1
|
Sulipta JS, Jeong H, Hong S. Polydopamine as a versatile optical indicator for colorimetric and fluorescence-based biosensing. Biomater Sci 2025; 13:2261-2273. [PMID: 40111266 DOI: 10.1039/d5bm00084j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Beyond their well-established adhesive properties, polydopamine (pDA) and pDA-like materials are emerging as superior alternatives to conventional optical indicators in biosensing applications due to their exceptional biocompatibility, tunable optical properties, and high sensitivity, arising from their eumelanin-like physicochemical characteristics. These materials attract significant attention for their ability to function as optical probes and transducers, enabling precise and sensitive detection in complex biological environments. This review highlights recent advancements in developing pDA-based optical probes, emphasizing strategies for fine-tuning synthetic parameters to optimize material properties, clarifying the fundamental sensing mechanisms underlying pDA-based systems, and exploring their potential roles in addressing global healthcare challenges. By facilitating early disease detection, real-time monitoring, and targeted therapeutic intervention, pDA-based optical probes offer transformative solutions to pressing biomedical needs. Through a comprehensive examination of cutting-edge research, this review aims to illuminate how the unique attributes of pDA materials drive innovation in biosensing technologies and contribute to improved healthcare outcomes.
Collapse
Affiliation(s)
- Jena Subhra Sulipta
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Haejin Jeong
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Seonki Hong
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
2
|
Zhong X, Luo L, Wu J, Li W, Liu X, Ye T, Li Z, Shi P. Adhesion-Assisted Antioxidant-Engineered Mesenchymal Stromal Cells for Enhanced Cardiac Repair in Myocardial Infarction. ACS NANO 2025; 19:11412-11426. [PMID: 40073336 DOI: 10.1021/acsnano.5c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair. Anti-VCAM1 modification facilitates MSC adhesion to inflamed tissue, ensuring MSC retention in the injured myocardium, while PD scavenges ROS surrounding MSCs, creating a conducive environment for cell transplantation. Our data indicate that chemically engineered MSCs effectively disrupt the inflammation-ROS cycle and modulate inflammation-related immune responses, thus improving MI microenvironments. Single-cell RNA sequencing of rat hearts reveals that treatment with engineered MSCs inhibits cardiac fibrosis by suppressing HB-EGF-EGFR signaling between anti-inflammatory macrophages and activated fibrillates. Ultimately, engineered MSCs demonstrate superior therapeutic efficacy in a rat model of MI. This study presents a straightforward, safe, and efficient chemical method for enhancing MSC therapy.
Collapse
Affiliation(s)
- Xianghua Zhong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Li Luo
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, P. R. China
| | - Jiyuan Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, P. R. China
| | - Xinyang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Tenghui Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, P. R. China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
3
|
Yang C, Song Y, Luo M, Wang Q, Zhang Y, Cen J, Du G, Shi J. Exosomes-encapsulated biomimetic polydopamine carbon dots with dual-targeting effect alleviate motor and non-motor symptoms of Parkinson's disease via anti-neuroinflammation. Int J Biol Macromol 2025; 296:139724. [PMID: 39809402 DOI: 10.1016/j.ijbiomac.2025.139724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Currently, the clinical drugs for Parkinson's disease (PD) only focus on motor symptoms, while non-motor symptoms like depression are usually neglected. Even though, the efficacy of existing neurotherapeutic drugs is extremely poor which is due to the blood brain barrier (BBB). Therefore, a biomimetic polydopamine carbon dots (PDA C-dots) at 2-4 nm was synthesized, while exosomes from macrophages were applied to encapsulate PDA C-dots for improving their BBB-crossing ability and inflammation-targeting effect. Importantly, the prepared PDA C-dots@Exosomes (PEs) significantly alleviated both motor and non-motor symptoms of PD mice. Further mechanism research revealed that PEs eliminated oxidant stress and alleviated neuroinflammation to restore the injured neurons. The content of α-syn was markedly reduced, and the neural viability was dramatically improved on the areas of substantia nigra, striata, and prefrontal cortex. In summary, this work reported a mild synthetic approach to produce a kind of PDA C-dots, which had a fantastic neuroprotective effect. After being encapsulated with exosomes of macrophages, the obtained PEs could be utilized as a neuroprotective drug with great penetration ability of BBB and targeting ability into inflammatory zone. The great therapeutic effect on both motor and non-motor symptoms of PD indicates that PEs could become a promising drug for PD treatment.
Collapse
Affiliation(s)
- Chen Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Yanhao Song
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Mingkai Luo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Qiuli Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Yumei Zhang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China
| | - Juan Cen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| | - Guanhua Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| | - Jiahua Shi
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs Henan University, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
4
|
Chen C, Yang Y, Ji C, Shui Y, Jiang X, Liu R, Xie C, Chen L. Fluorescent poly(tannic acid)-based nanoprobes for selective and sensitive detection of bismuth ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:585-592. [PMID: 39670348 DOI: 10.1039/d4ay01478b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Herein, blue luminescent fluorescent poly(tannic acid) nanoparticles (FPTA NPs) were fabricated through chemical degradation of poly(tannic acid) large particles using H2O2, and the obtained FPTA NPs exhibited excellent water dispersibility, great fluorescence stability, and relatively high quantum yield. More importantly, based on the dynamic quenching and chelation enhanced quenching effect between FPTA NPs and bismuth ions (Bi3+), a fluorescence method for the rapid identification and detection of Bi3+ was developed. With the increase of Bi3+, the fluorescence of FPTA NPs could be quenched gradually; the linear range was 0.2-80 μM, R2 was 0.997, the detection limit was 13.54 nM, and the response time was as short as 10 s. The FPTA NP based nanoprobe was successfully applied for the determination of Bi3+ in water samples, and the recovery rate ranged from 98.18% to 105.89%, with a relative standard deviation of less than 3.48%, thereby confirming the feasibility of using FPTA NPs for detecting Bi3+ in real water samples.
Collapse
Affiliation(s)
- Changchang Chen
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, P. R. China.
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yuqing Yang
- Department of Chemical and Bimolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore
| | - Chenyang Ji
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, P. R. China.
| | - Yasi Shui
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, P. R. China.
| | - Xiaoyan Jiang
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, P. R. China.
| | - Renyong Liu
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, P. R. China.
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Chenggen Xie
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, P. R. China.
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Lijuan Chen
- Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, P. R. China.
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| |
Collapse
|
5
|
Huang Y, Wu S, Yang S, He M, Ma W, Fa H, Wang Y, Hou C, Yang M. In-situ oxidative polymerization of dopamine triggered by CuO 2 in acidic condition and application in "turn-off" sensing. Mikrochim Acta 2024; 191:760. [PMID: 39586875 DOI: 10.1007/s00604-024-06791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
Dopamine (DA) is a key neurotransmitter whose concentration affects various neurological disorders. Unlike previous methods that synthesize non-fluorescent polydopamine (NFL-PDA) under alkaline conditions, this study introduces a novel "turn-off" sensing method for DA using NFL-PDA synthesized through a unique reaction pathway. In our approach, CuO2 nanodots, created via a simple reduction method, catalyze the formation of hydroxyl radicals (•OH) in acidic conditions, triggering the oxidative polymerization of DA into NFL-PDA. The reaction between DA and CuO2 nanodots in acidic solution was examined to understand the process. UiO-66-NH2 was then used to test NFL-PDA's fluorescence quenching ability and to further investigate the DA determination mechanism. Results showed that fluorescence quenching was due to enhanced non-radiative energy transfer and Förster resonance energy transfer (FRET) between NFL-PDA and UiO-66-NH2. This led to the development of a simple "turn-off" fluorometric DA determination method with a linear range of 0.1-200 μmol/L and a limit of detection (LOD) of 0.0575 μmol/L. Although this method does not outperform existing NFL-PDA synthesis methods under alkaline conditions, it provides a new synthesis approach and application for sensing DA, contributing to the basic theory of chemical sensing. Additionally, DA determination in human serum samples was successfully achieved, with results consistent with high-performance liquid chromatography (HPLC).
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Shangming Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Siyi Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Miao He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Wenhao Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Huanbao Fa
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, PR China
| | - Yongzhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
- College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
- College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
6
|
Wang L, Song K, Jiang C, Liu S, Huang S, Yang H, Li X, Zhao F. Metal-Coordinated Polydopamine Structures for Tumor Imaging and Therapy. Adv Healthc Mater 2024; 13:e2401451. [PMID: 39021319 DOI: 10.1002/adhm.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Indexed: 07/20/2024]
Abstract
Meticulously engineered nanomaterials achieve significant advances in the diagnosis and therapy of solid tumors by improving tumor delivery efficiency; and thereby, enhancing imaging and therapeutic efficacy. Currently, polydopamine (PDA) attracts widespread attention because of its biocompatibility, simplicity of preparation, abundant surface groups, and high photothermal conversion efficiency, which can be applied in drug delivery, photothermal therapy, theranostics, and other nanomedicine fields. Inspired by PDA structures that are rich in catechol and amino functional groups that can coordinate with various metal ions, which have charming qualities and characteristics, metal-coordinated PDA structures are exploited for tumor theranostics, but are not thoroughly summarized. Herein, this review summarizes the recent progress in the fabrication of metal-coordinated PDA structures and their availabilities in tumor imaging and therapy, with further in-depth discussion of the challenges and future perspectives of metal-coordinated PDA structures, with the aim that this systematic review can promote interdisciplinary intersections and provide inspiration for the further growth and clinical translation of PDA materials.
