1
|
Zhao CC, Peng S, Wang JR, Hou X, Zhao Y, Huang F. Azobenzene-based liposomes with nanomechanical action for cytosolic chemotherapeutic drug delivery. Colloids Surf B Biointerfaces 2024; 245:114198. [PMID: 39236362 DOI: 10.1016/j.colsurfb.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
The stimuli-responsive nano-carriers are at the forefront of research in nanotechnology and materials science. These advanced systems are designed to alter their physicochemical properties upon exposure to specific stimuli, enabling controllable and targeted delivery of therapeutic agents. Nevertheless, limited endosomal escape reduces the drug bioavailability in clinical use. We herein report azobenzene (Azo)-based liposomes, prepared by co-assembling the photoisomerizable cationic Azo lipids and helper lipids, which achieve controllable doxorubicin (Dox) release and enhanced cytosolic transport upon light irradiation. Azo lipids undergo reversible isomerization between cis-isomers and trans-isomer when received UV and visible (Vis) light irradiation, causing liposomal membrane permeability changes for controlled drug release. Moreover, the nanomechanical action created by the isomerization of Azo lipids promotes the endosomal escape of the liposomes. DSPC-Azo liposomes, with minimal Dox leakage, showed significant tumor cell killing upon irradiation. For in vivo study, we co-encapsulated the upconverting nanoparticles (UCNPs), which can convert the near-infrared (NIR) light into UV/Vis emissions, facilitating Azo units activation. UCNP/Dox-loaded DSPC-Azo liposomes inhibited tumor growth under NIR irradiation in a 4T1 tumor-bearing mouse model.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Department of VIP Ward, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Shiyu Peng
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jialiang Rachel Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States.
| | - Fan Huang
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
2
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
3
|
Bąk KM, Trzaskowski B, Chmielewski MJ. Anion-templated synthesis of a switchable fluorescent [2]catenane with sulfate sensing capability. Chem Sci 2024; 15:1796-1809. [PMID: 38303949 PMCID: PMC10829038 DOI: 10.1039/d3sc05086f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024] Open
Abstract
Anion templation strategies have facilitated the synthesis of various catenane and rotaxane hosts capable of strong and selective binding of anions in competitive solvents. However, this approach has primarily relied on positively charged precursors, limiting the structural diversity and the range of potential applications of the anion-templated mechanically interlocked molecules. Here we demonstrate the synthesis of a rare electroneutral [2]catenane using a powerful, doubly charged sulfate template and a complementary diamidocarbazole-based hydrogen bonding precursor. Owing to the unique three-dimensional hydrogen bonding cavity and the embedded carbazole fluorophores, the resulting catenane receptor functions as a sensitive fluorescent turn-ON sensor for the highly hydrophilic sulfate, even in the presence of a large excess of water. Importantly, the [2]catenane exhibits enhanced binding affinity and selectivity for sulfate over its parent macrocycle and other acyclic diamidocarbazole-based receptors. We demonstrate also, for the first time, that the co-conformation of the catenane may be controlled by reversible acid/base induced protonation and deprotonation of the anionic template, SO42-. This approach pioneers a new strategy to induce molecular motion of interlocked components using switchable anionic templates.
Collapse
Affiliation(s)
- Krzysztof M Bąk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw Banacha 2c 02-097 Warsaw Poland
| | - Michał J Chmielewski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| |
Collapse
|
4
|
Johnson TG, Langton MJ. Molecular Machines For The Control Of Transmembrane Transport. J Am Chem Soc 2023; 145:27167-27184. [PMID: 38062763 PMCID: PMC10740008 DOI: 10.1021/jacs.3c08877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Nature embeds some of its molecular machinery, including ion pumps, within lipid bilayer membranes. This has inspired chemists to attempt to develop synthetic analogues to exploit membrane confinement and transmembrane potential gradients, much like their biological cousins. In this perspective, we outline the various strategies by which molecular machines─molecular systems in which a nanomechanical motion is exploited for function─have been designed to be incorporated within lipid membranes and utilized to mediate transmembrane ion transport. We survey molecular machines spanning both switches and motors, those that act as mobile carriers or that are anchored within the membrane, mechanically interlocked molecules, and examples that are activated in response to external stimuli.
