced raman spectroscopy detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Guo Z, Wang D, Wang Z, Gao Y, Liu J. A Free-Standing α-MoO3/MXene Composite Anode for High-Performance Lithium Storage. NANOMATERIALS 2022; 12:nano12091422. [PMID: 35564131 PMCID: PMC9104589 DOI: 10.3390/nano12091422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Replacing the commercial graphite anode in Li-ion batteries with pseudocapacitor materials is an effective way to obtain high-performance energy storage devices. α-MoO3 is an attractive pseudocapacitor electrode material due to its theoretical capacity of 1117 mAh g−1. Nevertheless, its low conductivity greatly limits its electrochemical performance. MXene is often used as a 2D conductive substrate and flexible framework for the development of a non-binder electrode because of its unparalleled electronic conductivity and excellent mechanical flexibility. Herein, a free-standing α-MoO3/MXene composite anode with a high specific capacity and an outstanding rate capability was prepared using a green and simple method. The resultant α-MoO3/MXene composite electrode combines the advantages of each of the two components and possesses improved Li+ diffusion kinetics. In particular, this α-MoO3/MXene free-standing electrode exhibited a high Li+ storage capacity (1008 mAh g−1 at 0.1 A g−1) and an outstanding rate capability (172 mAh g−1 at 10 A g−1), as well as a much extended cycling stability (500 cycles at 0.5 A g−1). Furthermore, a full cell was fabricated using commercial LiFePO4 as the cathode, which displayed a high Li+ storage capacity of 160 mAh g−1 with an outstanding rate performance (48 mAh g−1 at 1 A g−1). We believe that our research reveals new possibilities for the development of an advanced free-standing electrode from pseudocapacitive materials for high-performance Li-ion storage.
Collapse
|
26
|
Liu Y, Zhang C, Shi A, Zuo S, Yao C, Ni C, Li X. Full solar spectrum driven CO2 conversion over S-Scheme natural mineral nanocomposite enhanced by LSPR effect. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Zheng X, Wu X, Zhang L, Kang J, Zhou M, Zhong Y, Zhang J, Wang L. High spin Fe 3+-related bonding strength and electron transfer for sensitive and stable SERS detection. Chem Sci 2022; 13:12560-12566. [PMID: 36382283 PMCID: PMC9629176 DOI: 10.1039/d2sc03998b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/05/2022] [Indexed: 11/21/2022] Open
Abstract
The SERS performance of trimetallic MIL-101(FeNiTi) and the spin state of Fe3+ is positively correlated. The SERS enhancement mechanism is explored regarding the bonding strength and charge transfer between molecules and MIL-101.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiao Wu
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Letian Zhang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianjian Kang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Man Zhou
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yang Zhong
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
28
|
Single-Layer MoS2-MoO3-x Heterojunction Nanosheets with Simultaneous Photoluminescence and Co-Photocatalytic Features. Catalysts 2021. [DOI: 10.3390/catal11121445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Single-layer MoS2-MoO3-x heterojunction nanosheets with visible-light-sensitive band gap energy and average lateral dimensions of ~70 nm were synthesized by using a two-step combined exfoliation method. The exfoliation was initiated from pristine MoS2, while some sulfur sites in expanded MoS2 sheets during exfoliating were substituted by ambient non-thermal oxygen, resulting in formation of α-MoO3-x crystalline domains. The morphological features, crystalline structure, phase formation, number of layers, and optical properties of the MoS2-MoO3-x nanosheets were determined by atomic force microscopy; X-ray diffraction; field emission electron microscopy; transmission electron microscopy; and Raman, UV–visible–NIR, diffuse transmittance, and photoluminescence spectroscopies. The produced α-MoO3-x domains displayed a narrower indirect band gap energy (~1.95 eV) than that of stoichiometric MoO3 (~3 eV), and a broad light absorption range from visible to near-infrared region can act as a plasmonic material facilitating the separation of the photoinduced carriers and enhancing the photocatalytic activity of the MoS2 domain, having ~1.75(2.16) eV indirect (direct) band gap energy. In this regard, the MoS2-MoO3-x heterojunction nanosheets showed single-layer-based excitation-dependent luminescence emissions and visible-light-induced photocatalytic features, at the same time. This study can contribute to promising applications of sheet-like nanomaterials for purposes requiring simultaneous photoluminescence and photocatalytic features, such as in-vivo monitoring and targeting.