Collapse
Affiliation(s)
- Lihua Wang
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Kaiyue Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shanping Liu
- Library of Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310003, China
| | - Xianglong Li
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Feng Zhao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
7
|
Liu X, Li D, Tabassum M, Huang C, Yi K, Fang T, Jia X. Sequentially photocatalytic degradation of mussel-inspired polydopamine: From nanoscale disassembly to effective mineralization. J Colloid Interface Sci 2024; 672:329-337. [PMID: 38850860 DOI: 10.1016/j.jcis.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Mussel-inspired polydopamine (PDA) coating has been utilized extensively as versatile deposition strategies that can functionalize surfaces of virtually all substrates. However, the strong adhesion, stability and intermolecular interaction of PDA make it inefficient in certain applications. Herein, a green and efficient photocatalytic method was reported to remove adhesion and degrade PDA by using TiO2-H2O2 as photocatalyst. The photodegradation process of the PDA spheres was first undergone nanoscale disassembly to form soluble PDA oligomers or well-dispersed nanoparticles. Most of the disassembled PDA can be photodegraded and finally mineralized to CO2 and H2O. Various PDA coated templates and PDA hollow structures can be photodegraded by this strategy. Such process provides a practical strategy for constructing the patterned and gradient surfaces by the "top-down" method under the control of light scope and intensity. This sequential degradation strategy is beneficial to achieve the decomposition of highly crosslinked polymers.
Collapse
Affiliation(s)
- Xinghuan Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Danya Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Mehwish Tabassum
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chao Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Ke Yi
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Tianwen Fang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
8
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
9
|
Al-Waeel M, Lukkari J, Kivelä H, Salomäki M. Heterogenous Copper(0)-Assisted Dopamine Oxidation: A New Pathway to Controllable and Scalable Polydopamine Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39248575 DOI: 10.1021/acs.langmuir.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In this study, we introduce an approach for synthesizing polydopamine (PDA) through the controlled oxidation of dopamine using metallic copper. Traditional methods of PDA synthesis often encounter challenges such as scalability, reproducibility, and control over polymerization. Our approach utilizes the catalytic properties of metallic copper in the presence of dissolved oxygen to generate reactive oxygen species (ROS) without additional chemicals. This process allows for precise control over dopamine oxidation, leading to reliable, materials and cost-effective upscalable PDA production. We investigated the reaction kinetics and the role of copper and ROS in dopamine oxidation, using several different experimental techniques. Our results demonstrate that, even at low pH, the copper-assisted method produces PDA with properties comparable to those synthesized through conventional means. We propose a mechanism for PDA synthesis that is initiated by oxygen adsorption onto copper surface, leading to the generation of various ROS which act as oxidizing agents in PDA synthesis. This method presents an advancement in the scalable and controlled production of PDA, with potential applications in various scientific and industrial fields.
Collapse
Affiliation(s)
- Majid Al-Waeel
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Jukka Lukkari
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Henri Kivelä
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| | - Mikko Salomäki
- Department of Chemistry, University of Turku, Turku FI-20014, Finland
| |
Collapse
|
10
|
Dehghankhold M, Ahmadi F, Nezafat N, Abedi M, Iranpour P, Dehghanian A, Koohi-Hosseinabadi O, Akbarizadeh AR, Sobhani Z. A versatile theranostic magnetic polydopamine iron oxide NIR laser-responsive nanosystem containing doxorubicin for chemo-photothermal therapy of melanoma. BIOMATERIALS ADVANCES 2024; 159:213797. [PMID: 38368693 DOI: 10.1016/j.bioadv.2024.213797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Theranostics nanoparticles (NPs) have recently received much attention in cancer imaging and treatment. This study aimed to develop a multifunctional nanosystem for the targeted delivery of photothermal and chemotherapy agents. Fe3O4 NPs were modified with polydopamine, bovine serum albumin, and loaded with DOX via a thermal-cleavable Azo linker (Fe3O4@PDA@BSA-DOX). The size of Fe3O4@PDA@BSA NPs was approximately 98 nm under the desired conditions. Because of the ability of Fe3O4 and PDA to convert light into heat, the temperature of Fe3O4@PDA@BSA NPs increased to approximately 47 °C within 10 min when exposed to an 808 nm NIR laser with a power density of 1.5 W/cm2. The heat generated by the NIR laser leads to the breaking of AZO linker and drug release. In vivo and in vitro results demonstrated that prepared NPs under laser irradiation successfully eradicated tumor cells without any significant toxicity effect. Moreover, the Fe3O4@PDA@BSA NPs exhibited the potential to function as a contrasting agent. These NPs could accumulate in tumors with the help of an external magnet, resulting in a significant enhancement in the quality of magnetic resonance imaging (MRI). The prepared novel multifunctional NPs seem to be an efficient system for imaging and combination therapy in melanoma.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Iranpour
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirreza Dehghanian
- Molecular Pathology and Cytogenetics Division, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Reza Akbarizadeh
- Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sobhani
- Research Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Tseng WB, Wu MJ, Lu CY, Krishna Kumar AS, Tseng WL. Aptamer-based flares hybridized with single-stranded DNA-conjugated MoS 2 nanosheets for ratiometric fluorescence sensing and imaging of potassium ions and adenosine triphosphate in human fluids and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123781. [PMID: 38176190 DOI: 10.1016/j.saa.2023.123781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Addressing the limitations observed in previous studies, where the quantitative range of nanoprobes for detecting K+ and adenosine triphosphate (ATP) did not cover concentrations found within living cells, the present study aimed to develop ratiometric nanoprobes that can accurately sense changes in K+ and ATP levels in living cells and quantify them in human fluids. The proposed nanoprobes consisted of recognition flares modified with 6-carboxyfluorescein (FAM) and 5-carboxytetramethylrhodamine (TAMRA), along with thiolate single-stranded DNA (ssDNA) and molybdenum disulfide nanosheets (MoS2 NSs). The thiolate ssDNA acts as a linker between the flares and the MoS2 NSs, directly forming a functional nanostructure at room temperature. The direct conjugation of labeled flares to the MoS2 NSs simplifies the fabrication process. In the absence of K+ and ATP, the hybridization of flares and thiolate ssDNA caused FAM to move away from TAMRA, suppressing the fluorescence resonance energy transfer (FRET) process. However, upon the introduction of K+ and ATP, the flares undergo a structural transformation via the formation of G-quadruplex formation and the generation of hairpin-shaped structures, respectively. This structural change leads to the release of the flares from the ssDNA-conjugated nanosheet surface. The release of the flares brings FAM and TAMRA into close proximity, allowing FRET to occur, leading to FRET and static quenching. By monitoring the ratio between the fluorescence intensities of FAM and TAMRA, the concentration of K+ (5-100 mM) and ATP (0.3-5 mM) can be accurately determined by the proposed nanoprobes. The advantages of these nanoprobes lie in their ability to provide ratiometric measurements, which enhance the accuracy and reliability of the quantification process. The proposed nanoprobes offer potential applications as ratiometric imaging probes for monitoring K+ and ATP-related reactions in living cells, providing valuable insights into cellular processes. Additionally, they can be employed for determining the levels of K+ and ATP in human fluids, offering potential diagnostic applications in various clinical settings.
