1
|
Hershey M, Lu G, North JD, Swearer DF. Mie Resonant Metal Oxide Nanospheres for Broadband Photocatalytic Enhancements. ACS NANO 2024; 18:18493-18502. [PMID: 38959059 DOI: 10.1021/acsnano.4c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Metal oxides are widely used in heterogeneous catalysis as supports to disperse catalytically active nanoparticles, isolated atomic sites, or even as catalysts themselves. Herein, we present a method to produce optically active metal oxide supports that exhibit size-dependent Mie resonances based on TiO2 nanospheres with tunable size, crystalline phase composition, and optical properties. Mie resonant TiO2 nanospheres were used as supports to disperse Au, Pt, and Pd nanoparticles. We have found up to a 50-fold enhancement of the electric field at the metal oxide/metal interface corresponding to wavelength-dependent multipolar resonances in the TiO2 structure. Using Au/TiO2 as a prototypical photocatalyst, we demonstrate broadband rate enhancements between 400 and 800 nm during CO oxidation, with a noticeable increase below 500 nm. This increased reactivity at higher photon energies is due to improved photon utilization and interband absorption in the gold that results in greater secondary electron generation through electron-electron scattering processes, thus leading to higher rates in conjunction with the Mie scattering TiO2 support. This study not only highlights the potential of Mie resonant TiO2 in broadband photocatalytic enhancements but also for developing various Mie resonant metal oxide supports, such as ZnO or Cu2O, which can improve photocatalytic performance for a number of critical reactions. As the chemical and energy industries move toward conversion technologies driven by renewable energy sources, the strategy of designing optical resonances into oxide supports that are already widely used could enable a straightforward adaptation of photochemical processing based on traditional heterogeneous catalysts.
Collapse
Affiliation(s)
- Matthew Hershey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Guanyu Lu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jamie D North
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dayne F Swearer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Cao W, Xia GJ, Yao Z, Zeng KH, Qiao Y, Wang YG. Aldehyde Hydrogenation by Pt/TiO 2 Catalyst in Aqueous Phase: Synergistic Effect of Oxygen Vacancy and Solvent Water. JACS AU 2023; 3:143-153. [PMID: 36711102 PMCID: PMC9875238 DOI: 10.1021/jacsau.2c00560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The aldehyde hydrogenation for stabilizing and upgrading biomass is typically performed in aqueous phase with supported metal catalysts. By combining density functional theory calculations and ab initio molecular dynamics simulations, the model reaction of formaldehyde hydrogenation with a Pt/TiO2 catalyst is investigated with explicit solvent water molecules. In aqueous phase, both the O vacancy (Ov) on support and solvent molecules could donate charges to a Pt cluster, where the Ov could dominantly reduce the Pt cluster from positive to negative. During the formaldehyde hydrogenation, the water molecules could spontaneously protonate the O in the aldehyde group by acid/base exchange, generating the OH* at the metal-support interface by long-range proton transfer. By comparing the stoichiometric and reduced TiO2 support, it is found that the further hydrogenation of OH* is hard on the positively charged Pt cluster over stoichiometric TiO2. However, with the presence of Ov on reduced support, the OH* hydrogenation could become not only exergonic but also kinetically more facile, which prohibits the catalyst from poisoning. This mechanism suggests that both the proton transfer from solvent water molecules and the easier OH* hydrogenation from Ov could synergistically promote aldehyde hydrogenation. That means, even for such simple hydrogenation in water, the catalytic mechanism could explicitly relate to all of the metal cluster, oxide support, and solvent waters. Considering the ubiquitous Ov defects in reducible oxide supports and the common aqueous environment, this synergistic effect may not be exclusive to Pt/TiO2, which can be crucial for supported metal catalysts in biomass conversion.
