1
|
Zhao TY, Greenstein EP, Peczak IL, Poeppelmeier KR, Perras FA. Observing the Surface Termination of LaScO 3 Perovskite Using Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2024; 146:23487-23496. [PMID: 39112441 DOI: 10.1021/jacs.4c07055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Materials with well-defined surfaces are drawing increased attention for the design of bespoke catalysts and nanomaterials. Gaining a detailed understanding of the surfaces of these materials is an important challenge, which is often complicated by surface polymorphism and dynamic restructuring. We introduce the use of surface-enhanced NMR spectroscopy for the observation of such surfaces, focusing on LaScO3 as an example. We show that double-resonance NMR experiments correlating surface oxygen and probe molecules to the 139La and 45Sc nuclei at the surface reveal the material to be terminated by a ScOx monolayer. Surface-selective 17O and 45Sc NMR experiments further showed the material to be hydroxyl terminated and that the surface may be prone to dynamic restructuring as a result of moisture exposure. Perhaps most interestingly, surface-selective 139La NMR experiments revealed the existence of previously undetected surface lanthanum defects, suggesting that surface-enhanced NMR may be useful as a guide in the synthesis of defect-free surfaces in the design of various nanomaterials.
Collapse
Affiliation(s)
- Tommy Yunpu Zhao
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Emily P Greenstein
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ian L Peczak
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Frédéric A Perras
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Hope MA, Zhang Y, Venkatesh A, Emsley L. Dynamic nuclear polarisation of 1H in Gd-doped In(OH) 3. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107509. [PMID: 37331306 DOI: 10.1016/j.jmr.2023.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Dynamic nuclear polarisation (DNP) of solids doped with high-spin metal ions, such as Gd3+, is a useful strategy to enhance the nuclear magnetic resonance (NMR) sensitivity for these samples. Spin diffusion can relay polarisation throughout a sample, which is most effective for dense 1H networks, while the efficiency of DNP using Gd3+ depends on the symmetry of the metal site. Here, we investigate cubic In(OH)3 as a high-symmetry, proton-containing material for endogenous Gd DNP. A 1H enhancement of up to 9 is demonstrated and harnessed to measure the 17O spectrum at natural abundance. The enhancement is interpreted in terms of clustering of the Gd3+ dopants and the local reduction in symmetry of the metal site induced by proton disorder, as demonstrated by quadrupolar 115In NMR. This is the first example of 1H DNP using Gd3+ dopants in an inorganic solid.
Collapse
Affiliation(s)
- Michael A Hope
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Yuxuan Zhang
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Amrit Venkatesh
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Institut des Sciences et Ingenierie Chimiques, École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Liang L, Shang C, Chen K, Hou G. Supercycled R-symmetry sequences for robust heteronuclear polarization transfer in solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 344:107310. [PMID: 36334491 DOI: 10.1016/j.jmr.2022.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Herein, we introduce supercycle of R-symmetry sequences (SR-sequences) and incomplete supercycle schemes of R-symmetry sequences (iSR-I- and iSR-II-sequences) to improve the robustness of PRESTO for heteronuclear polarization transfer in MAS NMR. The constructions of SR- and iSR-I/II- sequences are based on the different phase-inverted supercycles of R-symmetry sequences, and such supercycles can suppress the influence of CSA, resonance offset and RF mismatch when incorporated into the PRESTO method. Moreover, the SR- and iSR-II-sequences are more efficient in suppressing the interference of homonuclear dipolar coupling. The improved robustness of SR-, iSR-I- and iSR-II-PRESTO over the original R-PRESTO has been verified by numerical simulations and NMR experiments on NH4H2PO4 and gamma-alumina at fast MAS conditions. It is also important to note that the SR- and iSR-II-PRESTO can greatly lengthen the transverse relaxation times and lead to much higher polarization transfer efficiency compared to R-PRESTO, thanks to their superior tolerance to RF inhomogeneity and homonuclear dipolar coupling.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Shang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.
| |
Collapse
|
4
|
Perras FA, Goh TW, Huang W. t 1-noise elimination by continuous chemical shift anisotropy refocusing. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101807. [PMID: 35709566 DOI: 10.1016/j.ssnmr.2022.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Due to their high gyromagnetic ratio, there is considerable interest in measuring distances and correlations involving protons, but such measurements are compounded by the simultaneous recoupling of chemical shift anisotropy (CSA). This secondary recoupling adds additional modulations to the signal intensities that ultimately lead to t1-noise and signal decay. Recently, Venkatesh et al. demonstrated that the addition of CSA refocusing periods during 1H-X dipolar recoupling led to sequences with far higher stability and performance. Herein, we describe a related effort and develop a symmetry-based recoupling sequence that continually refocuses the 1H CSA. This sequence shows superior performance to the regular and t1-noise eliminated D-HMQC sequences in the case of spin-1/2 nuclei and comparable performance to the later for half-integer quadrupoles.