Collapse
Affiliation(s)
- Wei-Bin Tseng
- Department of Chemistry and Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; Department of Environmental Engineering, Da-Yeh University, No. 168, University Rd., Dacun, Changhua 515006, Taiwan.
| | - Man-Jyun Wu
- Department of Chemistry and Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, No. 100, Shiquan First Road, Sanmin District, Kaohsiung 80708, Taiwan
| | - A Santhana Krishna Kumar
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Wei-Lung Tseng
- Department of Chemistry and Center for Nanoscience & Nanotechnology, National Sun Yat-sen University, No. 70 Lienhai Rd., Kaohsiung 80424, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Rd., 80708 Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Furlani F, Pota G, Rossi A, Luciani G, Campodoni E, Mocerino F, D'Errico G, Pezzella A, Panseri S, Vitiello G, Sandri M. Designing bioinspired multifunctional nanoplatforms to support wound healing and skin regeneration: Mg-hydroxyapatite meets melanins. Colloids Surf B Biointerfaces 2024; 235:113756. [PMID: 38278033 DOI: 10.1016/j.colsurfb.2024.113756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Melanin is a multifunctional biological pigment that recently emerged as endowed with anti-inflammatory, antioxidant, and antimicrobial properties and with high potentialities in skin protection and regenerative medicine. Here, a biomimetic magnesium-doped nano-hydroxyapatite (MgHA) was synthesized and decorated with melanin molecules starting from two different monomeric precursors, i.e. 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and dopamine (DA), demonstrating to be able to polymerize on the surface of MgHA nanostructures, thus leading to a melanin coating. This functionalization was realized by a simple and green preparation method requiring mild conditions in an aqueous medium and room temperature. Complementary spectroscopy and electron imaging analyses were carried out to define the effective formation of a stable coating, the percentage of the organic compounds, and the structural properties of resulting melanin-coated nanostructures, which showed good antioxidant activity. The in vitro interaction with a cell model, i.e. mouse fibroblasts, was investigated. The excellent biocompatibility of all bioinspired nanostructures was confirmed from a suitable cell proliferation. Finally, the enhanced biological performances of the nanostructures coated with melanin from DHICA were confirmed by scratch assays. Jointly our findings indicated that low crystalline MgHA and melanin pigments can be efficiently combined, and the resulting nanostructures are promising candidates as multifunctional platforms for a more efficient approach for skin regeneration and protection.
Collapse
Affiliation(s)
- Franco Furlani
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy.
| | - Giulio Pota
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Arianna Rossi
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98166 Messina, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy
| | - Fabio Mocerino
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy; CSGI, Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Florence, Italy
| | - Alessandro Pezzella
- Institute for Polymers Composites and Biomaterials (IPCB) CNR, Via Campi Flegrei 34, IT-80078 Pozzuoli (Na), Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Piazza S. Marco, 4, Florence, Naples 50121, Italy; Department of Physics "Ettore Pancini", University of Naples Federico II, via Cintia 21, I-80126 Napoli, Italy, Via Campi Flegrei 34, IT-80078 Pozzuoli (Na), Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy
| | - Silvia Panseri
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Napoli, Italy and Bioelectronics Task Force at University of Naples Federico II, Naples, Italy; CSGI, Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Florence, Italy.
| | - Monica Sandri
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (former ISTEC), Via Granarolo 64, I - 48018 Faenza (RA), Italy
| |
Collapse
|
13
|
Nadimifar M, Ghourchian H, Hosta-Rigau L, Moosavi-Movahedi AA. Structural and functional alterations of polydopamine-coated hemoglobin: New insights for the development of successful oxygen carriers. Int J Biol Macromol 2023; 253:127275. [PMID: 37804889 DOI: 10.1016/j.ijbiomac.2023.127275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
One of the major factors that is currently hindering the development of hemoglobin (Hb)-based oxygen carriers (HBOCs) is the autoxidation of Hb into nonfunctional methemoglobin. Modification with polydopamine (PDA), which is a biocompatible free radical scavenger has shown the ability to protect Hb against oxidation. Due to its tremendous potential in the development of successful HBOCs, herein, we conduct a thorough evaluation of the effect of PDA on the stability, aggregation, structure and function of the underlying Hb. By UV-vis spectrometry we show that PDA can prevent Hb's aggregation while thermal denaturation studies indicate that, although PDA coating resulted in a lower midpoint transition temperature, it was also able to protect the protein from full denaturation. These results are further corroborated by differential scanning calorimetry. Circular dichroism reveals that PDA can promote changes in Hb's secondary structure while, by UV-vis spectroscopy, we show that PDA also interacts with the porphyrin complex located in Hb's hydrophobic pocket. Last but not least, affinity studies show that PDA-coated Hb has a higher capability for oxygen release. Such an effect is further enhanced at lower pH. Importantly, through molecular docking simulations we provide a plausible explanation for the observed experimental results.
Collapse
Affiliation(s)
| | | | - Leticia Hosta-Rigau
- DTU Health Tech, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
14
|
Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Polydopamine-Based Nanoprobes Application in Optical Biosensing. BIOSENSORS 2023; 13:956. [PMID: 37998131 PMCID: PMC10669744 DOI: 10.3390/bios13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Polydopamine (PDA), the synthetic counterpart of melanin, is a widely investigated bio-inspired material for its chemical and photophysical properties, and in the last few years, bio-application of PDA and PDA-based materials have had a dramatic increase. In this review, we described PDA application in optical biosensing, exploring its multiple roles as a nanomaterial. In optical sensing, PDA can not only be used for its intrinsic fluorescent and photoacoustic properties as a probe: in some cases, a sample optical signal can be derived by melanin generation in situ or it can be enhanced in another material thanks to PDA modification. The various possibilities of PDA use coupled with its biocompatibility will indeed widen even more its application in optical bioimaging.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (A.M.-P.); (D.M.)
| |
Collapse
|
15
|
Yeh SL, Alexander D, Narasimhalu N, Koshani R, Sheikhi A. Mussel-Inspired Nanocellulose Coating for Selective Neodymium Recovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44154-44166. [PMID: 37523242 DOI: 10.1021/acsami.3c04512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Neodymium (Nd) is one of the most in-demand rare earth elements (REEs) for developing the next generation of magnetic medical devices and clean energy. Eco-friendly and sustainable nanotechnology for REE recovery may be highly suitable to address the limited global supply while minimizing the environmental footprints of current practice, such as solvent extraction. Here, we present a novel one-step mussel-inspired nanocellulose coating (MINC) using bifunctional hairy cellulose nanocrystals (BHCNC), bearing dialdehyde and dicarboxylate groups. The dialdehyde groups enable dopamine-mediated orthogonal conjugation of BHCNC to substrates, such as microparticles, while the high content of dicarboxylate groups yields high-capacity and selective Nd removal against ferric, calcium, and sodium ions. To the best of our knowledge, the MINC-treated substrate provides the most rapid selective removal and recovery of Nd ions even at low Nd concentrations with a capacity that is among the highest reported values. We envision that the MINC will provide new opportunities in developing next-generation bio-based materials and interfaces for the sustainable recovery of REEs and other precious elements.
Collapse
Affiliation(s)
- Shang-Lin Yeh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dawson Alexander
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Naveen Narasimhalu
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
17
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Chen G, Jin B, Zhang Z, Zhao J, Li Y, He Y, Luo J. Engineering Active-Site-Induced Homogeneous Growth of Polydopamine Nanocontainers on Loading-Enhanced Ultrathin Graphene for Smart Self-Healing Anticorrosion Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23679-23689. [PMID: 37145018 DOI: 10.1021/acsami.3c03276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Engineering nanocontainers with encapsulated inhibitors onto graphene has been an emerging technology for developing self-healing anticorrosion coatings. However, the loading contents of inhibitors are commonly limited by inhomogeneous nanostructures of graphene platforms. Here, we propose an activation-induced ultrathin graphene platform (UG-BP) with the homogeneous growth of polydopamine (PDA) nanocontainers encapsulated with benzotriazole (BTA). Ultrathin graphene prepared by catalytic exfoliation and etching activation provides an ideal platform with an ultrahigh specific surface area (1646.8 m2/g) and homogeneous active sites for the growth of PDA nanocontainers, which achieves a high loading content of inhibitors (40 wt %). The obtained UG-BP platform exhibits pH-sensitive corrosion inhibition effects due to its charged groups. The epoxy/UG-BP coating possesses integrated properties of enhanced mechanical properties (>94%), efficient pH-sensitive self-healing behaviors (98.5% healing efficiency over 7 days), and excellent anticorrosion performance (4.21 × 109 Ω·cm2 over 60 days), which stands out from previous related works. Moreover, the interfacial anticorrosion mechanism of UG-BP is revealed in detail, which can inhibit the oxidation of Fe2+ and promote the passivation of corrosion products by a dehydration process. This work provides a universal activation-induced strategy for developing loading-enhanced and tailor-made graphene platforms in extended smart systems and demonstrates a promising smart self-healing coating for advanced anticorrosion applications.
