1
|
Hope MA, Cordova M, Mishra A, Gunes U, Caiazzo A, Datta K, Janssen RAJ, Emsley L. Axial-Equatorial Halide Ordering in Layered Hybrid Perovskites from Isotropic-Anisotropic 207 Pb NMR. Angew Chem Int Ed Engl 2024; 63:e202314856. [PMID: 38305510 DOI: 10.1002/anie.202314856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
Bandgap-tuneable mixed-halide 3D perovskites are of interest for multi-junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed-halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed-halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra. In particular, it has been suggested that there is a preference for occupation of the distinct axial and equatorial halide sites in mixed-halide 2D perovskites. 207 Pb NMR can be used to probe the atomic-scale structure of lead-halide materials, but although the isotropic 207 Pb shift is sensitive to halide stoichiometry, it cannot distinguish configurational isomers. Here, we use 2D isotropic-anisotropic correlation 207 Pb NMR and relativistic DFT calculations to distinguish the [PbX6 ] configurations in mixed iodide-bromide 3D FAPb(Br1-x Ix )3 perovskites and 2D BA2 Pb(Br1-x Ix )4 perovskites based on formamidinium (FA+ ) and butylammonium (BA+ ), respectively. We find that iodide preferentially occupies the axial site in BA-based 2D perovskites, which may explain the suppressed halide mobility.
Collapse
Affiliation(s)
- Michael A Hope
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manuel Cordova
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Aditya Mishra
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ummugulsum Gunes
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Alessandro Caiazzo
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Kunal Datta
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - René A J Janssen
- Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Gasevic T, Kleine Büning JB, Grimme S, Bursch M. Benchmark Study on the Calculation of 207Pb NMR Chemical Shifts. Inorg Chem 2024; 63:5052-5064. [PMID: 38446045 PMCID: PMC10951955 DOI: 10.1021/acs.inorgchem.3c04539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024]
Abstract
A benchmark set for the computation of 207Pb nuclear magnetic resonance (NMR) chemical shifts is presented. The PbS50 set includes conformer ensembles of 50 lead-containing molecular compounds and their experimentally measured 207Pb NMR chemical shifts. Various bonding motifs at the Pb center with up to seven bonding partners are included. Six different solvents were used in the measurements. The respective shifts lie in the range between +10745 and -5030 ppm. Several calculation settings are assessed by evaluating computed 207Pb NMR shifts for the use with different density functional approximations (DFAs), relativistic approaches, treatment of the conformational space, and levels for geometry optimization. Relativistic effects were included explicitly with the zeroth order regular approximation (ZORA), for which only the spin-orbit variant was able to yield reliable results. In total, seven GGAs and three hybrid DFAs were tested. Hybrid DFAs significantly outperform GGAs. The most accurate DFAs are mPW1PW with a mean absolute deviation (MAD) of 429 ppm and PBE0 with an MAD of 446 ppm. Conformational influences are small as most compounds are rigid, but more flexible structures still benefit from Boltzmann averaging. Including explicit relativistic treatments such as SO-ZORA in the geometry optimization does not show any significant improvement over the use of effective core potentials (ECPs).