Collapse
|
29
|
Fan X, Wei P, Li G, Li M, Lan L, Hao Q, Qiu T. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51618-51627. [PMID: 34674528 DOI: 10.1021/acsami.1c11977] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Efficient photoinduced charge transfer (PICT) resonance is crucial to the surface-enhanced Raman scattering (SERS) performance of metal oxide substrates. Herein, we venture into the hot-electron injection strategy to achieve unprecedented enhanced PICT efficiency between substrates and molecules. A heterojunction array composed of plasmonic MoO2 and semiconducting WO3-x is designed to prove the concept. The plasmonic MoO2 generates intense localized surface plasmon resonance under illumination, which can generate near-field Raman enhancement as well as accompanied plasmon-induced hot-electrons. The hot-electron injection in direct interfacial charge transfer and plasmon-induced charge transfer process can effectively promote the PICT efficiency between substrates and molecules, achieving a record Raman enhancement factor among metal oxide substrates (2.12 × 108) and the ultrasensitive detection of target molecule down to 10-11 M. This work demonstrates the possibility of hot-electron manipulation to realize unprecedented Raman enhancement in metal oxides, offering a cutting-edge strategy to design high-performance SERS substrates.
Collapse
Affiliation(s)
- Xingce Fan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Penghua Wei
- School of Physics, Southeast University, Nanjing 211189, China
| | - Guoqun Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Mingze Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Leilei Lan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qi Hao
- School of Physics, Southeast University, Nanjing 211189, China
| | - Teng Qiu
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
30
|
Yu X, Dos Santos EC, White J, Salazar-Alvarez G, Pettersson LGM, Cornell A, Johnsson M. Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO x /Pt Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104288. [PMID: 34596974 DOI: 10.1002/smll.202104288] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Glycerol electrolysis affords a green and energetically favorable route for the production of value-added chemicals at the anode and H2 production in parallel at the cathode. Here, a facile method for trapping Pt nanoparticles at oxygen vacancies of molybdenum oxide (MoOx ) nanosheets, yielding a high-performance MoOx /Pt composite electrocatalyst for both the glycerol oxidation reaction (GOR) and the hydrogen evolution reaction (HER) in alkaline electrolytes, is reported. Combined electrochemical experiments and theoretical calculations reveal the important role of MoOx nanosheets for the adsorption of glycerol molecules in GOR and the dissociation of water molecules in HER, as well as the strong electronic interaction with Pt. The MoOx /Pt composite thus significantly enhances the specific mass activity of Pt and the kinetics for both reactions. With MoOx /Pt electrodes serving as both cathode and anode, two-electrode glycerol electrolysis is achieved at a cell voltage of 0.70 V to reach a current density of 10 mA cm-2 , which is 0.90 V less than that required for water electrolysis.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
| | | | - Jai White
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Germán Salazar-Alvarez
- Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala, SE-751 03, Sweden
| | | | - Ann Cornell
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Mats Johnsson
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-106 91, Sweden
| |
Collapse
|
31
|
Zhou X, Zhao X, Gu S, Xie F, Wang X, Tang Z. Sulfur doped MoO 2 hollow nanospheres as a highly sensitive SERS substrate for multiple detections of organic pollutants. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2679-2687. [PMID: 34036972 DOI: 10.1039/d1ay00502b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The residual organic pollutants in the environment do great harm to the human body and ecological environment. The surface-enhanced Raman scattering (SERS) technique has the characteristics of a simple pretreatment method, rapid detection, high sensitivity, high specificity and great stability in the detection of organic pollutants. In this study, sulfur-doped MoO2 nanospheres (S-MoO2) with a hollow structure were synthesized by a simple hydrothermal reduction of MoO3 using ethanol as a reductant and thiourea as a dopant source. Profiting from the S atom doping, MoO2 manifests high SERS sensitivity to model organic pollutants such as rhodamine B (RhB), rhodamine 6G (R6G) and methylene blue (MB) with detection limits as low as 10-9, 10-10 and 10-8 M, respectively. A maximum enhancement factor (EF) of 6.2 × 107 is obtained with R6G molecules on S-MoO2 (2 wt%). Based on the experimental results and theoretical calculations, the high SERS sensitivity can be attributed to the enhanced plasmonic effects of MoO2 due to the electron-rich S atom doping, which lead to the strong electromagnetic coupling between substrates and target molecules. This study provides a new method for enhancing the SERS performance of MoO2 and this method may also be applicable to other non-noble metal semiconductors.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Shuo Gu
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| | - Fazhi Xie
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| | - Xiufang Wang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China.