Collapse
Affiliation(s)
- Toby G. Johnson
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| | - Matthew J. Langton
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford Mansfield Road, Oxford OX1 3TA United Kingdom
| |
Collapse
|
5
|
Zhao Y, Ye Z, Song D, Wich D, Gao S, Khirallah J, Xu Q. Nanomechanical action opens endo-lysosomal compartments. Nat Commun 2023; 14:6645. [PMID: 37863882 PMCID: PMC10589329 DOI: 10.1038/s41467-023-42280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
Endo-lysosomal escape is a highly inefficient process, which is a bottleneck for intracellular delivery of biologics, including proteins and nucleic acids. Herein, we demonstrate the design of a lipid-based nanoscale molecular machine, which achieves efficient cytosolic transport of biologics by destabilizing endo-lysosomal compartments through nanomechanical action upon light irradiation. We fabricate lipid-based nanoscale molecular machines, which are designed to perform mechanical movement by consuming photons, by co-assembling azobenzene lipidoids with helper lipids. We show that lipid-based nanoscale molecular machines adhere onto the endo-lysosomal membrane after entering cells. We demonstrate that continuous rotation-inversion movement of Azo lipidoids triggered by ultraviolet/visible irradiation results in the destabilization of the membranes, thereby transporting cargoes, such as mRNAs and Cre proteins, to the cytoplasm. We find that the efficiency of cytosolic transport is improved about 2.1-fold, compared to conventional intracellular delivery systems. Finally, we show that lipid-based nanoscale molecular machines are competent for cytosolic transport of tumour antigens into dendritic cells, which induce robust antitumour activity in a melanoma mouse model.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
6
|
Duindam N, van Dongen M, Siegler MA, Wezenberg SJ. Monodirectional Photocycle Drives Proton Translocation. J Am Chem Soc 2023; 145:21020-21026. [PMID: 37712835 PMCID: PMC10540201 DOI: 10.1021/jacs.3c06587] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/16/2023]
Abstract
Photoisomerization of retinal is pivotal to ion translocation across the bacterial membrane and has served as an inspiration for the development of artificial molecular switches and machines. Light-driven synthetic systems in which a macrocyclic component transits along a nonsymmetric axle in a specific direction have been reported; however, unidirectional and repetitive translocation of protons has not been achieved. Herein, we describe a unique protonation-controlled isomerization behavior for hemi-indigo dyes bearing N-heterocycles, featuring intramolecular hydrogen bonds. Light-induced isomerization from the Z to E isomer is unlocked when protonated, while reverse E → Z photoisomerization occurs in the neutral state. As a consequence, associated protons are displaced in a preferred direction with respect to the photoswitchable scaffold. These results will prove to be critical in developing artificial systems in which concentration gradients can be effectively generated using (solar) light energy.
Collapse
Affiliation(s)
- Nol Duindam
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Michelle van Dongen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Sander J. Wezenberg
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
7
|
Sun Y, Liu L, Jiang L, Chen Y, Zhang H, Xu X, Liu Y. Unimolecular Chiral Stepping Inversion Machine. J Am Chem Soc 2023. [PMID: 37486147 DOI: 10.1021/jacs.3c04430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Intelligent molecular machines that are driven by light, electricity, and temperature have attracted considerable interest in the fields of chemistry, materials, and biology. Herein, a unimolecular chiral stepping inversion molecular machine (SIMM) was constructed by a coupling reaction between dibromo pillar[5]arene and a tetrathiafulvalene (TTF) derivative (PT3 and PT5). Compared with the longer aliphatic linker PT5, PT3 with a shorter aliphatic linker shows chiral stepping inversion, achieving chiral inversion under a two-electron redox potential. Benefiting from the successive reversible two-electron redox potential of TTF, the self-exclusion and self-inclusion conformational transformations of SIMM can proceed in two steps under redox, leading to the chirality step inversion in the pillar[5]arene core. Electrochemical experiments and circular dichroism (CD) spectra show that the redox processes can cause SIMM CD signaling to reversibly switch. More importantly, as the oxidant Fe(ClO4)3 was increased from 0.1 to 1 equiv, the CD spectral signal of SIMM disappeared at 1 equiv, and further addition of Fe(ClO4)3 resulted in the CD signal reversed from positive to negative at 309 nm, indicating that the chirality was reversed after chemical oxidation and reached a negative maximum with the addition of 2 equiv Fe(ClO4)3; thus, redox-triggered chiral stepping inversion was achieved. Furthermore, the chiral inversion can be restored to its original state after the addition of 2 equiv of reducing agent, sodium ascorbate. This work demonstrates unimolecular chiral stepping inversion, providing a new perspective on stimulus-responsive chirality in molecular machines.