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Julius B. Kleine Büning
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Holmes ST, Schönzart J, Philips AB, Kimball JJ, Termos S, Altenhof AR, Xu Y, O'Keefe CA, Autschbach J, Schurko RW. Structure and bonding in rhodium coordination compounds: a 103Rh solid-state NMR and relativistic DFT study. Chem Sci 2024; 15:2181-2196. [PMID: 38332836 PMCID: PMC10848688 DOI: 10.1039/d3sc06026h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Jasmin Schönzart
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam B Philips
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - James J Kimball
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Sara Termos
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Adam R Altenhof
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Yijue Xu
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| | - Christopher A O'Keefe
- Department of Chemistry & Biochemistry, University of Windsor Windsor ON N9B 3P4 Canada
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York Buffalo NY 14260-3000 USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University Tallahassee FL 32306 USA
- National High Magnetic Field Laboratory Tallahassee FL 32310 USA
| |
Collapse
|
4
|
Quarti C, Furet E, Katan C. DFT Simulations as Valuable Tool to Support NMR Characterization of Halide Perovskites: the Case of Pure and Mixed Halide Perovskites. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Claudio Quarti
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 FR-35000 Rennes France
- University of Mons Laboratory for Chemistry of Novel Materials BE-7000 Mons Belgium
| | - Eric Furet
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 FR-35000 Rennes France
| | - Claudine Katan
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 FR-35000 Rennes France
| |
Collapse
|
5
|
Holmes ST, Schurko RW. A DFT/ZORA Study of Cadmium Magnetic Shielding Tensors: Analysis of Relativistic Effects and Electronic-State Approximations. J Chem Theory Comput 2019; 15:1785-1797. [PMID: 30721042 DOI: 10.1021/acs.jctc.8b01296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theoretical considerations are discussed for the accurate prediction of cadmium magnetic shielding tensors using relativistic density functional theory (DFT). Comparison is made between calculations that model the extended lattice of the cadmium-containing solids using periodic boundary conditions and pseudopotentials with calculations that use clusters of atoms. The all-electron cluster-based calculations afford an opportunity to examine the importance of (i) relativistic effects on cadmium magnetic shielding tensors, as introduced through the ZORA Hamiltonian at either the scalar (SC) or spin-orbit (SO) levels and (ii) variation in the class of the DFT approximation. Twenty-three combinations of pseudopotentials or all-electron methods, DFT functionals, and relativistic treatments are assessed for the prediction of the principal components of the magnetic shielding tensors of 30 cadmium sites. We find that the inclusion of SO coupling can increase the cadmium magnetic shielding by as much as ca. 1100 ppm for a certain principal values; these effects are most pronounced for cadmium sites featuring bonds to other heavy atoms such as cadmium, iodine, or selenium. The best agreement with experimental values is found at the ZORA SO level in combination with a hybrid DFT method featuring a large admixture of Hartree-Fock exchange such as BH&HLYP. Finally, a theoretical examination is presented of the magnetic shielding tensor of the Cd(I) site in Cd2(AlCl4)2.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| | - Robert W Schurko
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON , Canada N9B 3P4
| |
Collapse
|
6
|
Determination of the Full 207Pb Chemical Shift Tensor of Anglesite, PbSO4, and Correlation of the Isotropic Shift to Lead–Oxygen Distance in Natural Minerals. CRYSTALS 2019. [DOI: 10.3390/cryst9010043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The full 207 Pb chemical shift (CS) tensor of lead in the mineral anglesite, PbSO 4 , was determined from orientation-dependent nuclear magnetic resonance (NMR) spectra of a large natural single crystal, using a global fit over two rotation patterns. The resulting tensor is characterised by the reduced anisotropy Δ δ = ( - 327 ± 4 ) ppm, asymmetry η C S = 0 . 529 ± 0 . 002 , and δ i s o = ( - 3615 ± 3 ) ppm, with the isotropic chemical shift δ i s o also verified by magic-angle spinning NMR on a polycrystalline sample. The initially unknown orientation of the mounted single crystal was included in the global data fit as well, thus obtaining it from NMR data only. By use of internal crystal symmetries, the amount of data acquisition and processing for determination of the CS tensor and crystal orientation was reduced. Furthermore, a linear correlation between the 207 Pb isotropic chemical shift and the shortest Pb–O distance in the co-ordination sphere of Pb 2 + solely surrounded by oxygen has been established for a large database of lead-bearing natural minerals.
Collapse
|
7
|
Affiliation(s)
- Sebastian Weiß
- Institut für Anorganische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Maximilian Auer
- Institut für Anorganische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Klaus Eichele
- Institut für Anorganische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Lars Wesemann
- Institut für Anorganische Chemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Alkan F, Dybowski C. Spin-orbit effects on the 125Te magnetic-shielding tensor: A cluster-based ZORA/DFT investigation. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 95:6-11. [PMID: 30189330 DOI: 10.1016/j.ssnmr.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Cluster-based calculations of 125Te magnetic-shielding tensors demonstrate that inclusion of spin-orbit effects is necessary to obtain the best agreement of theoretical predictions with experiment. The spin-orbit contribution to shielding depends on the oxidation state and stereochemistry of the 125Te site. Comparison of the performance of various density functionals indicates that GGA functionals behave similarly to each other in predicting NMR magnetic shielding. The use of hybrid functionals improves the predictive ability on average for a large set of 125Te-containing materials. The amount of Hartree-Fock exchange affects the predicted parameters. Inclusion of larger Hartree-Fock exchange contributions in hybrid functionals results in larger slopes of the correlation between calculated magnetic-shielding and experimental chemical-shift principal components, by 10-15% from the ideal value.