Collapse
Affiliation(s)
- Guangyan Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Bao Jin
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Zhehao Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jun Zhao
- Division of Machine Elements, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Yunze Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yongyong He
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Sardoiwala MN, Nagpal S, Bhatt B, Roy Choudhury S, Karmakar S. Improved Melatonin Delivery by a Size-Controlled Polydopamine Nanoformulation Attenuates Preclinical Diabetic Retinopathy. Mol Pharm 2023. [PMID: 37116080 DOI: 10.1021/acs.molpharmaceut.2c01039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Oxidative stress, reactive oxygen species generation, and overexpression of VEGF are signatory events in diabetic retinopathy. The downregulation of VEGF and anti-inflammatory action pave the way for diabetic retinopathy (DR) therapy. In that, lower absorption kinetics of melatonin limits its immense therapeutic potential. Hence, we have demonstrated a reverse microemulsion method to synthesize melatonin-loaded polydopamine nanoparticles to replenish both at a single platform with an improved melatonin delivery profile. The study has evaluated in vitro and in vivo protection efficiency of biocompatible melatonin-loaded polydopamine nanoparticles (MPDANPs). The protection mechanism was explained by downregulation of VEGF, CASPASE3, and PKCδ against high-glucose/streptozotocin (STZ)-induced insults, in vitro and in vivo. The anti-inflammatory and antiangiogenic effect and potential of MPDANPs to enhance melatonin in vivo stability with prolonged circulation time have proved MPDANPs as a potential therapeutic candidate in DR management. The DR therapeutic potential of MPDANPs has been arbitrated by improving the bioavailability of melatonin and inhibition of VEGF-PKCδ crosstalk in vivo.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Shakti Nagpal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Babita Bhatt
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Subhasree Roy Choudhury
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| | - Surajit Karmakar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, SAS Nagar 140306, Punjab, India
| |
Collapse
|
20
|
Chen L, Chen C, Yan Y, Yang L, Liu R, Zhang J, Zhang X, Xie C. Folic Acid Adjustive Polydopamine Organic Nanoparticles Based Fluorescent Probe for the Selective Detection of Mercury Ions. Polymers (Basel) 2023; 15:polym15081892. [PMID: 37112040 PMCID: PMC10142360 DOI: 10.3390/polym15081892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Polydopamine fluorescent organic nanomaterials present unique physicochemical and biological properties, which have great potential application in bio-imaging and chemical sensors. Here, folic acid (FA) adjustive polydopamine (PDA) fluorescent organic nanoparticles (FA-PDA FONs) were prepared by a facile one-pot self-polymerization strategy using dopamine (DA) and FA as precursors under mild conditions. The as-prepared FA-PDA FONs had an average size of 1.9 ± 0.3 nm in diameter with great aqueous dispersibility, and the FA-PDA FONs solution exhibit intense blue fluorescence under 365 nm UV lamp, and the quantum yield is ~8.27%. The FA-PDA FONs could be stable in a relatively wide pH range and high ionic strength salt solution, and the fluorescence intensities are constant. More importantly, here we developed a method for rapidly selective and sensitive detection of mercury ions (Hg2+) within 10 s using FA-PDA FONs based probe, the fluorescence intensities of FA-PDA FONs presented a great linear relationship to Hg2+ concentration, the linear range and limit of detection (LOD) were 0-18 µM and 0.18 µM, respectively. Furthermore, the feasibility of the developed Hg2+ sensor was verified by determination of Hg2+ in mineral water and tap water samples with satisfactory results.
Collapse
Affiliation(s)
- Lijuan Chen
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Changchang Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yehan Yan
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Linlin Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Renyong Liu
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Jiajia Zhang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chenggen Xie
- College of Materials and Chemical Engineering, West Anhui University, Lu'an 237012, China
| |
Collapse
|
21
|
Badillo-Ramírez I, Landeros-Rivera B, Saniger JM, Popp J, Cialla-May D. SERS-based detection of 5- S-cysteinyl-dopamine as a novel biomarker of Parkinson's disease in artificial biofluids. Analyst 2023; 148:1848-1857. [PMID: 36939184 DOI: 10.1039/d3an00027c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The early detection of Parkinson's disease (PD) can significantly improve treatment and quality of life in patients. 5-S-Cysteinyl-dopamine (CDA) is a key metabolite of high relevance for the early detection of PD. Therefore, its sensitive detection with fast and robust methods can improve its use as a biomarker. In this work we show the potentialities of label-free SERS spectroscopy in detecting CDA in aqueous solutions and artificial biofluids, with a simple, fast and sensitive approach. We present a detailed experimental SERS band assignment of CDA employing silver nanoparticle (AgNP) substrates in aqueous media, which was supported by theoretical calculations and simulated Raman and SERS spectra. The tentative orientation of CDA over the AgNP was also studied, indicating that catechol and carboxylic acid play a key role in the metallic surface adsorption. Moreover, we showed that SERS can allow us to identify CDA in aqueous media at low concentration, leading to the identification of some of its characteristic bands in pure water and in synthetic cerebrospinal fluid (SCSF) below 1 × 10-8 M, while its band identification in simulated urine (SUR) can be reached at 1 × 10-7 M. In conclusion, we show that CDA can be suitably detected by means of label-free SERS spectroscopy, which can significantly improve its sensitive detection for further analytical studies as a novel biomarker and further clinical diagnosis in PD patients.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Bruno Landeros-Rivera
- Facultad de Química, Departamento de Química Inorgánica y Nuclear, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
22
|
Lettieri M, Scarano S, Caponi L, Bertolini A, Saba A, Palladino P, Minunni M. Serotonin-Derived Fluorophore: A Novel Fluorescent Biomaterial for Copper Detection in Urine. SENSORS (BASEL, SWITZERLAND) 2023; 23:3030. [PMID: 36991740 PMCID: PMC10055690 DOI: 10.3390/s23063030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
We took advantage of the fluorescent features of a serotonin-derived fluorophore to develop a simple and low-cost assay for copper in urine. The quenching-based fluorescence assay linearly responds within the concentration range of clinical interest in buffer and in artificial urine, showing very good reproducibility (CVav% = 4% and 3%) and low detection limits (16 ± 1 μg L-1 and 23 ± 1 μg L-1). The Cu2+ content was also estimated in human urine samples, showing excellent analytical performances (CVav% = 1%), with a limit of detection of 59 ± 3 μg L-1 and a limit of quantification of 97 ± 11 μg L-1, which are below the reference value for a pathological Cu2+ concentration. The assay was successfully validated through mass spectrometry measurements. To the best of our knowledge, this is the first example of copper ion detection exploiting the fluorescence quenching of a biopolymer, offering a potential diagnostic tool for copper-dependent diseases.
Collapse
Affiliation(s)
- Mariagrazia Lettieri
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Simona Scarano
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Laura Caponi
- Laboratory of Clinical Pathology, University Hospital of Pisa, 56126 Pisa, Italy
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Saba
- Laboratory of Clinical Pathology, University Hospital of Pisa, 56126 Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pasquale Palladino
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Maria Minunni
- Department of Chemistry ‘Ugo Schiff’, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
23
|
Han Q, Zhang C, Guo T, Tian Y, Song W, Lei J, Li Q, Wang A, Zhang M, Bai S, Yan X. Hydrogel Nanoarchitectonics of a Flexible and Self-Adhesive Electrode for Long-Term Wireless Electroencephalogram Recording and High-Accuracy Sustained Attention Evaluation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209606. [PMID: 36620938 DOI: 10.1002/adma.202209606] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogels are ideal building blocks to fabricate the next generation of electrodes for acquiring high-quality physiological electrical signals, for example, electroencephalography (EEG). However, collection of EEG signals still suffers from electrode deformation, sweating, extensive body motion and vibration, and environmental interference. Herein, polyvinyl alcohol and polyvinylpyrrolidone are selected to prepare a hydrogel network with tissue-like modulus and excellent flexibility. Additionally, polydopamine nanoparticles, obtained by polydopamine peroxidation, are integrated into the hydrogel to endow them with higher transparency, higher self-adhesion, and lower impedance. Consequently, a multichannel and wirelessly operated hydrogel electrode can establish a conformal and stable interface with tissue and illustrate high channel uniformity, low interfacial contact impedance, low power noise, long-term stability, and a tolerance to sweat and motion. Furthermore, the hydrogel electrode shows the unprecedented ability to classify the recorded high-quality prefrontal EEG signals into seven-category sustained attention with high accuracy (91.5%), having great potential applications in the assessment of human consciousness and in multifunctional diagnoses.
Collapse
Affiliation(s)
- Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chao Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Taoming Guo
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Yajie Tian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Wei Song
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Jiaxin Lei
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, No.30, Shuangqing Road, Haidian District, Beijing, 100084, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
24
|
Balavigneswaran CK, Jaiswal V, Venkatesan R, Karuppiah PS, Sundaram MK, Vasudha TK, Aadinath W, Ravikumar A, Saravanan HV, Muthuvijayan V. Mussel-Inspired Adhesive Hydrogels Based on Laponite-Confined Dopamine Polymerization as a Transdermal Patch. Biomacromolecules 2023; 24:724-738. [PMID: 36599131 DOI: 10.1021/acs.biomac.2c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transdermal patch for local drug delivery has attained huge attention as an attractive alternative to existing drug delivery techniques as it is painless and user-friendly. However, most adhesive hydrogels either do not have adequate adhesion with the skin or cause discomfort while being removed from the skin surface due to excessive adhesion. To address this challenge, we developed an adhesive hydrogel based on laponite-confined dopamine polymerization as a transdermal patch. Laponite RDS nanoclay was used to control the hydrogel's viscous behavior and dopamine polymerization. The laponite polymerized polydopamine (l-PDA) was incorporated into poly(vinyl alcohol) (PVA) to make the PVA-l-PDA hydrogel. The laponite-confined polymerization improved the hydrogels' water contact angle and adhesion strength. The adhesion strength of the PVA-l-PDA hydrogel was adequate to adhere to the evaluated goat skin, glass, and polypropylene surfaces. Notably, the PVA-l-PDA hydrogel was easy to peel off from the skin. Further, we evaluated the drug release profile in goat skin using lidocaine as a model drug. We observed the controlled release of lidocaine from the PVA-l-PDA hydrogel compared to the PVA-PDA hydrogel. In addition, the nanoclay-confined adhesive hydrogel did not show any cytotoxic effect in fibroblasts. Altogether, PVA-l-PDA hydrogels offer appropriate adhesive strength, toughness, and biocompatibility. Thus, the PVA-l-PDA hydrogel has the potential to be an efficient transdermal patch.