Collapse
Affiliation(s)
| | - Tian Wei Goh
- US DOE, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Wenyu Huang
- US DOE, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
5
|
Nagashima H, Trébosc J, Kon Y, Lafon O, Amoureux JP. Efficient transfer of DNP-enhanced 1 H magnetization to half-integer quadrupolar nuclei in solids at moderate spinning rate. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:920-939. [PMID: 33300128 DOI: 10.1002/mrc.5121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
We show herein how the proton magnetization enhanced by dynamic nuclear polarization (DNP) can be efficiently transferred at moderate magic-angle spinning (MAS) frequencies to half-integer quadrupolar nuclei, S ≥ 3/2, using the Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer (D-RINEPT) technique, in which a symmetry-based SR 4 1 2 recoupling scheme built from adiabatic inversion 1 H pulses reintroduces the 1 H-S dipolar couplings, while suppressing the 1 H-1 H ones. The use of adiabatic pulses also improves the robustness to offsets and radiofrequency (rf)-field inhomogeneity. Furthermore, the efficiency of the polarization transfer is further improved by using 1 H composite pulses and continuous-wave irradiations between the recoupling blocks, as well as by manipulating the S satellite transitions during the first recoupling block. Furthermore, in the case of large 1 H-S dipolar couplings, the D-RINEPT variant with two pulses on the quadrupolar channel results in an improved transfer efficiency. We compare here the performances of this new adiabatic scheme with those of its parent version with single π pulses, as well as with those of PRESTO and CPMAS transfers. This comparison is performed using simulations as well as DNP-enhanced 27 Al, 95 Mo, and 17 O NMR experiments on isotopically unmodified γ-alumina, hydrated titania-supported MoO3 , Mg(OH)2 , and l-histidine·HCl·H2 O. The introduced RINEPT method outperforms the existing methods, both in terms of efficiency and robustness to rf-field inhomogeneity and offset.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, Lille, France
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Institut Universitaire de France, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et de Chimie du Solide, Lille, France
- Bruker BioSpin, Wissembourg, France
- NMR Science and Development Division, Riken, Yokohama, Japan
| |
Collapse
|
6
|
Smith ME. Recent progress in solid-state nuclear magnetic resonance of half-integer spin low-γ quadrupolar nuclei applied to inorganic materials. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:864-907. [PMID: 33207003 DOI: 10.1002/mrc.5116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
An overview is presented of recent progress in the solid-state nuclear magnetic resonance (NMR) observation of low-γ nuclei, with a focus on applications to inorganic materials. The technological and methodological advances in the last 20 years, which have underpinned the increased accessibility of low-γ nuclei for study by solid-state NMR techniques, are summarised, including improvements in hardware, pulse sequences and associated computational methods (e.g., first principles calculations and spectral simulation). Some of the key initial observations from inorganic materials of these nuclei are highlighted along with some recent (most within the last 10 years) illustrations of their application to such materials. A summary of other recent reviews of the study of low-γ nuclei by solid-state NMR is provided so that a comprehensive understanding of what has been achieved to date is available.
