1
|
Wang Y, Xu T, Song E, Jiang Y, Wang F, Gu C, Ju X, Bian Y, Song Y, Kengara FO, Jiang X. Ultrasensitive detection of trace Hg(Ⅱ) in acidic conditions using DMABR loaded on sepiolite: Function, application and mechanism studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134734. [PMID: 38850937 DOI: 10.1016/j.jhazmat.2024.134734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.
Collapse
Affiliation(s)
- Yuncheng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Xu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - En Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhao Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang Q, Cui L, Xu J, Dong F, Xiong Y. Ionic liquid decorated MXene/Poly (N-isopropylacrylamide) composite hydrogel with high strength, chemical stability and strong adsorption. CHEMOSPHERE 2022; 303:135083. [PMID: 35618063 DOI: 10.1016/j.chemosphere.2022.135083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Organic phenolic pollutants in industrial wastewater cause severe environmental pollution and physiological damage. Poly (N-isopropylacrylamide) (PNIPAM) hydrogels generally have poor mechanical strength and are also intrinsically frangible, limiting their widespread applications in wastewater treatment. Combining them with 2-dimensional materials can also only improve the mechanical properties of hydrogels. Here, we report a high-strength, chemical stability and strong adsorption MXene/poly (N-isopropylacrylamide) (PNIPAM) thermosensitive composite hydrogel for efficient removal of phenolic pollutants from industrial wastewater. Ionic liquids (ILs) were grafted onto the surface of MXenes and introduced into NIPAM monomer solution to obtain composite hydrogels by in-situ polymerization for improved mechanical strength and adsorption capacity of the composite hydrogel. Compared with the MXene/PNIPAM composite hydrogel, the introduction of ILs simultaneously improves the mechanical and adsorption properties of the composite hydrogel. The ILs bind to the surface of MXene flakes through electrostatic interactions, which improved the thermal stability and oxidation resistance of MXenes while maintaining its good dispersion. Using 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) modified MXene (MXene-EMIMBF4) did not change significantly were observed after aging for 45 days. As-prepared composite hydrogels demonstrated excellent mechanical properties, reusability, and high adsorption capacity for p-Nitrophenol (4-NP). The MXene-EMIMBF4/PNIPAM hydrogel could recover after ten 95% strain compression cycles under the synergistic effect of chemical bonding and electrostatic attraction. Its maximum adsorption capacity for 4-NP was 200.29 mg g-1 at room temperature, and the adsorption capacity maintained at ∼90% of its initial value after five adsorption cycles, which was related to the introduction of EMIMBF4 to form a denser network structure. The adsorption data followed the pseudo-second-order kinetics and Freundlich models.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Lingfeng Cui
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Xu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Efficient Removal of Nonylphenol Contamination from Water Using Optimized Magnesium Silicate. MATERIALS 2022; 15:ma15134445. [PMID: 35806571 PMCID: PMC9267514 DOI: 10.3390/ma15134445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Nonylphenol (NP) is considered to be an environmentally toxic, endocrine-disrupting chemical that affects humans and ecosystems. Adsorption is one of the most promising approaches for the removal of nonylphenol contamination from water. Herein, in order to design an adsorbent with high adsorption capacity, magnesium silicate with different Mg/Si ratios was successfully synthesized by a sol–gel method at 60 °C. Magnesium silicate with a Mg/Si ratio of 1:6 was found to possess the best adsorption performance, with maximum 4−NP sorption 30.84 mg/g under 25 °C and 0.2 g/L adsorbent dose. The adsorption was negatively affected by increasing adsorbent dose and temperature. The kinetics and isotherm of 4−NP adsorption by Mg/Si were well described by the pseudo−second−order and Sips model, respectively, and behavior was proven to be physisorption−enhanced by a chemical effect. Detailed characterization by XRD, BET, and SEM confirmed that the magnesium silicate possesses an amorphous, mesoporous structure. The study will contribute to the applicability of cheap magnesium silicate for removal of NP contamination in water.