Collapse
|
3
|
Wei W, Wei Z, Li R, Li Z, Shi R, Ouyang S, Qi Y, Philips DL, Yuan H. Subsurface oxygen defects electronically interacting with active sites on In 2O 3 for enhanced photothermocatalytic CO 2 reduction. Nat Commun 2022; 13:3199. [PMID: 35680908 PMCID: PMC9184511 DOI: 10.1038/s41467-022-30958-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Oxygen defects play an important role in many catalytic reactions. Increasing surface oxygen defects can be done through reduction treatment. However, excessive reduction blocks electron channels and deactivates the catalyst surface due to electron-trapped effects by subsurface oxygen defects. How to effectively extract electrons from subsurface oxygen defects which cannot directly interact with reactants is challenging and remains elusive. Here, we report a metallic In-embedded In2O3 nanoflake catalyst over which the turnover frequency of CO2 reduction into CO increases by a factor of 866 (7615 h-1) and 376 (2990 h-1) at the same light intensity and reaction temperature, respectively, compared to In2O3. Under electron-delocalization effect of O-In-(O)Vo-In-In structural units at the interface, the electrons in the subsurface oxygen defects are extracted and gather at surface active sites. This improves the electronic coupling with CO2 and stabilizes intermediate. The study opens up new insights for exquisite electronic manipulation of oxygen defects.
Collapse
Affiliation(s)
- Weiqin Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhen Wei
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ruizhe Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shuxin Ouyang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Yuhang Qi
- Chemical Engineering Institute, Hebei University of Technology, 300131, Tianjin, China
| | - David Lee Philips
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
4
|
Xia GJ, Lee MS, Glezakou VA, Rousseau R, Wang YG. Diffusion and Surface Segregation of Interstitial Ti Defects Induced by Electronic Metal–Support Interactions on a Au/TiO 2 Nanocatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guang-Jie Xia
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mal-Soon Lee
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Roger Rousseau
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
5
|
Singh SP, Yamamoto A, Yoshida H. Nonoxidative coupling of ethane with gold loaded photocatalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02193a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct and continuous conversion of ethane to yield n-butane and hydrogen at near room temperature (ca. 320 K) was examined with gold loaded gallium oxide and titanium dioxide photocatalysts without the aid of any oxidant in a flow reactor.
Collapse
Affiliation(s)
- Surya Pratap Singh
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Yamamoto
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Hisao Yoshida
- Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| |
Collapse
|
6
|
Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ. Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chem Rev 2020; 120:3890-3938. [PMID: 32223178 PMCID: PMC7181275 DOI: 10.1021/acs.chemrev.9b00662] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
In
this review, we discuss selected examples from recent literature
on the role of the support on directing the nanostructures of Au-based
monometallic and bimetallic nanoparticles. The role of support is
then discussed in relation to the catalytic properties of Au-based
monometallic and bimetallic nanoparticles using different gas phase
and liquid phase reactions. The reactions discussed include CO oxidation,
aerobic oxidation of monohydric and polyhydric alcohols, selective
hydrogenation of alkynes, hydrogenation of nitroaromatics, CO2 hydrogenation, C–C coupling, and methane oxidation.
Only studies where the role of support has been explicitly studied
in detail have been selected for discussion. However, the role of
support is also examined using examples of reactions involving unsupported
metal nanoparticles (i.e., colloidal nanoparticles). It is clear that
the support functionality can play a crucial role in tuning the catalytic
activity that is observed and that advanced theory and characterization
add greatly to our understanding of these fascinating catalysts.
Collapse
Affiliation(s)
| | - Qian He
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575
| | - Rebecca V Engel
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Mala A Sainna
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Alberto Roldan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - David J Willock
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Nishtha Agarwal
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| | - Christopher J Kiely
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K.,Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania 18015-3195, United States
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, U.K
| |
Collapse
|
7
|
Tosoni S, Pacchioni G. Oxide‐Supported Gold Clusters and Nanoparticles in Catalysis: A Computational Chemistry Perspective. ChemCatChem 2018. [DOI: 10.1002/cctc.201801082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sergio Tosoni
- Dipartimento di Scienza dei MaterialiUniversità di Milano Bicocca Via Roberto Cozzi 55 Milano I-20125 Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei MaterialiUniversità di Milano Bicocca Via Roberto Cozzi 55 Milano I-20125 Italy
| |
Collapse
|
8
|