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
32
|
Xiu Z, Zhang D, Wang J. Direct Z-Scheme Photocatalytic System: Ag2CO3/g-C3N4 Organic–Inorganic Hybrid with Superior Activity through Built-in Electric Field Transfer Mechanism. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421060273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Liu Y, Liu S, Peng H, Wang X, Zhang L, Zhu L, Zhang D, Guo J. Structural design and synthesis of new MOO3-x interlayer bi-functional nanomaterials for enhanced up-conversion luminescence properties. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Zheng X, Yan X, Ma J, Yao X, Zhang J, Wang L. Unidirectional/Bidirectional Electron Transfer at the Au/TiO 2 Interface Operando Tracked by SERS Spectra from Au and TiO 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16498-16506. [PMID: 33784060 DOI: 10.1021/acsami.1c02540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although it is well-known that the size can influence the surface plasmon resonance property of coinage metals and the electronic state of the Mott-Schottky junction formed at the metal/semiconductor interface, insights into how the size can be exploited to optimize the photocatalytic activity and selectivity of metal/semiconductor composites are lacking. Here we utilize operando SERS spectroscopy to identify the size effect on the electron-transfer dynamics and the direction at the Au/TiO2 interface. This effect was characterized by the photocatalytic reduction sites of p-nitrothiophenol, which were self-tracked with the SERS spectra from Au nanoparticle and inverse-opal structured TiO2, respectively. The size-dependent unidirectional/bidirectional transfer of photoinduced electrons at the Au/TiO2 interface was revealed by operando SERS spectroscopy, which enables the rational tuning of the reduction selectivity.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xuefeng Yan
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jiayu Ma
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xinyun Yao
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
35
|
Gu C, Li D, Zeng S, Jiang T, Shen X, Zhang H. Synthesis and defect engineering of molybdenum oxides and their SERS applications. NANOSCALE 2021; 13:5620-5651. [PMID: 33688873 DOI: 10.1039/d0nr07779h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has been developed into a cross-disciplinary analytical technology through exploring various materials' Raman vibrational modes with ultra-high sensitivity and specificity. Although conventional noble-metal based SERS substrates have achieved great success, oxide-semiconductor-based SERS substrates are attracting researchers' intensive interest due to their merits of facile fabrication, high uniformity and tunable SERS characteristics. Among all the SERS active oxide semiconductors, molybdenum oxides (MoOx) possess exceptional advantages of high Raman enhancement factor, environmental stability, recyclable detection, etc. More interestingly, the SERS effect of the MoOx SERS substrates may involve both the electromagnetic enhancement mechanism and the chemical enhancement mechanism, which is determined by the stoichiometry and morphology of the material. Therefore, the focus of this review will be on two critical points: (1) synthesis and material engineering methods of the functional MoOx material and (2) MoOx SERS mechanism and performance evaluation. First, we review recent works on the MoOx preparation and material property tuning approaches. Second, the SERS mechanism and performance of various MoOx substrates are surveyed. In particular, the performance uniformity, enhancement factor and recyclability are evaluated. In the end, we discuss several challenges and open questions related to further promoting the MoOx as the SERS substrate for monitoring extremely low trace molecules and the theory for better understanding of the SERS enhancement mechanism.