Collapse
|
4
|
Wang Q, Xiong Y, Xu J, Dong F, Xiong Y. Oxidation-Resistant Cyclodextrin-Encapsulated-MXene/Poly (N-isopropylacrylamide) composite hydrogel as a thermosensitive adsorbent for phenols. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Cai J, Niu B, Xie Q, Lu N, Huang S, Zhao G, Zhao J. Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2917-2935. [PMID: 35148082 DOI: 10.1021/acs.est.1c07824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characteristic emerging pollutants at low concentration have raised much attention for causing a bottleneck in water remediation, especially in complex water matrices where high concentration of interferents coexist. In the future, tailored treatment methods are therefore of increasing significance for accurate removal of target pollutants in different water matrices. This critical review focuses on the overall strategies for accurately removing highly toxic emerging pollutants in the presence of typical interferents. The main difficulties hindering the improvement of selectivity in complex matrices are analyzed, implying that it is difficult to adopt a universal approach for multiple targets and water substrates. Selective methods based on assorted principles are proposed aiming to improve the anti-interference ability. Thus, typical approaches and fundamentals to achieve selectivity are subsequently summarized including their mechanism, superiority and inferior position, application scope, improvement method and the bottlenecks. The results show that different methods may be applicable to certain conditions and target pollutants. To better understand the mechanism of each selective method and further select the appropriate method, advanced methods for qualitative and quantitative characterization of selectivity are presented. The processes of adsorption, interaction, electron transfer, and bond breaking are discussed. Some comparable selective quantitative methods are helpful for promoting the development of related fields. The research framework of selectivity removal and its fundamentals are established. Presently, although continuous advances and remarkable achievements have been attained in the selective removal of characteristic organic pollutants, there are still various substantial challenges and opportunities. It is hopeful to inspire the researches on the new generation of water and wastewater treatment technology, which can selectively and preferentially treat characteristic pollutants, and establish a reliable research framework to lead the direction of environmental science.
Collapse
Affiliation(s)
- Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Qihao Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Ning Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Shuyu Huang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
6
|
Wang Z, Wang X, Li X, Zhang H, Wei J, Zhou Y. Effect of structure matching in the adsorption process: The preparation of alkylbenzene-functionalized polypropylene nonwoven using surface modification for adsorbing nonylphenol. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Wang X, Lu J, Zhao Y, Wang X, Lin Z, Liu X, Wu R, Yang C, Su X. Facile Fabrication of Nickel/Heazlewoodite@Carbon Nanosheets and their Superior Catalytic Performance of 4-Nitrophenol Reduction. ChemCatChem 2018. [DOI: 10.1002/cctc.201800889] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyu Wang
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education) School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
- Ministry Key Laboratory of Oil and Gas Fine Chemicals College of Chemistry and Chemical Engineer i ng; Xinjiang University; Urumqi 830046 P.R. China
| | - Jing Lu
- Academy of Instrument Analysis; Xinjiang Uygur Autonomous Region; Urumqi 830011 P.R. China
| | - Yunlong Zhao
- Ministry Key Laboratory of Oil and Gas Fine Chemicals College of Chemistry and Chemical Engineer i ng; Xinjiang University; Urumqi 830046 P.R. China
| | - Xiaopeng Wang
- Ministry Key Laboratory of Oil and Gas Fine Chemicals College of Chemistry and Chemical Engineer i ng; Xinjiang University; Urumqi 830046 P.R. China
| | - Zhang Lin
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education) School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| | - Xueming Liu
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education) School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| | - Ronglan Wu
- Ministry Key Laboratory of Oil and Gas Fine Chemicals College of Chemistry and Chemical Engineer i ng; Xinjiang University; Urumqi 830046 P.R. China
| | - Chao Yang
- Ministry Key Laboratory of Oil and Gas Fine Chemicals College of Chemistry and Chemical Engineer i ng; Xinjiang University; Urumqi 830046 P.R. China
| | - Xintai Su
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education) School of Environment and Energy; South China University of Technology; Guangzhou 510006 P.R. China
| |
Collapse
|
8
|
Diao X, Hu Y, He Y, Quan F, Wei C. Preparation of 3,3,3-trifluoropropyl functionalized hydrophobic mesoporous silica and its outstanding adsorption properties for dibutyl phthalate. RSC Adv 2017. [DOI: 10.1039/c6ra27958a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, 3,3,3-trifluoropropyltrimethoxysilane was first used as a modification agent to synthesize a highly hydrophobic mesoporous silica, TFP-MCM-41, using a refluxing method.