Collapse
Affiliation(s)
- Mark E Smith
- Vice-Chancellor and President's Office and Department of Chemistry, University of Southampton, Southampton, UK
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, UK
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Gómez J, Rankin A, Trébosc J, Pourpoint F, Tsutsumi Y, Nagashima H, Lafon O, Amoureux JP. Improved NMR transfer of magnetization from protons to half-integer spin quadrupolar nuclei at moderate and high magic-angle spinning frequencies. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:447-464. [PMID: 37904781 PMCID: PMC10539806 DOI: 10.5194/mr-2-447-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/01/2021] [Indexed: 11/01/2023]
Abstract
Half-integer spin quadrupolar nuclei are the only magnetic isotopes for the majority of the chemical elements. Therefore, the transfer of polarization from protons to these isotopes under magic-angle spinning (MAS) can provide precious insights into the interatomic proximities in hydrogen-containing solids, including organic, hybrid, nanostructured and biological solids. This transfer has recently been combined with dynamic nuclear polarization (DNP) in order to enhance the NMR signal of half-integer quadrupolar isotopes. However, the cross-polarization transfer lacks robustness in the case of quadrupolar nuclei, and we have recently introduced as an alternative technique a D -RINEPT (through-space refocused insensitive nuclei enhancement by polarization transfer) scheme combining a heteronuclear dipolar recoupling built from adiabatic pulses and a continuous-wave decoupling. This technique has been demonstrated at 9.4 T with moderate MAS frequencies, ν R ≈ 10 -15 kHz, in order to transfer the DNP-enhanced 1 H polarization to quadrupolar nuclei. Nevertheless, polarization transfers from protons to quadrupolar nuclei are also required at higher MAS frequencies in order to improve the 1 H resolution. We investigate here how this transfer can be achieved at ν R ≈ 20 and 60 kHz. We demonstrate that the D -RINEPT sequence using adiabatic pulses still produces efficient and robust transfers but requires large radio-frequency (rf) fields, which may not be compatible with the specifications of most MAS probes. As an alternative, we introduce robust and efficient variants of the D -RINEPT and PRESTO (phase-shifted recoupling effects a smooth transfer of order) sequences using symmetry-based recoupling schemes built from single and composite π pulses. Their performances are compared using the average Hamiltonian theory and experiments at B 0 = 18.8 T on γ -alumina and isopropylamine-templated microporous aluminophosphate (AlPO4 -14), featuring low and significant 1 H-1 H dipolar interactions, respectively. These experiments demonstrate that the 1 H magnetization can be efficiently transferred to 27 Al nuclei using D -RINEPT with SR 4 1 2 (2700 90180 ) recoupling and using PRESTO with R 22 2 7 (1800 ) or R 16 7 6 (2700 90180 ) schemes at ν R = 20 or 62.5 kHz, respectively. The D -RINEPT and PRESTO recoupling schemes complement each other since the latter is affected by dipolar truncation, whereas the former is not. We also analyze the losses during these recoupling schemes, and we show how these magnetization transfers can be used at ν R = 62.5 kHz to acquire in 72 min 2D HETCOR (heteronuclear correlation) spectra between 1 H and quadrupolar nuclei, with a non-uniform sampling (NUS).
Collapse
Affiliation(s)
- Jennifer S. Gómez
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
| | - Andrew G. M. Rankin
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- present address: Sorbonne Université, CNRS, Collège de
France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, Paris, 75005, France
| | - Julien Trébosc
- Univ. Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 –
IMEC – Fédération Chevreul, Lille, 59000, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
| | - Yu Tsutsumi
- Bruker Japan, 3-9 Moriya, Kanagawa, Yokohama, Kanagawa,
221-0022, Japan
| | - Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National
Institute of Advanced Industrial Science and Technology (AIST), 1-1-1
Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- Institut Universitaire de France, 1 rue Descartes, Paris, 75231,
France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, 59000, France
- Riken NMR Science and Development Division, Yokohama, Kanagawa, 230-0045, Japan
- Bruker Biospin, 34 rue de l'industrie, Wissembourg, 67166, France
| |
Collapse
|
8
|
Carnevale D, Mouchaham G, Wang S, Baudin M, Serre C, Bodenhausen G, Abergel D. Natural abundance oxygen-17 solid-state NMR of metal organic frameworks enhanced by dynamic nuclear polarization. Phys Chem Chem Phys 2021; 23:2245-2251. [PMID: 33443274 DOI: 10.1039/d0cp06064j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 17O resonances of zirconium-oxo clusters that can be found in porous Zr carboxylate metal-organic frameworks (MOFs) have been investigated by magic-angle spinning (MAS) NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). High-resolution 17O spectra at 0.037% natural abundance could be obtained in 48 hours, thanks to DNP enhancement of the 1H polarization by factors ε(1H) = Swith/Swithout = 28, followed by 1H → 17O cross-polarization, allowing a saving in experimental time by a factor of ca. 800. The distinct 17O sites from the oxo-clusters can be resolved at 18.8 T. Their assignment is supported by density functional theory (DFT) calculations of chemical shifts and quadrupolar parameters. Protonation of 17O sites seems to be leading to large characteristic shifts. Hence, natural abundance 17O NMR spectra of diamagnetic MOFs can thus be used to probe and characterize the local environment of different 17O sites on an atomic scale.