Collapse
Affiliation(s)
- Chenjie Gu
- Institute of Photonics, Ningbo University, 818 Feng Hua Road 315211, Ningbo, China.
| | | | | | | | | | | |
Collapse
|
36
|
Li J, Xu X, Huang B, Lou Z, Li B. Light-Induced In Situ Formation of a Nonmetallic Plasmonic MoS 2/MoO 3-x Heterostructure with Efficient Charge Transfer for CO 2 Reduction and SERS Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10047-10053. [PMID: 33617225 DOI: 10.1021/acsami.0c21401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Low-cost and abundant reserved nonmetallic plasmonic materials have been regarded as a promising substitute of noble metals for photocatalysis and surface-enhanced Raman scattering (SERS). In this paper, a MoS2/MoO3-x heterostructure was synthesized by light-induced in situ partial oxidation of MoS2 nanosheets, exhibiting strong surface plasmon resonance (SPR) in a vis-near-infrared (NIR) region. Continuously plasmon-induced hot electrons boost CO2 reduction to CO due to efficient photoelectron injection from MoS2 to MoO3-x. Under UV-vis-NIR irradiation, the CO generation rate reached 32.4 μmol g-1 h-1 with a selectivity of 94.1%, which was much higher than that of single MoS2 or MoO3-x. Furthermore, the plasmonic MoS2/MoO3-x heterostructure exhibits superior SERS performance for sensitive rhodamine 6G detection (10-9 M) with an enhancement factor of ∼106 because of the synergy between SPR and charge transfer effect. This work provides one novel mild synthetization of a plasmonic heterostructure and demonstrates its potential in plasmon-enhanced CO2 reduction and SERS detection.
Collapse
Affiliation(s)
- Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zaizhu Lou
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
37
|
Song G, Gong W, Cong S, Zhao Z. Ultrathin Two‐Dimensional Nanostructures: Surface Defects for Morphology‐Driven Enhanced Semiconductor SERS. Angew Chem Int Ed Engl 2021; 60:5505-5511. [DOI: 10.1002/anie.202015306] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Ge Song
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Wenbin Gong
- School of Physics and Energy Xuzhou University of Technology Xuzhou 221018 China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Division of Nanomaterials Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Nanchang 330200 China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Division of Nanomaterials Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Nanchang 330200 China
| |
Collapse
|
38
|
Ultrathin Two‐Dimensional Nanostructures: Surface Defects for Morphology‐Driven Enhanced Semiconductor SERS. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Chen Z, Su L, Ma X, Duan Z, Xiong Y. A mixed valence state Mo-based metal–organic framework from photoactivation as a surface-enhanced Raman scattering substrate. NEW J CHEM 2021; 45:5121-5126. [DOI: 10.1039/d0nj06154a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
In this work, a facile method for a mixed valence state Mo-base metal-organic framework from photo activation (UV Mo-MOF) was proposed and employed as a SERS substrates with molecule enrichment property.
Collapse
Affiliation(s)
- Zhengyi Chen
- Pharmacy School
- Guilin Medical University
- Guilin
- P. R. China
| | - Linjing Su
- College of Food and Bioengineering
- Hezhou University
- Hezhou
- P. R. China
| | - Xionghui Ma
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables
- Analysis and Test Center
- Chinese Academy of Tropical Agricultural Sciences
- Haikou
- China
| | - Zhenhua Duan
- College of Food and Bioengineering
- Hezhou University
- Hezhou
- P. R. China
| | - Yuhao Xiong
- College of Food and Bioengineering
- Hezhou University
- Hezhou
- P. R. China
| |
Collapse
|
40
|
Krajczewski J, Ambroziak R, Kudelski A. Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E75. [PMID: 33396325 PMCID: PMC7824290 DOI: 10.3390/nano11010075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022]
Abstract
The efficiency of the generation of Raman spectra by molecules adsorbed on some substrates (or placed at a very close distance to some substrates) may be many orders of magnitude larger than the efficiency of the generation of Raman spectra by molecules that are not adsorbed. This effect is called surface-enhanced Raman scattering (SERS). In the first SERS experiments, nanostructured plasmonic metals have been used as SERS-active materials. Later, other types of SERS-active materials have also been developed. In this review article, various SERS substrates formed on nanostructured non-metallic materials, including non-metallic nanostructured thin films or non-metallic nanoparticles covered by plasmonic metals and SERS-active nanomaterials that do not contain plasmonic metals, are described. Significant advances for many important applications of SERS spectroscopy of substrates based on nanostructured non-metallic materials allow us to predict a large increase in the significance of such nanomaterials in the near future. Some future perspectives on the application of SERS substrates utilizing nanostructured non-metallic materials are also presented.