Collapse
Affiliation(s)
- Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vaibhav Jaiswal
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Ramya Venkatesan
- Cancer Biology and Reproductive Endocrinology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Prakash Shyam Karuppiah
- Research and Development Division, V.V.D and Sons Private Limited, Thoothukudi 628003, Tamil Nadu, India
| | - Manoj Kumar Sundaram
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - T K Vasudha
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - W Aadinath
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Akhil Ravikumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Hari Vishal Saravanan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
25
|
Meng Z, Ju Z, Fan J, Wang Y, Wu X, Lu R, Zhou W, Gao H. A fluorescent turn-off sensor based on polydopamine modified Mg-Al layered double hydroxide for the detection of thiram in apple and pear samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Zhang W, Wen J, Yang J, Li M, Peng F, Ma M, Bian J. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix. Int J Biol Macromol 2022; 223:1-10. [PMID: 36336151 DOI: 10.1016/j.ijbiomac.2022.10.262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Polymers with high conductivity and cross-linking ability are ideal materials for the preparation of conductive hydrogels for application in wearable electronic devices. However, the fabrication of conductive polymer-incorporated hydrogels with good synergistic properties remains a great challenge due to the hydrophobicity and opacity of conjugated π conductive polymers. In this study, a multifunctional hybrid hydrogel was prepared by incorporating hemicellulose-decorated polypyrrole (H/PPY), polyvinyl alcohol (PVA), and tannic acid (TA) into a polyacrylamide (PAM) network. The addition of excess ammonium persulfate (APS) in the process of gelation not only initiated the polymerization of PAM but also resulted in the change of the hydrogel from opaque to transparent by continuously breaking and reducing the size of the PPY particles. The hybrid hydrogel exhibited high transparency and conductivity, good adhesion ability and mechanical performance, and high resistance strain sensitivity and could accurately monitor the strain signals of the index finger and elbow flexion and pulse beat during rest and exercise, which has promising potential for use in wearable or implantable smart sensor devices, electronic skins, and artificial intelligence applications.
Collapse
Affiliation(s)
- Wanjing Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jingyun Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jiyou Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Mingguo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
27
|
Prajapati KP, Anand BG, Ansari M, Tiku AB, Kar K. Tryptophan self-assembly yields cytotoxic nanofibers containing amyloid-mimicking and cross-seeding competent conformers. NANOSCALE 2022; 14:16270-16285. [PMID: 36300424 DOI: 10.1039/d2nr03544h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dietary consumption of Trp via protein-based foods is essential for the maintenance of crucial metabolic processes including the synthesis of proteins and several vital metabolites such as serotonin, melatonin, acetyl CoA, and NADP. However, the abnormal build-up of Trp is known to cause familial hypertryptophanemia and several brain-related medical complications. The molecular mechanism of the onset of such Trp-driven health issues is largely unknown. Here, we show that Trp, under the physiologically mimicked conditions of temperature and buffer, undergoes a concentration driven self-assembly process, yielding amyloid-mimicking nanofibers. Viable H-bonds, π-π interactions and hydrophobic contacts between optimally coordinated Trp molecules become important factors for the formation of a Trp nanoassembly that displays a hydrophobic exterior and a hydrophilic interior. Importantly, Trp nanofibers were found to possess high affinity for native proteins, and they act as cross-seeding competent conformers capable of nucleating amyloid formation in globular proteins including whey protein β-lactoglobulin and type II diabetes linked insulin hormone. Moreover, these amyloid mimicking Trp nanostructures showed toxic effects on neuroblastoma cells. Since the key symptoms in hypertryptophanemia such as behavioural defects and brain-damaging oxidative stress are also observed in amyloid related disorders, our findings on amyloid-like Trp-nanofibers may help in the mechanistic understanding of Trp-related complications and these findings are equally important for innovation in applied nanomaterials design and strategies.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
28
|
Pyne A, Nandi PK, Layek S, Bera N, Hazra R, Sarkar N. Deciphering Dual Modes of Parkinsonian Biomolecules Derived Fluorescent Nanoparticles: Protein Specificity and White Light Generation. J Phys Chem Lett 2022; 13:7016-7022. [PMID: 35900114 DOI: 10.1021/acs.jpclett.2c01190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dopamine (DA) and 3,4-dihydroxy-l-phenylalanine (L-Dopa or DPA), a marker and medicine for the neurological disorder Parkinson's disease (PD), lead to the formation of polymeric fluorescent nanoparticles (F-Poly NPs or F-NPs or simply, NPs). The interaction study between proteins and NPs shows prominent interaction with strong specificity toward albumin type proteins for DPA derived and mixed NPs. Furthermore, encapsulation of the anticancer drug doxorubicin hydrochloride (Dox) inside the NP-protein conjugates results in excellent white light emission with pronounced specificity toward albumin proteins for F-PDPA and F-Mix NPs. Finally, the use of BSA protein fibril resulting in strong binding with NPs along with Dox assisted white light emission has also been studied.
Collapse
Affiliation(s)
- Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ritwik Hazra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
29
|
Aguilar-Ferrer D, Szewczyk J, Coy E. Recent developments in polydopamine-based photocatalytic nanocomposites for energy production: Physico-chemical properties and perspectives. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Prajapati KP, Anand BG, Ansari M, Temgire M, Tiku AB, Kar K. Amyloid-mimicking toxic nanofibers generated via self-assembly of dopamine. NANOSCALE 2022; 14:8649-8662. [PMID: 35667124 DOI: 10.1039/d1nr07741d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular self-assembly of biologically relevant aromatic metabolites is known to generate cytotoxic nanostructures and this unique property has opened up new concepts in the molecular mechanisms of metabolite-linked disorders. Because aromaticity is intrinsic to the chemical structure of some important neuromodulators, the question of whether this property can promote their self-assembly into toxic higher order structures is highly relevant to the advancement of both fundamental and applied research. We show here that dopamine, an aromatic neuromodulator of high significance, undergoes self-assembly, under physiological buffer conditions, yielding cytotoxic supramolecular nanostructures. The oxidation of dopamine seems crucial in driving the self-assembly, and substantial inhibition effect was observed in the presence of antioxidants and acidic buffers. Strong H-bonds and π-π interactions between optimally-oriented dopamine molecules were found to stabilize the dopamine nanostructure which displayed characteristic β-structure-patterns with hydrophobic exterior and hydrophilic interior moieties. Furthermore, dopamine nanostructures were found to be highly toxic to human neuroblastoma cells, revealing apoptosis and necrosis-mediated cytotoxicity. Abnormal fluctuation in the dopamine concentration is known to predispose a multitude of neuronal complications, hence, the new findings of this study on oxidation-driven buildup of amyloid-mimicking neurotoxic dopamine assemblies may have direct relevance to the molecular origin of several dopamine related disorders.
Collapse
Affiliation(s)
| | | | - Masihuzzaman Ansari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institution of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashu Bhan Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
31
|
Li Q, Guo YM, Li GL. Redox-regulated synthesis of fluorescent polydopamine nanoparticles for detection of butyrylcholinesterase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121097. [PMID: 35259707 DOI: 10.1016/j.saa.2022.121097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Butyrylcholinesterase (BChE) is an enzyme which is relevant to a variety of diseases, and often serve as a common biomarker of health. In this work, a novel fluorescence sensor based on redox-regulated synthesis of polydopamine nanoparticles (PDANPs) has been developed for simple and sensitive sensing BChE activity. A facile and rapid one-step approach for the preparation of fluorescent PDANPs uses potassium permanganate to oxidize dopamine. We demonstrated that the fluorescence intensity of PDANPs is dependent on the dose of potassium permanganate. Butyrylcholinesterase catalyzes the hydrolysis of butyrylthiocholine iodide (BTCh) to produce thiolcholine (TCh) which in a redox reaction with potassium permanganate prevents the formation of fluorescent PDANP. As a result, the activity of BChE can be determined in line with changes in the fluorescence of PDANPs. Based on this finding, a convenient and label-free fluorescence sensor for BChE activity was established via redox-control of the fluorescence intensity of PDANPs. A dynamic response range for BChE is acquired within 0.5 ∼ 200 U/L along with a detection limit of 0.047 U/L. Importantly, the proposed method achieves practical application toward BChE in human sera. Moreover, its satisfying performance for screening of inhibitors was also proved. Hence, the proposed sensor holds great potential for cholinesterase-related biomedical investigation.