Collapse
Affiliation(s)
- Diego Carnevale
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Nagashima H, Trébosc J, Kon Y, Sato K, Lafon O, Amoureux JP. Observation of Low-γ Quadrupolar Nuclei by Surface-Enhanced NMR Spectroscopy. J Am Chem Soc 2020; 142:10659-10672. [DOI: 10.1021/jacs.9b13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hiroki Nagashima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Univ. Lille, CNRS-2638, Fédération Chevreul, F-59000 Lille, France
| | - Yoshihiro Kon
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Institut Universitaire de France, 1 rue Descartes, F-75231 Paris, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
- Bruker Biospin, 34 rue de l’industrie, F-67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa, Japan
| |
Collapse
|
10
|
Venkatesh A, Luan X, Perras FA, Hung I, Huang W, Rossini AJ. t1-Noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy. Phys Chem Chem Phys 2020; 22:20815-20828. [DOI: 10.1039/d0cp03511d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
t1-Noise eliminated (TONE) heteronuclear multiple quantum correlation (HMQC) solid-state nuclear magnetic resonance pulse sequences improve the sensitivity of 2D 1H{X} heteronuclear correlation experiments with X = 17O, 25Mg, 27Al and 35Cl.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Xuechen Luan
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | | | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL)
- Tallahassee
- USA
| | - Wenyu Huang
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Aaron J. Rossini
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| |
Collapse
|
11
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
12
|
Shimon D, van Schooten KJ, Paul S, Peng Z, Takahashi S, Köckenberger W, Ramanathan C. DNP-NMR of surface hydrogen on silicon microparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:68-75. [PMID: 31128358 DOI: 10.1016/j.ssnmr.2019.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) offers a promising route to studying local atomic environments at the surface of both crystalline and amorphous materials. We take advantage of unpaired electrons due to defects close to the surface of the silicon microparticles to hyperpolarize adjacent 1H nuclei. At 3.3 T and 4.2 K, we observe the presence of two proton peaks, each with a linewidth on the order of 5 kHz. Echo experiments indicate a homogeneous linewidth of ∼150-300 Hz for both peaks, indicative of a sparse distribution of protons in both environments. The high frequency peak at 10 ppm lies within the typical chemical shift range for proton NMR, and was found to be relatively stable over repeated measurements. The low frequency peak was found to vary in position between -19 and -37 ppm, well outside the range of typical proton NMR shifts, and indicative of a high-degree of chemical shielding. The low frequency peak was also found to vary significantly in intensity across different experimental runs, suggesting a weakly-bound species. These results suggest that the hydrogen is located in two distinct microscopic environments on the surface of these Si particles.
Collapse
Affiliation(s)
- Daphna Shimon
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA.
| | - Kipp J van Schooten
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA
| | - Subhradip Paul
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Zaili Peng
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Susumu Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA; Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Walter Köckenberger
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
13
|
Perras FA, Goh TW, Wang LL, Huang W, Pruski M. Enhanced 1H-X D-HMQC performance through improved 1H homonuclear decoupling. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 98:12-18. [PMID: 30669006 DOI: 10.1016/j.ssnmr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The sensitivity of solid-state NMR experiments that utilize 1H zero-quantum heteronuclear dipolar recoupling, such as D-HMQC, is compromised by poor homonuclear decoupling. This leads to a rapid decay of recoupled magnetization and an inefficient recoupling of long-range dipolar interactions, especially for nuclides with low gyromagnetic ratios. We investigated the use, in symmetry-based 1H heteronuclear recoupling sequences, of a basic R element that was principally designed for efficient homonuclear decoupling. By shortening the time required to suppress the effects of homonuclear dipolar interactions to the duration of a single inversion pulse, spin diffusion was effectively quenched and long-lived recoupled coherence lifetimes could be obtained. We show, both theoretically and experimentally, that these modified sequences can yield considerable sensitivity improvements over the current state-of-the-art methods and applied them to the indirect detection of 89Y in a metal-organic framework.