Collapse
Affiliation(s)
- Xi Diao
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Yun Hu
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal
| | - Yinyun He
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Feng Quan
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Chaohai Wei
- School of Environment and Energy
- South China University of Technology
- Guangzhou 510006
- P. R. China
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal
| |
Collapse
|
9
|
Zhen Y, Ning Z, Shaopeng Z, Yayi D, Xuntong Z, Jiachun S, Weiben Y, Yuping W, Jianqiang C. A pH- and Temperature-Responsive Magnetic Composite Adsorbent for Targeted Removal of Nonylphenol. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24446-24457. [PMID: 26492983 DOI: 10.1021/acsami.5b08709] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A pH- and temperature-responsive magnetic adsorbent [poly(N-isopropylacrylamide) grafted chitosan/Fe3O4 composite particles, CN-MCP], was synthesized for the removal of the endocrine-disrupting chemical nonylphenol. According to the structural characteristics (changeable surface-charge and hydrophilic/hydrophobic properties) of the targeted contaminant, CN-MCP was designed owning special structure (pH- and temperature-responsiveness for the changeable surface-charge and adjustable hydrophilic/hydrophobic properties, respectively). Compared to chitosan magnetic composite particles without grafting modification (CS-MCP) and several other reported adsorbents, CN-MCP exhibited relatively high adsorption capacity for nonylphenol under corresponding optimal conditions (123 mg/g at pH 9 and 20 °C; 116 mg/g at pH 5 and 40 °C). Meanwhile, high selectivity of the novel adsorbent in selective adsorption of nonylphenol from bisolute solution of nonylphenol and phenol was found. Effects of grafting ratio of the grafted polymer branches and coexisting inorganic salts on the adsorption were systematically investigated. Moreover, CN-MCP demonstrated desired reusability during 20 times of adsorption-desorption recycling. The high adsorption capacity, high selectivity, and desired reusability aforementioned revealed the significant application potential of CN-MCP in the removal of NP. On the basis of the adsorption behaviors, isotherms equilibrium, thermodynamics and kinetics studies, and instrumental analyses including X-ray photoelectron spectroscopy, BET specific surface area, zeta potential, and static water contact angle measurements, distinct adsorption mechanisms were found under various conditions: charge attraction between CN-MCP and the contaminant, as well as binding between polymeric branches of CN-MCP and nonyls, contributed to the adsorption at pH 9 and 20 °C; whereas hydrophobic interaction between CN-MCP and nonylphenol played a dominant role at pH 5 and 40 °C. The current study provided a strategy for the structural design of adsorbents according to the features of targeted emerging contaminants, and the continuity of the work was discussed and proposed.
Collapse
Affiliation(s)
- Yang Zhen
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhuo Ning
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhang Shaopeng
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Dong Yayi
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Zhang Xuntong
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Shen Jiachun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Yang Weiben
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Wang Yuping
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycling and Pollution Control, Nanjing Normal University , Nanjing 210023, P. R. China
| | - Chen Jianqiang
- College of Biology and the Environment, Nanjing Forestry University , Nanjing 210037, P.R. China
| |
Collapse
|