Collapse
Affiliation(s)
- Yonghui Sun
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijuan Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Linnan Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hengyue Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
8
|
de Jong J, Bos JE, Wezenberg SJ. Stimulus-Controlled Anion Binding and Transport by Synthetic Receptors. Chem Rev 2023; 123:8530-8574. [PMID: 37342028 PMCID: PMC10347431 DOI: 10.1021/acs.chemrev.3c00039] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 06/22/2023]
Abstract
Anionic species are omnipresent and involved in many important biological processes. A large number of artificial anion receptors has therefore been developed. Some of these are capable of mediating transmembrane transport. However, where transport proteins can respond to stimuli in their surroundings, creation of synthetic receptors with stimuli-responsive functions poses a major challenge. Herein, we give a full overview of the stimulus-controlled anion receptors that have been developed thus far, including their application in membrane transport. In addition to their potential operation as membrane carriers, the use of anion recognition motifs in forming responsive membrane-spanning channels is discussed. With this review article, we intend to increase interest in transmembrane transport among scientists working on host-guest complexes and dynamic functional systems in order to stimulate further developments.
Collapse
Affiliation(s)
| | | | - Sander J. Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
9
|
Johnson TG, Docker A, Sadeghi-Kelishadi A, Langton MJ. Halogen bonding relay and mobile anion transporters with kinetically controlled chloride selectivity. Chem Sci 2023; 14:5006-5013. [PMID: 37206385 PMCID: PMC10189858 DOI: 10.1039/d3sc01170d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Selective transmembrane transport of chloride over competing proton or hydroxide transport is key for the therapeutic application of anionophores, but remains a significant challenge. Current approaches rely on enhancing chloride anion encapsulation within synthetic anionophores. Here we report the first example of a halogen bonding ion relay in which transport is facilitated by the exchange of ions between lipid-anchored receptors on opposite sides of the membrane. The system exhibits non-protonophoric chloride selectivity, uniquely arising from the lower kinetic barrier to chloride exchange between transporters within the membrane, compared to hydroxide, with selectivity maintained across membranes with different hydrophobic thicknesses. In contrast, we demonstrate that for a range of mobile carriers with known high chloride over hydroxide/proton selectivity, the discrimination is strongly dependent on membrane thickness. These results demonstrate that the selectivity of non-protonophoric mobile carriers does not arise from ion binding discrimination at the interface, but rather through a kinetic bias in transport rates, arising from differing membrane translocation rates of the anion-transporter complexes.