Collapse
Affiliation(s)
| | - Tian Wei Goh
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Lin-Lin Wang
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA
| | - Wenyu Huang
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Marek Pruski
- US Department of Energy, Ames Laboratory, Ames, IA, 50011, USA; Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
14
|
Giovine R, Trébosc J, Pourpoint F, Lafon O, Amoureux JP. Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or dipolar-mediated refocused INEPT methods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 299:109-123. [PMID: 30594000 DOI: 10.1016/j.jmr.2018.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
In solid-state NMR spectroscopy, the through-space transfer of magnetization from protons to quadrupolar nuclei is employed to probe proximities between those isotopes. Furthermore, such transfer, in conjunction with Dynamic Nuclear Polarization (DNP), can enhance the NMR sensitivity of quadrupolar nuclei, as it allows the transfer of DNP-enhanced 1H polarization to surrounding nuclei. We compare here the performances of two approaches to achieve such transfer: PRESTO (Phase-shifted Recoupling Effects a Smooth Transfer of Order), which is currently the method of choice to achieve the magnetization transfer from protons to quadrupolar nuclei and which has been shown to supersede Cross-Polarization under Magic-Angle Spinning (MAS) for quadrupolar nuclei and D-RINEPT (Dipolar-mediated Refocused Insensitive Nuclei Enhanced by Polarization Transfer) using symmetry-based SR412 recoupling, which has already been employed to transfer the magnetization in the reverse way from half-integer quadrupolar spin to protons. We also test the PRESTO sequence with R1676 recoupling using 270090180 composite π-pulses as inversion elements. This recoupling scheme, which has previously been proposed to reintroduce 1H Chemical Shift Anisotropy (CSA) at high MAS frequencies with high robustness to rf-field inhomogeneity, has not so far been employed to reintroduce dipolar couplings with protons. These various techniques to transfer magnetization from protons to quadrupolar nuclei are analyzed using (i) an average Hamiltonian theory, (ii) numerical simulations of spin dynamics, and (iii) experimental 1H → 27Al and 1H → 17O transfers in as-synthesized AlPO4-14 and 17O-labelled fumed silica, respectively. The experiments and simulations are done at two magnetic fields (9.4 and 18.8 T) and several spinning speeds (15, 18-24 and 60 kHz). This analysis indicates that owing to its γ-encoded character, PRESTO yields the highest transfer efficiency at low magnetic fields and MAS frequencies, whereas owing to its higher robustness to rf-field inhomogeneity and chemical shifts, D-RINEPT is more sensitive at high fields and MAS frequencies, notably for protons exhibiting large offset or CSA, such as those involved in hydrogen bonds.
Collapse
Affiliation(s)
- Raynald Giovine
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; IUF, Institut Universitaire de France, 1 rue Descartes, 75231 Paris, France.
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS-8181, UCCS: Unit of Catalysis and Chemistry of Solids, F-59000 Lille, France; Bruker France, 34 rue de l'Industrie, F-67166 Wissembourg, France.
| |
Collapse
|
15
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
16
|
Rossini AJ. Materials Characterization by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. J Phys Chem Lett 2018; 9:5150-5159. [PMID: 30107121 DOI: 10.1021/acs.jpclett.8b01891] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-resolution solid-state NMR spectroscopy is a powerful tool for the study of organic and inorganic materials because it can directly probe the symmetry and structure at nuclear sites, the connectivity/bonding of atoms and precisely measure interatomic distances. However, NMR spectroscopy is hampered by intrinsically poor sensitivity; consequently, the application of NMR spectroscopy to many solid materials is often infeasible. High-field dynamic nuclear polarization (DNP) has emerged as a technique to routinely enhance the sensitivity of solid-state NMR experiments by 1-3 orders of magnitude. This Perspective gives a general overview of how DNP-enhanced solid-state NMR spectroscopy can be applied to a variety of inorganic and organic materials. DNP-enhanced solid-state NMR experiments provide unique insights into the molecular structure, which makes it possible to form structure-activity relationships that ultimately assist in the rational design and improvement of materials.
Collapse
Affiliation(s)
- Aaron J Rossini
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
- U.S. DOE Ames Laboratory , Ames , Iowa 50011 , United States
| |
Collapse
|
17
|
Brownbill NJ, Gajan D, Lesage A, Emsley L, Blanc F. Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T. Chem Commun (Camb) 2018; 53:2563-2566. [PMID: 28184389 DOI: 10.1039/c6cc09743j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report 17O dynamic nuclear polarisation (DNP) enhanced solid-state NMR experiments at 18.8 T. Several formulations were investigated on the Mg(OH)2 compound. A signal enhancement factor of 17 could be obtained when the solid particles were incorporated into a glassy o-terphenyl matrix doped with BDPA using the Overhauser polarisation transfer scheme whilst the cross effect mechanism enabled by TEKPol yielded a slightly lower enhancement but more time efficient data acquisition.