Collapse
Affiliation(s)
| | | | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland; (J.K.); (R.A.)
| |
Collapse
|
41
|
Cao H, Tang M, Wang X, Shi W. Facile and rapid synthesis of emission color-tunable molybdenum oxide quantum dots as a versatile probe for fluorescence imaging and environmental monitoring. Analyst 2020; 145:6270-6276. [PMID: 32936129 DOI: 10.1039/d0an01510e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent years have seen molybdenum oxide quantum dots (MoOx QDs) as a booming material due to their attractive physical and chemical properties. However, there is still a large demand for MoOx QDs with long-wavelength emission by a facile strategy but these are more challenging to obtain. Herein, we rationally designed and successfully prepared nitrogen and phosphorus co-doped green emitting MoOx QDs (N,P-MoOx QDs) through a microwave-assisted rapid method. They exhibit a maximum emission at 500 nm under a 430 nm excitation. Moreover, by controlling their sizes in the process, we find that such a strategy enables the tuning of the emission color of N,P-MoOx QDs from green to blue. N,P-MoOx QDs show a significant fluorescence response to pH changes, and also display pH-sensitive near-infrared localized surface plasmon resonance (LSPR) at 866 nm. An effective and simple pH probe with a dual-signal response is achieved using N,P-MoOx QDs. As environmental sensors, N,P-MoOx QDs can be applied for sensitive detection of the concentrations of permanganate and captopril, offering the linear range from 0.08 to 25 μM and 0.1 to 31 μM, respectively. Benefitting from the effect of doping nitrogen and phosphorus, the probe could detect a wide range of pH changes (2-9) and is endowed with superior biocompatibility. Further, it is successfully used to "see" the intracellular pH variation by fluorescence confocal imaging. These findings not only demonstrate the achievement of a promising multifunctional probe for biosensing and environmental detection, but also pave the way for the fabrication of transition metal oxide QDs with tunable optical properties.
Collapse
Affiliation(s)
- Haiyan Cao
- The Key Laboratory of Chongqing Inorganic Special Functional Materials; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | | | | | | |
Collapse
|
42
|
Akiyoshi K, Kameyama T, Yamamoto T, Kuwabata S, Tatsuma T, Torimoto T. Controlling the oxidation state of molybdenum oxide nanoparticles prepared by ionic liquid/metal sputtering to enhance plasmon-induced charge separation. RSC Adv 2020; 10:28516-28522. [PMID: 35520071 PMCID: PMC9055849 DOI: 10.1039/d0ra05165a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Nanoparticles composed of molybdenum oxide, MoO x , were successfully prepared by room-temperature ionic liquid (RTIL)/metal sputtering followed by heat treatment. Hydroxyl groups in RTIL molecules retarded the coalescence between MoO x NPs during heat treatment at 473 K in air, while the oxidation state of Mo species in MoO x nanoparticles (NPs) could be modified by changing the heat treatment time. An LSPR peak was observed at 840 nm in the near-IR region for MoO x NPs of 55 nm or larger in size that were annealed in a hydroxyl-functionalized RTIL. Photoexcitation of the LSPR peak of MoO x NPs induced electron transfer from NPs to ITO electrodes.