Collapse
Affiliation(s)
- Fahri Alkan
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
9
|
Zeman OEO, Hoch C, Hochleitner R, Bräuniger T. NMR interaction tensors of 51V and 207Pb in vanadinite, Pb 5(VO 4) 3Cl, determined from DFT calculations and single-crystal NMR measurements, using only one general rotation axis. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 89:11-20. [PMID: 29248754 DOI: 10.1016/j.ssnmr.2017.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Orientation-dependent NMR spectra of a single crystal of the mineral vanadinite, Pb5(VO4)3Cl, were acquired using only one rotation axis with a general orientation in the hexagonal crystal lattice (space group P63/m). The chemical shift (CS) tensors for the 207Pb on Wyckoff positions 6h and 4f, and both CS and quadrupole coupling tensor Q for 51V at the positions 6h were determined by including the NMR response of symmetry-related atoms in the unit cell (and in case of 207Pb at 4f, also the isotropic shift from MAS NMR spectra). This previously suggested 'single rotation method' greatly reduces the necessary amount of data acquisition and analysis. The precise orientation of the rotation axis could not be found by X-ray diffraction experiments because of the high linear absorption coefficient of vanadinite, which is chiefly due to its high lead content. The axis orientation was therefore included into the multi-parameter data fit routine. This NMR-based approach is widely applicable, and offers an alternative way of orienting single crystals. The NMR parameters derived from the tensor eigenvalues are δiso=(-1729±9) ppm, Δδ=(-1071±5) ppm, ηCS=0.362±0.008 for 207Pb at positions 6h, and δiso=(-1619±2) ppm, Δδ=(-780±58) ppm, ηCS=0.06±0.08 for positions 4f. For 51V, δiso=(-509±3) ppm, Δδ=(-37±2) ppm, ηCS=0.78±0.09, with the quadrupolar coupling described by χ=(2.52±0.01) MHz and ηQ=0.047±0.003. In contrast to the precisely determined tensor eigenvalues, the orientation of the eigenvectors in the crystal ab -plane of the vanadinite system could only be resolved by resorting to data obtained from density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Otto E O Zeman
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Constantin Hoch
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Rupert Hochleitner
- Mineralogical State Collection Munich (SNSB), Theresienstr. 4, 80333 Munich, Germany
| | - Thomas Bräuniger
- Department of Chemistry, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
10
|
Todisco S, Saielli G, Gallo V, Latronico M, Rizzuti A, Mastrorilli P. 31P and 195Pt solid-state NMR and DFT studies on platinum(i) and platinum(ii) complexes. Dalton Trans 2018; 47:8884-8891. [DOI: 10.1039/c8dt01561a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
31P and 195Pt solid state NMR spectra on anti-[(PHCy)ClPt(μ-PCy2)2Pt(PHCy)Cl] (3) and [(PHCy2)Pt(μ-PCy2)(κ2P,O-μ-POCy2)Pt(PHCy2)] (Pt–Pt) (4) were recorded under CP/MAS conditions (31P) or with the CP/CPMG pulse sequence (195Pt) and compared to data obtained by relativistic DFT calculations of 31P and 195Pt CS tensors and isotropic shielding at the ZORA Spin Orbit level.