Ro I, Resasco J, Christopher P. Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02071] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Insoo Ro
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Joaquin Resasco
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
9
|
Schlexer P, Widmann D, Behm RJ, Pacchioni G. CO Oxidation on a Au/TiO2 Nanoparticle Catalyst via the Au-Assisted Mars–van Krevelen Mechanism. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01751] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Philomena Schlexer
- Dipartimento di Scienza dei Materiali, Universitá Milano-Bicocca, Milan I-20125, Italy
| | - Daniel Widmann
- Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - R. Jürgen Behm
- Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Universitá Milano-Bicocca, Milan I-20125, Italy
| |
Collapse
|
10
|
Widmann D, Behm R. Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2. J Catal 2018. [DOI: 10.1016/j.jcat.2017.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
The role of electronic metal-support interactions and its temperature dependence: CO adsorption and CO oxidation on Au/TiO2 catalysts in the presence of TiO2 bulk defects. J Catal 2017. [DOI: 10.1016/j.jcat.2017.07.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G. Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01913] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio Ruiz Puigdollers
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| | - Philomena Schlexer
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| | - Sergio Tosoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi, 55 I-20125 Milano, Italy
| |
Collapse
|
13
|
Wang Y, Widmann D, Behm RJ. Influence of TiO2 Bulk Defects on CO Adsorption and CO Oxidation on Au/TiO2: Electronic Metal–Support Interactions (EMSIs) in Supported Au Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00251] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuchen Wang
- Institute of Surface Chemistry
and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - Daniel Widmann
- Institute of Surface Chemistry
and Catalysis, Ulm University, D-89069 Ulm, Germany
| | - R. Juergen Behm
- Institute of Surface Chemistry
and Catalysis, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
14
|
Saqlain MA, Novais Antunes FP, Hussain A, Siddiq M, Leitão AA. Adsorption of oxygen and CO oxidation on Au/anatase(001) catalysts. A DFT+U study. NEW J CHEM 2017. [DOI: 10.1039/c6nj02744j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Active oxygen for CO oxidation over Au/TiO2 is a highly stable atomic species, which is formed at the perimeter of the Au/oxide interface.
Collapse
Affiliation(s)
| | | | - Akhtar Hussain
- TPD
- Pakistan Institute of Nuclear Science and Technology
- PINSTECH
- Islamabad
- Pakistan
| | - Muhammad Siddiq
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Alexandre A. Leitão
- Departamento de Química
- Universidade Federal de Juiz de Fora
- Juiz de Fora
- Brazil
| |
Collapse
|
15
|
Wang Y, Widmann D, Wittmann M, Lehnert F, Gu D, Schüth F, Behm RJ. High activity and negative apparent activation energy in low-temperature CO oxidation – present on Au/Mg(OH)2, absent on Au/TiO2. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00722a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aiming at a better understanding of the unusual low-temperature CO oxidation reaction behavior on Au/Mg(OH)2 catalysts, we investigated this reaction mainly by combined kinetic and in situ IR spectroscopy measurements over a wide range of temperatures, from −90 °C to 200 °C.
Collapse
Affiliation(s)
- Y. Wang
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - D. Widmann
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - M. Wittmann
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - F. Lehnert
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| | - D. Gu
- Max-Planck-Institut für Kohlenforschung
- D-45470 Mülheim an der Ruhr
- Germany
| | - F. Schüth
- Max-Planck-Institut für Kohlenforschung
- D-45470 Mülheim an der Ruhr
- Germany
| | - R. J. Behm
- Institute of Surface Chemistry and Catalysis
- Ulm University
- D-89069 Ulm
- Germany
| |
Collapse
|
16
|
Widmann D, Behm RJ. Formation and removal of active oxygen species for the non-catalytic CO oxidation on Au/TiO 2 catalysts. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62452-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Widmann D, Krautsieder A, Walter P, Brückner A, Behm RJ. How Temperature Affects the Mechanism of CO Oxidation on Au/TiO2: A Combined EPR and TAP Reactor Study of the Reactive Removal of TiO2 Surface Lattice Oxygen in Au/TiO2 by CO. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01219] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Widmann
- Institute
of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee
47, D-89081 Ulm, Germany
| | - Anke Krautsieder
- Institute
of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee
47, D-89081 Ulm, Germany
| | - Patrick Walter
- Institute
of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee
47, D-89081 Ulm, Germany
| | - Angelika Brückner
- Catalytic
in situ Studies, Leibniz Institute of Catalysis, D-18059 Rostock, Germany
| | - R. Jürgen Behm
- Institute
of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee
47, D-89081 Ulm, Germany
| |
Collapse
|
18
|
Competition of CO and H2 for Active Oxygen Species during the Preferential CO Oxidation (PROX) on Au/TiO2 Catalysts. Catalysts 2016. [DOI: 10.3390/catal6020021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|