Collapse
Affiliation(s)
- Kazutaka Akiyoshi
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Tatsuya Kameyama
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Takahisa Yamamoto
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Susumu Kuwabata
- Graduate School of Engineering, Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Tetsu Tatsuma
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Tsukasa Torimoto
- Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
43
|
Asakura Y, Akahira T, Kobayashi M, Osada M, Yin S. Synthesis of NaMoO 3F and Na 5W 3O 9F 5 with Morphological Controllability in Non-Aqueous Solvents. Inorg Chem 2020; 59:10707-10716. [PMID: 32691592 DOI: 10.1021/acs.inorgchem.0c01175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NaMoO3F and Na5W3O9F5 were synthesized by solvothermal reaction of MoO3 and WO3, respectively, with NaF in nonaqueous solvents. These reactions were realized at low temperatures (150-200 °C) without the use of HF. This synthesis method is much more facile and safe procedure compared with general synthesis methods for oxyfluorides which includes hydrothermal reaction under a presence of HF or solid-state reaction at high temperatures in vacuum sealed tube or under high pressure. In the case of the reaction of MoO3 with NaF, the kind of solvent largely affected the obtained morphologies of NaMoO3F. The morphology in the case of acetonitrile as a solvent was rodlike with a micrometer-scale size, while that in the case of ethanol was polyhedral with a size of several hundred nanometers. In addition, the solvothermal reaction of WO3 with NaF led to the formation of Na5W3O9F5. Also, the difference of solvents for the solvothermal reaction affected the obtained particle sizes. The effect of the solvents on the morphologies of the obtained oxyfluorides probably resulted from the difference of the solubility of NaF and the subsequent dissolution ratio of MoO3 or WO3 in the used solvents. Our synthesis method can expand the applicability of oxyfluorides by providing a new phase and/or unique morphology.
Collapse
Affiliation(s)
- Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomoyo Akahira
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Makoto Kobayashi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Minoru Osada
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
44
|
Wen S, Ma X, Liu H, Chen G, Wang H, Deng G, Zhang Y, Song W, Zhao B, Ozaki Y. Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model. Anal Chem 2020; 92:11763-11770. [DOI: 10.1021/acs.analchem.0c01886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sisi Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaowei Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Gang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - He Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Gaoqiang Deng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Yuantao Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012, P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 660-1337, Japan
| |
Collapse
|
45
|
Zheng X, Wang X, Tian Q, Cui X, Zhou Y, Ge T, Liu W, Wei C, Xu Q. Supercritical CO 2 synthesis of Co-doped MoO 3-x nanocrystals for multifunctional light utilization. Chem Commun (Camb) 2020; 56:7649-7652. [PMID: 32520013 DOI: 10.1039/d0cc02079f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here, we demonstrate, for the first time, that Co-MoO3-x nanocrystals (NCs) have been synthesized with the assistance of supercritical CO2. Their unique structural features of transition-metal doping and high oxygen vacancy concentrations, lead to synchronous outstanding surface enhanced Raman scattering (SERS) detection and photothermal conversion performances.
Collapse
Affiliation(s)
- Xiaoli Zheng
- Department of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang ZS, Fu Q, Xu K, Wang WW, Fu XP, Zheng XS, Wu K, Ma C, Si R, Jia CJ, Sun LD, Yan CH. Intrinsically Active Surface in a Pt/γ-Mo2N Catalyst for the Water–Gas Shift Reaction: Molybdenum Nitride or Molybdenum Oxide? J Am Chem Soc 2020; 142:13362-13371. [DOI: 10.1021/jacs.9b11088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zhe-Shan Zhang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qiang Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Kai Xu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xu-Sheng Zheng
- National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ke Wu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Lab in Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Wu S, Chen Z, Liu K, Yue W, Wang L, Zhang J. Chemisorption-Induced and Plasmon-Promoted Photofixation of Nitrogen on Gold-Loaded Carbon Nitride Nanosheets. CHEMSUSCHEM 2020; 13:3455-3461. [PMID: 32293108 DOI: 10.1002/cssc.202000818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Photocatalytic fixation of nitrogen is a promising method for green conversion of solar light, but has been substantially limited by inefficient activation of the nonpolar N≡N bond and the poor utilization of visible light. In this study, carbon nitride nanosheet composites with abundant nitrogen vacancies and strong plasmonic resonance absorption of visible light have been fabricated through the combination of hydrogen treatment and loading of Au nanoparticles. Ammonia yields of 184 μmol g-1 and 93 μmol g-1 are obtained without any sacrificial agent under full-light and visible-light irradiation, respectively. In particular, the visible-light activity is enhanced tenfold with the help of Au. Combining the experimental results and theoretical calculations, both the hydrogen treatment and Au loading help form nitrogen vacancies on the carbon nitride nanosheets, which promote N2 activation by enhancing the chemisorption. Furthermore, the Au loading further improves the nitrogen reduction efficiency through charging the excited hot electrons formed from the surface plasmonic resonance to the adsorbed N2 molecules.