Collapse
Affiliation(s)
- Stefano Todisco
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Giacomo Saielli
- Istituto per la Tecnologia delle Membrane
- Unità di Padova CNR
- Padova
- Italy
| | - Vito Gallo
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Mario Latronico
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Antonino Rizzuti
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| | - Piero Mastrorilli
- Dipartimento di Ingegneria Civile
- Ambientale
- del Territorio
- Edile e di Chimica (DICATECh)
- Politecnico di Bari
| |
Collapse
|
11
|
Zeman OEO, Moudrakovski IL, Hoch C, Hochleitner R, Schmahl WW, Karaghiosoff K, Bräuniger T. Determination of the31P and207Pb Chemical Shift Tensors in Pyromorphite, Pb5(PO4)3Cl, by Single-Crystal NMR Measurements and DFT Calculations. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Otto E. O. Zeman
- Department of Chemistry; University of Munich (LMU); Butenandtstraße 5-13 81377 Munich Germany
| | - Igor L. Moudrakovski
- Max-Planck-Institute for Solid-State Research; Heisenbergstraße 1 70569 Stuttgart Germany
| | - Constantin Hoch
- Department of Chemistry; University of Munich (LMU); Butenandtstraße 5-13 81377 Munich Germany
| | - Rupert Hochleitner
- Mineralogical State Collection Munich (SNSB); Theresienstraße 4 80333 Munich Germany
| | - Wolfgang W. Schmahl
- Mineralogical State Collection Munich (SNSB); Theresienstraße 4 80333 Munich Germany
- Department of Earth and Environmental Sciences; University of Munich (LMU); Theresienstraße 4 80333 Munich Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry; University of Munich (LMU); Butenandtstraße 5-13 81377 Munich Germany
| | - Thomas Bräuniger
- Department of Chemistry; University of Munich (LMU); Butenandtstraße 5-13 81377 Munich Germany
| |
Collapse
|
12
|
125 Te NMR shielding and optoelectronic spectra in XTe 3 O 8 (X = Ti, Zr, Sn and Hf) compounds: Ab initio calculations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Alkan F, Holmes ST, Dybowski C. Role of Exact Exchange and Relativistic Approximations in Calculating 19F Magnetic Shielding in Solids Using a Cluster Ansatz. J Chem Theory Comput 2017; 13:4741-4752. [DOI: 10.1021/acs.jctc.7b00555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fahri Alkan
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sean T. Holmes
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Cecil Dybowski
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Holmes ST, Bai S, Iuliucci RJ, Mueller KT, Dybowski C. Calculations of solid‐state
43
Ca NMR parameters: A comparison of periodic and cluster approaches and an evaluation of DFT functionals. J Comput Chem 2017; 38:949-956. [DOI: 10.1002/jcc.24763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| | - Shi Bai
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| | - Robbie J. Iuliucci
- Department of ChemistryWashington and Jefferson CollegeWashington Pennsylvania15301
| | - Karl T. Mueller
- Department of ChemistryPennsylvania State University, University Park Pennsylvania16802
- Physical and Computational Sciences Directorate, Pacific Northwest National LaboratoryRichland Washington99352
| | - Cecil Dybowski
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| |
Collapse
|
15
|
Southern SA, Errulat D, Frost JM, Gabidullin B, Bryce DL. Prospects for 207Pb solid-state NMR studies of lead tetrel bonds. Faraday Discuss 2017; 203:165-186. [DOI: 10.1039/c7fd00087a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The feasibility and value of 207Pb solid-state NMR experiments on compounds featuring lead tetrel bonds is explored. Although the definition remains to be formalized, lead tetrel bonds may be qualitatively described as existing when there is evidence of a net attractive interaction between an electrophilic region associated with lead in a molecular entity and a nucleophilic region in another, or the same, molecular entity. Unambiguous identification of lead tetrel bonds can be challenging due to the hypervalent tendency of lead. We report here a series of 207Pb solid-state NMR experiments on five metal–organic frameworks featuring lead coordinated to hydrazone-based ligands. Such frameworks may be held together in part by lead tetrel bonds. The acquisition of 207Pb solid-state NMR spectra for such materials is feasible and is readily accomplished using a combination of magic-angle spinning and Carr–Purcell–Meiboom–Gill methods in moderate to low applied magnetic fields. The lead centres are characterized by 207Pb isotropic chemical shifts ranging from −426 to −2591 ppm and chemical shift tensor spans ranging from 910 to 2681 ppm. Careful inspection of the structures of the compounds and the literature 207Pb NMR data may suggest that a tetrel bond to lead results in chemical shift parameters which are intermediate between those which are characteristic of holodirected and hemidirected lead coordination geometries. Challenges associated with DFT computations of the 207Pb NMR parameters are discussed. In summary, the 207Pb data for the compounds studied herein show a marked response to the presence of non-coordinating electron-rich moieties in close contact with the electrophilic surface of formally hemidirectionally coordinated lead compounds.