Collapse
Affiliation(s)
- Toby G Johnson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Amir Sadeghi-Kelishadi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
10
|
Bhattacharjee R, Negi A, Bhattacharya B, Dey T, Mitra P, Preetam S, Kumar L, Kar S, Das SS, Iqbal D, Kamal M, Alghofaili F, Malik S, Dey A, Jha SK, Ojha S, Paiva-Santos AC, Kesari KK, Jha NK. Nanotheranostics to Target Antibiotic-resistant Bacteria: Strategies and Applications. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100138] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Mao X, Liu M, Li Q, Fan C, Zuo X. DNA-Based Molecular Machines. JACS AU 2022; 2:2381-2399. [PMID: 36465542 PMCID: PMC9709946 DOI: 10.1021/jacsau.2c00292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/17/2023]
Abstract
Artificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion. This Perspective highlights the potential and strategies to construct artificial molecular machines using double-stranded DNA, functional nucleic acids, and DNA frameworks, which enable improved control over reaction pathways and motion behaviors. We also outline the challenges and opportunities of using DNA-based molecular machines for biophysics, biosensing, and biocomputing.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Yospanya W, Sato K, Kinbara K. Multiblock Amphiphilic Triptycene toward Bioinspired Molecular Rotor in Membrane. CHEM LETT 2022. [DOI: 10.1246/cl.220360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wijak Yospanya
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
13
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
14
|
Borsley S, Leigh DA, Roberts BMW. Chemical fuels for molecular machinery. Nat Chem 2022; 14:728-738. [PMID: 35778564 DOI: 10.1038/s41557-022-00970-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
Chemical reaction networks that transform out-of-equilibrium 'fuel' to 'waste' are the engines that power the biomolecular machinery of the cell. Inspired by such systems, autonomous artificial molecular machinery is being developed that functions by catalysing the decomposition of chemical fuels, exploiting kinetic asymmetry to harness energy released from the fuel-to-waste reaction to drive non-equilibrium structures and dynamics. Different aspects of chemical fuels profoundly influence their ability to power molecular machines. Here we consider the structure and properties of the fuels that biology has evolved and compare their features with those of the rudimentary synthetic chemical fuels that have so far been used to drive autonomous non-equilibrium molecular-level dynamics. We identify desirable, but context-specific, traits for chemical fuels together with challenges and opportunities for the design and invention of new chemical fuels to power synthetic molecular machinery and other dissipative nanoscale processes.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
15
|
Johnson TG, Sadeghi-Kelishadi A, Langton MJ. A Photo-responsive Transmembrane Anion Transporter Relay. J Am Chem Soc 2022; 144:10455-10461. [PMID: 35652660 PMCID: PMC9204766 DOI: 10.1021/jacs.2c02612] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 01/17/2023]
Abstract
Ion transport across lipid membranes in biology is controlled by stimuli-responsive membrane channels and molecular machine ion pumps such as ATPases. Here, we report a synthetic molecular machine-like ion transport relay, in which transporters on opposite sides of a lipid bilayer membrane facilitate transport by passing ions between them. By incorporating a photo-responsive telescopic arm into the relay design, this process is reversibly controlled in response to irradiation with blue and green light. Transport occurs only in the extended state when the length of the arm is sufficient to pass the anion between transporters located on opposite sides of the membrane. In contrast, the contracted state of the telescopic arm is too short to mediate effective transport. The system acts as a stimuli-responsive ensemble of machine-like components, reminiscent of robotic arms in a factory assembly line, working cooperatively to mediate ion transport. This work points to new prospects for using lipid bilayer membranes as scaffolds for confining, orientating, and controlling the relative positions of molecular machines, thus enabling multiple components to work in concert and opening up new applications in biological contexts.
Collapse
Affiliation(s)
- Toby G. Johnson
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Amir Sadeghi-Kelishadi
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Matthew J. Langton
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
16
|
Ishii M, Mori T, Nakanishi W, Hill JP, Sakai H, Ariga K. Mechanical Tuning of Aggregated States for Conformation Control of Cyclized Binaphthyl at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6481-6490. [PMID: 35549351 DOI: 10.1021/acs.langmuir.2c00796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An air-water interface enables molecular assemblies and conformations to be controlled according to their intrinsic interactions and anisotropic stimuli. The chirality and conformation of binaphthyl derivatives have been controlled by tuning molecular aggregated states in solution. In this study, we have tuned molecular aggregated states of monobinaphthyldurene (MBD) by applying different mechanical stimuli to control the conformation at the air-water interface. Density functional theory calculations indicate that MBD exists essentially in two conformations, namely, 1-MBD (most stable) and 2-MBD (less stable). MBD was mechanically dissolved in appropriate lipid matrices using the Langmuir-Blodgett (LB) method, while pure MBD was self-assembled at the dynamic air-water interface in the absence of or by applying vortex motions (vortex LB method). In MBD mixed monolayer, surface pressure-molecular area measurements and atomic force microscopy observations suggest that separate lipids and MBD phases transform to mixed phases induced by the dissolution of MBD into the lipid matrices during mechanical compression at the air-water interface. Circular dichroism measurements indicate that molecular conformation changes from 1-MBD to 2-MBD in passing from a separated phase to a mixed MBD/lipid phase. In addition, the molecular aggregated states and conformations of MBD depend on the spreading volume and vortex flow rate when applying the vortex LB method. Molecular conformations and aggregated states of MBD could be controlled continuously by applying a mechanical stimulus at the air-water interface.