Collapse
Affiliation(s)
- Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yu-Meng Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Guang-Li Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
32
|
Tugce Yaman Y, Akbal Vural O, Bolat G, Abaci S. Peptide nanotubes/self-assembled polydopamine molecularly imprinted biochip for the impedimetric detection of human Interleukin-6. Bioelectrochemistry 2022; 145:108053. [DOI: 10.1016/j.bioelechem.2022.108053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
|
33
|
Recent Advances in Intrinsically Fluorescent Polydopamine Materials. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorescence nanoparticles have gained much attention due to their unique properties in the sensing and imaging fields. Among the very successful candidates are fluorescent polydopamine (FPDA) nanoparticles, attributed to their simplicity in tracing and excellent biocompatibility. This article aims to highlight the recent achievements in FPDA materials, especially on the part of luminescence mechanisms. We focus on the intrinsic fluorescence of PDA and will not discuss fluorescent reaction with a fluorometric reagent or coupling reaction with a fluorophore, which may cause more in vivo interferences. We believe that intrinsic FPDA presents great potential in bioapplications.
Collapse
|
34
|
Fan S, Lam Y, He L, Xin JH. Novel and Sustainable Colorants Developed via Incorporating Azo Chromophores into Dopamine Molecules. ACS OMEGA 2022; 7:11082-11091. [PMID: 35415376 PMCID: PMC8991931 DOI: 10.1021/acsomega.1c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Inspired by the application of dopamine as an "anchor" and UV absorber, novel sustainable colorants with biscatecholic structure were synthesized through a simple incorporation of simple azo chromophores with dopamine. Their structures were confirmed using MS and NMR analyses, and their application on textile materials was investigated. Compared to the simple azo chromophores with almost no coloring ability on fabrics, the biscatecholic colorants could color different fabrics effectively, mainly through self-polymerization only in the presence of a trace amount of organic base at room temperature, which is environmentally friendly in terms of saving resources and alleviating chemical pollution. Meanwhile, the UV resistance of colored fabrics was enhanced significantly, showing the advantage of protecting wearers from UV damage.
Collapse
Affiliation(s)
- Suju Fan
- Institute
of Textiles & Clothing, The Hong Kong
Polytechnic University, Hong Kong, China
- Shenzhen
Research Institute, The Hong Kong Polytechnic
University, Shenzhen, China
| | - Yintung Lam
- Institute
of Textiles & Clothing, The Hong Kong
Polytechnic University, Hong Kong, China
- Shenzhen
Research Institute, The Hong Kong Polytechnic
University, Shenzhen, China
| | - Liang He
- Institute
of Textiles & Clothing, The Hong Kong
Polytechnic University, Hong Kong, China
- Shenzhen
Research Institute, The Hong Kong Polytechnic
University, Shenzhen, China
| | - John H. Xin
- Institute
of Textiles & Clothing, The Hong Kong
Polytechnic University, Hong Kong, China
- Shenzhen
Research Institute, The Hong Kong Polytechnic
University, Shenzhen, China
| |
Collapse
|
35
|
Luo JS, Jin YP, Guo YM, Li Q. Redox-controlled synthesis of fluorescent polydopamine nanoparticles for label-free detection of glutathione. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Lin L, Zheng Q, Chen Q, Fang M, Lai Q, He X, Qin J, Lin ZJ, Lin R. Preparation of fluorescent organic nanoparticles via self-polymerization for tartrazine detection in food samples. NEW J CHEM 2022. [DOI: 10.1039/d1nj05176h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent polydopamine nanoparticles (PDA NPs) have been effectively synthesized by means of self-polymerization of dopamine under the strong alkaline condition of ethylenediamine at room temperature for 2.5 h.
Collapse
Affiliation(s)
- Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaoling Zheng
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiushuang Chen
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingjiao Lai
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinghao He
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinying Qin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zu-jin Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
37
|
Ashkar MA, Chandhru M, Sundar M, Kutti Rani S, Vasimalai N. The rapid synthesis of intrinsic green-fluorescent poly(pyrogallol)-derived carbon dots for amoxicillin drug sensing in clinical samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj03915j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of the amoxicillin drug using pyrogallol-derived carbon dots.
Collapse
Affiliation(s)
- M. A. Ashkar
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Chandhru
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Sundar
- Research, Science Academy of India, Madambakkam, Chennai-603 202, India
| | - S. Kutti Rani
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - N. Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| |
Collapse
|
38
|
Mavridi‐Printezi A, Menichetti A, Guernelli M, Montalti M. The Photophysics and Photochemistry of Melanin- Like Nanomaterials Depend on Morphology and Structure. Chemistry 2021; 27:16309-16319. [PMID: 34505731 PMCID: PMC9291563 DOI: 10.1002/chem.202102479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Melanin-like nanomaterials have found application in a large variety of high economic and social impact fields as medicine, energy conversion and storage, photothermal catalysis and environmental remediation. These materials have been used mostly for their optical and electronic properties, but also for their high biocompatibility and simplicity and versatility of preparation. Beside this, their chemistry is complex and it yields structures with different molecular weight and composition ranging from oligomers, to polymers as well as nanoparticles (NP). The comprehension of the correlation of the different compositions and morphologies to the optical properties of melanin is still incomplete and challenging, even if it is fundamental also from a technological point of view. In this minireview we focus on scientific papers, mostly recent ones, that indeed examine the link between composition and structural feature and photophysical and photochemical properties proposing this approach as a general one for future research.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| |
Collapse
|
39
|
Pyne A, Nandi S, Layek S, Ghosh M, Nandi PK, Bera N, Sarkar N. Influence of a Polyneurotransmitter on DNA-Mediated Förster-Based Resonance Energy Transfer: A Path Leading to White Light Generation. J Phys Chem B 2021; 125:12637-12653. [PMID: 34784202 DOI: 10.1021/acs.jpcb.1c06836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiologically important biomolecule, dopamine (DA), shows strong self-oxidation and aggregation behaviors, which have been controlled and modulated to result in fluorescent polydopamine (F-PDA) nanoparticles. On the other hand, the simultaneous binding of two diverse deoxyribonucleic acid (DNA) binding probes, 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and ethidium bromide (EtBr), has been elaborately established to follow the Förster-based resonance energy transfer (FRET) pathway. The comparative understanding of this DNA-mediated FRET in three media, phosphate buffer saline (PBS) of pH 7.4, DA, and F-PDA, has concluded that the FRET efficiency in the three media follows the order: PBS > DA > F-PDA. This controlled FRET in the fluorescent F-PDA matrix serves a pivotal role for efficient white light (WL) generation with excellent Commission Internationale de l'Eclairage (CIE) parameters that match well with that of pure WL emission. The obtained WL emission has been shown to be very specific with respect to concentrations of different participating components and the excitation wavelength of the illuminating source. Furthermore, the optical properties of the WL emitting solution have been observed to be retained excellently inside the well-known agarose gel matrix. Finally, the mechanistic pathway behind such a FRET-based WL generation has been established in detail, and to the best of our knowledge, the current study offers the first and only report that discloses the influence of a fluorescent polyneurotransmitter matrix for successful generation of WL emission.
Collapse
Affiliation(s)
- Arghajit Pyne
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Souvik Layek
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pratyush Kiran Nandi
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nanigopal Bera
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
40
|
Dube T, Kumar N, Bishnoi M, Panda JJ. Dual Blood-Brain Barrier-Glioma Targeting Peptide-Poly(levodopamine) Hybrid Nanoplatforms as Potential Near Infrared Phototheranostic Agents in Glioblastoma. Bioconjug Chem 2021; 32:2014-2031. [PMID: 34461019 DOI: 10.1021/acs.bioconjchem.1c00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Combined chemo-phototherapy for boosting the efficacy of individual modalities by synergism for antiglioma treatments is in its embryonic stage and far away from effective clinical translation. Herein, moving a step closer, we recommend a facile stratagem to fabricate smart biocompatible and biodegradable multifunctional nanoplatforms comprising inherently fluorescent poly(levodopamine) nanoparticles (FLs) co-loaded with doxorubicin (DOX) and indocyanine green (ICG). The designed near-infrared (NIR) phototheranostic agents upon NIR laser irradiation helped precipitate combined chemo-phototherapy [both photothermal therapy (PTT) and photodynamic therapy (PDT)] and optical imaging under one roof. Excellent glioma-targeting ability was allocated to the nanoplatforms by conjugating them with a novel chimeric therapeutic peptide with glioma homing and antiglioma dual functionality. Further, DOX/ICG/peptide co-loaded nanoplatforms (FLDIPs) exhibited triggered drug release in response to multiple stimuli. Studies performed in 2D C6 glioma cells and 3D spheroids exhibited superior combined chemo-PDT/PTT effects (∼94% killing in cells and ∼87% in spheroids) of the designed FL based nanoplatforms compared to individual therapeutic components. Herein, the FL based multifunctional nanoplatforms with active targeting ability and stimuli responsive drug release behavior will further help in nullifying chemotherapy based adverse effects and mitigate chemo-resistance by adopting a combinatorial approach.