Collapse
Affiliation(s)
- Shiqun Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ziyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Kaida Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Wenhui Yue
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
48
|
Zhu T, Wang H, Zang L, Jin S, Guo S, Park E, Mao Z, Jung YM. Flexible and Reusable Ag Coated TiO 2 Nanotube Arrays for Highly Sensitive SERS Detection of Formaldehyde. Molecules 2020; 25:molecules25051199. [PMID: 32155919 PMCID: PMC7179449 DOI: 10.3390/molecules25051199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022] Open
Abstract
Quantitative analysis of formaldehyde (HCHO, FA), especially at low levels, in various environmental media is of great importance for assessing related environmental and human health risks. A highly efficient and convenient FA detection method based on surface-enhanced Raman spectroscopy (SERS) technology has been developed. This SERS-based method employs a reusable and soft silver-coated TiO2 nanotube array (TNA) material, such as an SERS substrate, which can be used as both a sensing platform and a degradation platform. The Ag-coated TNA exhibits superior detection sensitivity with high reproducibility and stability compared with other SERS substrates. The detection of FA is achieved using the well-known redox reaction of FA with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) at room temperature. The limit of detection (LOD) for FA is 1.21 × 10−7 M. In addition, the stable catalytic performance of the array allows the degradation and cleaning of the AHMT-FA products adsorbed on the array surface under ultraviolet irradiation, making this material recyclable. This SERS platform displays a real-time monitoring platform that combines the detection and degradation of FA.
Collapse
Affiliation(s)
- Tong Zhu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hang Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Libin Zang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Zhu Mao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
- Correspondence: (Z.M.); (Y.M.J.)
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
- Correspondence: (Z.M.); (Y.M.J.)
| |
Collapse
|
49
|
Ma J, Tan X, Ma Y, Yao X, Zhang J, Wang L. Facile Fabrication of Amorphous Molybdenum Oxide as a Sensitive and Stable SERS Substrate under Redox Treatment. Chemistry 2020; 26:2653-2657. [PMID: 31833100 DOI: 10.1002/chem.201904642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/10/2019] [Indexed: 01/08/2023]
Abstract
Amorphous MoO3-x nanosheets were fabricated by the room-temperature oxidation of molybdenum powder with H2 O2 , followed by light-irradiation reduction in methanol. When applied as a substrate for surface-enhanced Raman spectroscopy (SERS), these nanosheets exhibit higher sensitivity than the crystalline counterpart for a wide range of analytes. Moreover, the SERS activity remains stable on repeated oxygen insertion/extraction. In contrast, the performance of crystalline MoO3-x continuously deteriorates on successive redox treatments. This unique SERS activity allows the recycling of the substrate through an H2 O2 -based Fenton-like reaction. More importantly, the non-invasive SERS was unprecedentedly used for the self-diagnosis of amorphous MoO3-x as a more selective photocatalyst than its crystalline counterpart.
Collapse
Affiliation(s)
- Jiayu Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xianjun Tan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, P.R. China
| | - Yunfei Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xinyun Yao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
50
|
Yin H, Kuwahara Y, Mori K, Louis C, Yamashita H. Properties, fabrication and applications of plasmonic semiconductor nanocrystals. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02511a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We highlight three widely explored oxide-based plasmonic materials, including HxMoO3−y, HxWO3−y, and MoxW1−xO3−y, and their applications in catalysis.
Collapse
Affiliation(s)
- Haibo Yin
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - Catherine Louis
- Sorbonne Universités
- UPMC Univ Paris 06, UMR CNRS 7197
- Laboratoire de Réactivité de Surface
- F-75252 Paris
- France
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| |
Collapse
|