Collapse
Affiliation(s)
- Nick J Brownbill
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - David Gajan
- Centre de RMN à Très Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs, Institut de Sciences Analytiques, Université de Lyon (CNRS/ENS Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Frédéric Blanc
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK. and Stephenson Institute for Renewable Energy, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| |
Collapse
|
18
|
Liao WC, Ghaffari B, Gordon CP, Xu J, Copéret C. Dynamic Nuclear Polarization Surface Enhanced NMR spectroscopy (DNP SENS): Principles, protocols, and practice. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Optimal sample formulations for DNP SENS: The importance of radical-surface interactions. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Grekov D, Vancompernolle T, Taoufik M, Delevoye L, Gauvin RM. Solid-state NMR of quadrupolar nuclei for investigations into supported organometallic catalysts: scope and frontiers. Chem Soc Rev 2018; 47:2572-2590. [DOI: 10.1039/c7cs00682a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scope, limitations and outlooks of half-integer quadrupolar nuclei NMR as applied to supported catalysts characterization are discussed.
Collapse
Affiliation(s)
- D. Grekov
- Univ. Lille
- CNRS
- Centrale Lille
- ENSCL
- Univ. Artois
| | | | - M. Taoufik
- Laboratoire de Chimie
- Catalyse
- Polyméres et Procédés
- UMR 5265 CNRS/ESCPE-Lyon/UCBL
- ESCPE Lyon
| | - L. Delevoye
- Univ. Lille
- CNRS
- Centrale Lille
- ENSCL
- Univ. Artois
| | | |
Collapse
|
21
|
Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:120-195. [PMID: 29157490 DOI: 10.1016/j.pnmrs.2017.06.002] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 05/03/2023]
Abstract
The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This includes the theoretical description of DNP mechanisms as well as of the polarization transfer pathways that can lead to a uniform or selective spreading of polarization between nuclear spins. Furthermore, we cover historical and state-of-the art aspects of dedicated instrumentation, polarizing agents, and optimization techniques for efficient MAS DNP. Finally, we present an extensive overview on applications in the fields of structural biology and materials science, which underlines that MAS DNP has moved far beyond the proof-of-concept stage and has become an important tool for research in these fields.
Collapse
Affiliation(s)
- Aany Sofia Lilly Thankamony
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Johannes J Wittmann
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Monu Kaushik
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Björn Corzilius
- Institute of Physical and Theoretical Chemistry, Institute of Biophysical Chemistry, and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
| |
Collapse
|
22
|
Copéret C, Liao WC, Gordon CP, Ong TC. Active Sites in Supported Single-Site Catalysts: An NMR Perspective. J Am Chem Soc 2017; 139:10588-10596. [DOI: 10.1021/jacs.6b12981] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Christophe Copéret
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Wei-Chih Liao
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Christopher P. Gordon
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Ta-Chung Ong
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| |
Collapse
|
23
|
Venkatesh A, Hanrahan MP, Rossini AJ. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 84:171-181. [PMID: 28392024 DOI: 10.1016/j.ssnmr.2017.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 05/09/2023]
Abstract
Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as 13C, 15N and 29Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the 1H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as 17O, 27Al, 35Cl and 71Ga is demonstrated.
Collapse
Affiliation(s)
- Amrit Venkatesh
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Michael P Hanrahan
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA
| | - Aaron J Rossini
- Iowa State University, Department of Chemistry, Ames, IA 50011, USA; US DOE Ames Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
24
|
Perras FA, Padmos JD, Johnson RL, Wang LL, Schwartz TJ, Kobayashi T, Horton JH, Dumesic JA, Shanks BH, Johnson DD, Pruski M. Characterizing Substrate–Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. J Am Chem Soc 2017; 139:2702-2709. [DOI: 10.1021/jacs.6b11408] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Frédéric A. Perras
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - J. Daniel Padmos
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Robert L. Johnson
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lin-Lin Wang
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Thomas J. Schwartz
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Takeshi Kobayashi
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - J. Hugh Horton
- Department
of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - James A. Dumesic
- Department
of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Brent H. Shanks
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Duane D. Johnson
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department
of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Pruski
- Ames
Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|