Collapse
Affiliation(s)
- Taru Dube
- Institute of Nano Science and Technology (INST), Mohali, Punjab 160062, India
| | - Nishant Kumar
- Institute of Nano Science and Technology (INST), Mohali, Punjab 160062, India
| | - Mahendra Bishnoi
- National Agri-food Biotechnology Institute (NABI), Mohali, Punjab 140308, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology (INST), Mohali, Punjab 160062, India
| |
Collapse
|
41
|
Chellasamy G, Ankireddy SR, Lee KN, Govindaraju S, Yun K. Smartphone-integrated colorimetric sensor array-based reader system and fluorometric detection of dopamine in male and female geriatric plasma by bluish-green fluorescent carbon quantum dots. Mater Today Bio 2021; 12:100168. [PMID: 34877521 PMCID: PMC8628042 DOI: 10.1016/j.mtbio.2021.100168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
A simple, cost-effective system was developed for dopamine (DA) detection using green synthesized 1-6 nm honey-based carbon quantum dots (H-CQDs) exhibiting bluish green fluorescence. The H-CQDs exhibited emission at 445 nm, with a quantum yield of ∼44%. The H-CQDs were used as a probe for electron transfer based DA detection and changes in H-CQD color in the presence of DA. The H-CQDs were formed with polar functional groups and were highly soluble in aqueous media. In the fluorometric mode, the proposed system demonstrated high specificity toward DA and effective limit of detection (LOD) values of 6, 8.5, and 8 nM in deionized (DI) water, male geriatric plasma, and female geriatric plasma, respectively, in the linear range 100 nM-1000 μM. In the colorimetric mode, the color changed within 5 min, and the LOD was 163 μM. A colorimetric sensor array system was used to precisely detect DA with a smartphone-integrated platform using an in house built imaging application and an analyzer app. Additionally, no additives were required, and the H-CQDs were not functionalized. More importantly, the H-CQDs were morphologically and analytically characterized before and after DA detection. Because the sensor array-based system allows high specificity DA detection in both DI water and geriatric plasma, it will play an important role in biomedical applications.
Collapse
Affiliation(s)
- Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Seshadri Reddy Ankireddy
- Department of Chemical Sciences, Dr. Buddolla's Institute of Life Sciences, Tirupathi, 517503, India
| | - Kook-Nyung Lee
- IVD Device Research Institute, Wizbiosolutions, Inc., Gyeonggi-do, 13209, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
42
|
Badillo-Ramírez I, Saniger JM, Popp J, Cialla-May D. SERS characterization of dopamine and in situ dopamine polymerization on silver nanoparticles. Phys Chem Chem Phys 2021; 23:12158-12170. [PMID: 34008659 DOI: 10.1039/d1cp00966d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dopamine (DA) regulates several functions in the central nervous system and its depletion is responsible for psychological disorders like Parkinson's disease. Several analytical approaches have been presented for DA detection in pathological diagnosis. SERS spectroscopy is a highly promising technique for the sensitive detection of DA. However, an improvement in its detection in aqueous solution is highly desirable for reliable quantification in biological fluids. In this work, we explored a label-free SERS approach for DA detection, employing two conventional methods to synthesize Ag colloids: reduction via citrates (c-AgNPs) and reduction via hydroxylamine (h-AgNPs), and SERS measurements were performed with a laser at 488 nm wavelength. Under these conditions, DA was identified through reproducible SERS spectra in the c-AgNP medium; however, the SERS spectra of DA in h-AgNP solution showed a completely different SERS profile. SERS band analysis revealed that DA in h-AgNPs was oxidized and converted into polydopamine (PDA), which was triggered after exposure to laser radiation. DA oxidation and PDA formation were followed over time through the SERS band profile at pH 7, 9 and 12. We found that in situ PDA formation started after 50 min of laser irradiation of DA at pH 7, while DA was quickly oxidized at pH 9 and 12. Here, we present a detailed SERS band analysis of PDA, which sheds light on the molecular steps in the pathway formation of the PDA structure. Spectroscopic analysis and characterization revealed that a long laser exposure time led to the formation of stable PDA complexes with AgNPs, which allowed us to propose a novel approach for synthesis of AgNP-PDA composites. In conclusion, to detect DA through a label-free SERS approach, c-AgNPs must be employed, while stable AgNP-PDA materials can be achieved with h-AgNPs and 488 nm laser excitation.
Collapse
Affiliation(s)
- Isidro Badillo-Ramírez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - José M Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito exterior S/N, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745, Jena, Germany and Leibniz Institute of Photonic Technology, Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07745, Jena, Germany and Leibniz Institute of Photonic Technology, Jena, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
43
|
Li Q, Zhang T, Chen J, Ji W, Wei Y. In situ synthesis of fluorescent polydopamine polymer dots based on Fenton reaction for a multi-sensing platform. J Mater Chem B 2021; 9:5503-5513. [PMID: 34132319 DOI: 10.1039/d1tb00764e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of fluorescent nanosensors has attracted extensive research interest owing to their superior optoelectronic properties. However, current fluorescent nanoprobes generally involve complicated synthesis processes, background signal disturbance, and limited analyte detection. In this work, a facile and time-saving synthetic strategy for the preparation of green emitting polydopamine polymer dots (PDA-PDs) from dopamine via Fenton reaction at room temperature was proposed for the first time. The obtained PDA-PDs possessed excellent luminescence properties, with a long-wavelength emission of 522 nm, a large Stokes shift of 142 nm, and good photostability against ionic strength and UV irradiation. The formation mechanism of fluorescent PDA-PDs is as follows: in the presence of Fe2+ and H2O2, dopamine could rapidly undergo oxidation to its quinone derivatives and further polymerize to synthesize the fluorescent PDA-PDs with the acceleration of hydroxyl radicals produced from the Fenton reaction. Thus, a versatile turn-on fluorescence sensing method was developed for the detection of multi-analytes (including Fe2+, dopamine, H2O2, and glucose) based on monitoring the intrinsic fluorescence signal of the in situ formation of PDA-PDs. This sensing method could be efficiently applied for the detection of Fe2+, dopamine, and glucose in real human serum samples. Moreover, a three-input AND molecular logic gate based on this sensing platform was designed with the fluorescence signal of PDA-PDs as the gate. Finally, the proposed PDA-PDs could have immense broad prospects in nanomaterials and biosensors.
Collapse
Affiliation(s)
- Quan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China.
| | - Taoyi Zhang
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Jing Chen
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Wenxi Ji
- Sinopec Beijing Research Institute of Chemical Industry, 14 North Third Ring Road East, Chaoyang District, Beijing 100014, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd North East Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
44
|
Wu D, Zhou J, Creyer MN, Yim W, Chen Z, Messersmith PB, Jokerst JV. Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chem Soc Rev 2021; 50:4432-4483. [PMID: 33595004 PMCID: PMC8106539 DOI: 10.1039/d0cs00908c] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenolics are ubiquitous in nature and have gained immense research attention because of their unique physiochemical properties and widespread industrial use. In recent decades, their accessibility, versatile reactivity, and relative biocompatibility have catalysed research in phenolic-enabled nanotechnology (PEN) particularly for biomedical applications which have been a major benefactor of this emergence, as largely demonstrated by polydopamine and polyphenols. Therefore, it is imperative to overveiw the fundamental mechanisms and synthetic strategies of PEN for state-of-the-art biomedical applications and provide a timely and comprehensive summary. In this review, we will focus on the principles and strategies involved in PEN and summarize the use of the PEN synthetic toolkit for particle engineering and the bottom-up synthesis of nanohybrid materials. Specifically, we will discuss the attractive forces between phenolics and complementary structural motifs in confined particle systems to synthesize high-quality products with controllable size, shape, composition, as well as surface chemistry and function. Additionally, phenolic's numerous applications in biosensing, bioimaging, and disease treatment will be highlighted. This review aims to provide guidelines for new scientists in the field and serve as an up-to-date compilation of what has been achieved in this area, while offering expert perspectives on PEN's use in translational research.
Collapse
Affiliation(s)
- Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cox HJ, Li J, Saini P, Paterson JR, Sharples GJ, Badyal JPS. Bioinspired and eco-friendly high efficacy cinnamaldehyde antibacterial surfaces. J Mater Chem B 2021; 9:2918-2930. [PMID: 33885647 DOI: 10.1039/d0tb02379e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antimicrobial essential oils are incorporated into mussel-inspired and natural plant polyphenol coatings as part of a single-step fabrication process. Polydopamine-cinnamaldehyde, polyethyleneimine-cinnamaldehyde, and tannic acid-cinnamaldehyde coatings exhibit strong antibacterial activities against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus (with the polydopamine- and tannic acid-based systems displaying log10 Reduction = 8). Cinnamaldehyde impregnation into porous non-woven polypropylene cloth, polytetrafluoroethylene membrane, and knitted cotton cloth also gives rise to high levels of antibacterial activity (log10 Reduction = 8). No loss in antibacterial efficacy is observed for non-woven polypropylene cloth impregnated with cinnamaldehyde over 17 recycle tests.