Collapse
Affiliation(s)
- Scott A. Southern
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Jamie M. Frost
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - David L. Bryce
- Department of Chemistry and Biomolecular Sciences
- Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
16
|
Ishii T, Suzuki K, Nakamura T, Yamashita M. An Isolable Bismabenzene: Synthesis, Structure, and Reactivity. J Am Chem Soc 2016; 138:12787-12790. [DOI: 10.1021/jacs.6b08714] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuya Ishii
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Katsunori Suzuki
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Taichi Nakamura
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Makoto Yamashita
- Department
of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
17
|
Alkan F, Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Spin-orbit effects on the (119)Sn magnetic-shielding tensor in solids: a ZORA/DFT investigation. Phys Chem Chem Phys 2016; 18:18914-22. [PMID: 27354312 DOI: 10.1039/c6cp03807g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Periodic-boundary and cluster calculations of the magnetic-shielding tensors of (119)Sn sites in various co-ordination and stereochemical environments are reported. The results indicate a significant difference between the predicted NMR chemical shifts for tin(ii) sites that exhibit stereochemically-active lone pairs and tin(iv) sites that do not have stereochemically-active lone pairs. The predicted magnetic shieldings determined either with the cluster model treated with the ZORA/Scalar Hamiltonian or with the GIPAW formalism are dependent on the oxidation state and the co-ordination geometry of the tin atom. The inclusion of relativistic effects at the spin-orbit level removes systematic differences in computed magnetic-shielding parameters between tin sites of differing stereochemistries, and brings computed NMR shielding parameters into significant agreement with experimentally-determined chemical-shift principal values. Slight improvement in agreement with experiment is noted in calculations using hybrid exchange-correlation functionals.
Collapse
Affiliation(s)
- Fahri Alkan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | |
Collapse
|
18
|
Holmes ST, Alkan F, Iuliucci RJ, Mueller KT, Dybowski C. Analysis of the bond‐valence method for calculating
29
Si and
31
P magnetic shielding in covalent network solids. J Comput Chem 2016; 37:1704-10. [DOI: 10.1002/jcc.24389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 03/27/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| | - Fahri Alkan
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| | - Robbie J. Iuliucci
- Department of ChemistryWashington and Jefferson CollegeWashington Pennsylvania15301
| | - Karl T. Mueller
- Department of ChemistryPennsylvania State UniversityUniversity Park Pennsylvania16802
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichland Washington99352
| | - Cecil Dybowski
- Department of Chemistry and BiochemistryUniversity of DelawareNewark Delaware19716
| |
Collapse
|
19
|
Alkan F, Dybowski C. Effect of Co-Ordination Chemistry and Oxidation State on the (207)Pb Magnetic-Shielding Tensor: A DFT/ZORA Investigation. J Phys Chem A 2015; 120:161-8. [PMID: 26683366 DOI: 10.1021/acs.jpca.5b10991] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The magnetic shielding tensor of (207)Pb is calculated for various solids exhibiting (1) a holodirected lead(II) center containing a stereochemically inactive lone pair, (2) a hemidirected lead(II) center with a stereochemically active lone-pair, or (3) a lead(IV) center. Tensors investigated at the scalar relativistic level are compared with those calculated with the full ZORA/spin-orbit Hamiltonian. The effect of using GGA density functionals is compared to the use of hybrid density functionals.
Collapse
Affiliation(s)
- Fahri Alkan
- Department of Chemistry and Biochemistry University of Delaware Newark, Delaware 19716-2522 United States
| | - C Dybowski
- Department of Chemistry and Biochemistry University of Delaware Newark, Delaware 19716-2522 United States
| |
Collapse
|
20
|
Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Critical Analysis of Cluster Models and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular Solids. J Chem Theory Comput 2015; 11:5229-41. [DOI: 10.1021/acs.jctc.5b00752] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean T. Holmes
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Robbie J. Iuliucci
- Department
of Chemistry, Washington and Jefferson College, Washington, Pennsylvania 15301, United States
| | - Karl T. Mueller
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Cecil Dybowski
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|