Collapse
Affiliation(s)
- Harrison J Cox
- Department of Chemistry, Durham University, Durham DH1 3LE, England, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Mesoporous Polydopamine Nanoparticles Attenuate Morphine Tolerance in Neuropathic Pain Rats by Inhibition of Oxidative Stress and Restoration of the Endogenous Antioxidant System. Antioxidants (Basel) 2021; 10:antiox10020195. [PMID: 33572871 PMCID: PMC7912557 DOI: 10.3390/antiox10020195] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress resulting from reactive oxygen species (ROS) is known to play a key role in numerous neurological disorders, including neuropathic pain. Morphine is one of the commonly used opioids for pain management. However, long-term administration of morphine results in morphine antinociceptive tolerance (MAT) through elevation of ROS and suppression of natural antioxidant defense mechanisms. Recently, mesoporous polydopamine (MPDA) nanoparticles (NPS) have been known to possess strong antioxidant properties. We speculated that morphine delivery through an antioxidant nanocarrier might be a reasonable strategy to alleviate MAT. MPDAs showed a high drug loading efficiency of ∼50%, which was much higher than conventional NPS. Spectral and in vitro studies suggest a superior ROS scavenging ability of NPS. Results from a rat neuropathic pain model demonstrate that MPDA-loaded morphine (MPDA@Mor) is efficient in minimizing MAT with prolonged analgesic effect and suppression of pro-inflammatory cytokines. Additionally, serum levels of liver enzymes and levels of endogenous antioxidants were measured in the liver. Treatment with free morphine resulted in elevated levels of liver enzymes and significantly lowered the activities of endogenous antioxidant enzymes in comparison with the control and MPDA@Mor-treated group. Histopathological examination of the liver revealed that MPDA@Mor can significantly reduce the hepatotoxic effects of morphine. Taken together, our current work will provide an important insight into the development of safe and effective nano-antioxidant platforms for neuropathic pain management.
Collapse
|
47
|
Lee SY, Yang M, Seo JH, Jeong DI, Hwang C, Kim HJ, Lee J, Lee K, Park J, Cho HJ. Serially pH-Modulated Hydrogels Based on Boronate Ester and Polydopamine Linkages for Local Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2189-2203. [PMID: 33416318 DOI: 10.1021/acsami.0c16199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elaborately and serially pH-modulated hydrogels possessing optimized viscoelastic natures for short gelation time and single syringe injection were designed for peritumoral injection of an anticancer agent. Boronate ester bonds between phenylboronic acid (PBA) (installed in HA-PBA (HP)) and dopamine (included in HA-dopamine (HD)) along with self-polymerization of dopamine (via interactions between HD conjugates) were introduced as the main cross-linking strategies of a hyaluronic acid (HA) hydrogel. Considering pKa values (8.0-9.5) of PBA and dopamine, the pH of each polymer dispersion was controlled elaborately for injection through a single syringe, and the final pH was tuned nearby the physiological pH (pH 7.8). The shear-thinning behavior, self-healing property, and single syringe injectability of a designed hydrogel cross-linked nearby physiological pH may provide its convenient application to peritumoral injection and prolonged retention in local cancer therapy. Erlotinib (ERT) was encapsulated in a microsphere (MS), and it was further embedded in an HP/HD-based hydrogel for sustained and locoregional delivery. A rheologically tuned hydrogel containing an ERT MS exhibited superior tumor-suppressive efficiencies compared to the other groups in A549 tumor-bearing mice. A designed injectable hydrogel through a single syringe system may be efficiently applied to local cancer therapy with lower toxicities to healthy organs.
Collapse
Affiliation(s)
- Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Mingyu Yang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji-Hye Seo
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Da In Jeong
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - ChaeRim Hwang
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Han-Jun Kim
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Junmin Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - KangJu Lee
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
- Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute, University of California-Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - JiHye Park
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
48
|
Singh I, Dhawan G, Gupta S, Kumar P. Recent Advances in a Polydopamine-Mediated Antimicrobial Adhesion System. Front Microbiol 2021; 11:607099. [PMID: 33510726 PMCID: PMC7835282 DOI: 10.3389/fmicb.2020.607099] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The drug resistance developed by bacteria during antibiotic treatment has been a call to action for researchers and scientists across the globe, as bacteria and fungi develop ever increasing resistance to current drugs. Innovative antimicrobial/antibacterial materials and coatings to combat such infections have become a priority, as many infections are caused by indwelling implants (e.g., catheters) as well as improving postsurgical function and outcomes. Pathogenic microorganisms that can exist either in planktonic form or as biofilms in water-carrying pipelines are one of the sources responsible for causing water-borne infections. To combat this, researchers have developed nanotextured surfaces with bactericidal properties mirroring the topographical features of some natural antibacterial materials. Protein-based adhesives, secreted by marine mussels, contain a catecholic amino acid, 3,4-dihydroxyphenylalanine (DOPA), which, in the presence of lysine amino acid, empowers with the ability to anchor them to various surfaces in both wet and saline habitats. Inspired by these features, a novel coating material derived from a catechol derivative, dopamine, known as polydopamine (PDA), has been designed and developed with the ability to adhere to almost all kinds of substrates. Looking at the immense potential of PDA, this review article offers an overview of the recent growth in the field of PDA and its derivatives, especially focusing the promising applications as antibacterial nanocoatings and discussing various antimicrobial mechanisms including reactive oxygen species-mediated antimicrobial properties.
Collapse
Affiliation(s)
- Indu Singh
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Gagan Dhawan
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Seema Gupta
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
49
|
Integration of fluorescent polydopamine nanoparticles on protamine for simple and sensitive trypsin assay. Anal Chim Acta 2021; 1148:338201. [PMID: 33516383 DOI: 10.1016/j.aca.2021.338201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
As an important protease, trypsin (TRY) has been identified as a key indicator of various diseases. A simple and sensitive strategy for TRY detection by using an environment-friendly biosafe probe is significant. Herein, we introduced negatively charged fluorescent polydopamine nanoparticles (PDNPs) with 4.8 nm diameter obtained through a controllable method as an effective probe for TRY. PDNPs exhibited excellent fluorescence property but integrated with protamine (Pro) to form an aggregation-caused quenching system via a static quenching mechanism. The quenching mechanism of Pro to PDNPs revealed the significant effect of the surface charge, functional groups, and appropriate size of PDNPs on quenching process. Given the specific hydrolysis of Pro by TRY, PDNPs were released from the quenching integration of PDNPs and Pro (PDNPs-Pro) and recovered their fluorescence. Thus, a fluorescence sensor for TRY with a linear range of 0.01 and 0.1 μg/mL and a detection limit of 6.7 ng/mL was developed without the disturbing from other proteases. Compared with other TRY assays, the biosensor based on PDNPs-Pro has the advantages of simple operation, environmental friendliness, and high sensitivity. This specific controlled-synthesis PDNPs would open up a new window for the extended application of fluorescent nanomaterials in biomedicine based on fluorescence changes induced by biological interaction.
Collapse
|
50
|
Tang Y, Zhou X, Xu K, Dong X. One-pot synthesis of fluorescent non-conjugated polymer dots for Fe 3+ detection and temperature sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118626. [PMID: 32604052 DOI: 10.1016/j.saa.2020.118626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The facile preparation of highly fluorescent polymer dots (PDs) still attracts substantial interest. Here, temperature/Fe3+ dual-responsive PDs are synthesized under mild conditions via the amidation reaction and self-assembly between hyperbranched polyethyleneimine and 5-aminosalicylic acid. The prepared PDs display strong green fluorescence with quantum yield of 15.5% and 53.3% in water and dimethylsulfoxide, respectively. The PDs also possess unique features, including excellent solubility, solvent polarity-dependent emission, remarkable photostability, as well as good salt-tolerance. Interestingly, the fluorescence intensity of PDs exhibits a reversible and sensitive response to temperature within 20-65 °C, which renders the PDs useful as a thermometer probe. Importantly, Fe3+ ion has the specific coordination ability toward the surface groups of PDs, leading to the aggregation and fluorescence quenching of PDs. Thus, the PDs are employed as a fluorescence probe for sensitive detecting Fe3+. The fluorescent intensity linearly decreases with increasing Fe3+ from 2 to 60 μM. Besides, Fe3+ concentration in river water samples is successfully assayed with this developed probe. The non-conjugated PDs with facile preparation, sensitive response to temperature and Fe3+ may hold potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| | - Xin Zhou
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Keke Xu
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| |
Collapse
|