Collapse
Affiliation(s)
- Masaki Ishii
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Taizo Mori
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Waka Nakanishi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Jonathan P Hill
- Functional Chromophores Group, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hideki Sakai
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Katsuhiko Ariga
- Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
17
|
Kumar A, Seok Chae P. A bis(fluorenyl-triazole)-conjugated naphthoquinoline-dione probe for a cascade detection of Cu2+ and F− and its logic circuit with a memory unit. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Abstract
Both biological and artificial membrane transporters mediate passive transmembrane ion flux predominantly via either channel or carrier mechanisms, tightly regulating the transport of materials entering and exiting the cell. One early elegant example unclassifiable as carriers or channels was reported by Smith who derivatized a phospholipid molecule into an anion transporter, facilitating membrane transport via a two-station relay mechanism (Smith et al. J. Am. Chem. Soc. 2008, 130, 17274-17275). Our journey toward blurring or even breaking the boundaries defined by the carrier and channel mechanisms starts in January of 2018 when seeing a child swinging on the swing at the playground park. Since then, I have been wondering whether we could build a nanoscale-sized molecular swing able to perform the swing function at the molecular level to induce transmembrane ion flux. Such research journey culminates in several membrane-active artificial molecular machines, including molecular swings, ion fishers, ion swimmers, rotors, tetrapuses and dodecapuses that permeabilize the membrane via swinging, ion-fishing, swimming, rotating, or swing-relaying actions, respectively. Except for molecular ion swimmers, these unconventional membrane transporters in their most stable states readily span across the entire membrane in a way akin to channels. With built-in flexible arms that can swing or bend in the dynamic membrane environment, they transport ions via constantly changing ion permeation pathways that are more defined than carriers but less defined than channels. Applying the same benzo-crown ether groups as the sole ion-binding and -transporting units, these transporters however differ immensely in ion transport property. While the maximal K+ transport activity is achieved by the molecular swing also termed "motional channel" that displays an EC50 value of 0.021 mol % relative to lipid and transports K+ ions at rate 27% faster than gramicidin A, the highest K+/Na+ selectivity of 18.3 is attained by the molecular ion fisher, with the highest Na+/K+ selectivity of 13.7 by the molecular dodecapus. Having EC50 values of 0.49-1.60 mol % and K+/Na+ values of 1.1-6.3, molecular rotors and tetrapuses are found to be generally active but weakly to moderately K+-selective. For molecular ion swimmers that contain 10 to 14 carbon atom alkyl linkers, they all turn out to be highly active (EC50 = 0.18-0.41 mol %) and highly selective (RK+/RNa+ = 7.0-9.5) transporters. Of special note are crown ether-appended molecular dodecapuses that establish the C60-fullerene core as an excellent platform to allow for a direct translation of solution binding affinity to transmembrane ion transport selectivity, providing a de novo basis for rationally designing artificial ion transporters with high transport selectivity. Considering remarkable cytotoxic activities displayed by molecular swings and ion swimmers, the varied types of existing and emerging unconventional membrane transporters with enhanced activities and selectivities eventually might lead to medical benefits in the future.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Changliang Ren
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| |
Collapse
|
19
|
Jeong Y, Jin S, Palanikumar L, Choi H, Shin E, Go EM, Keum C, Bang S, Kim D, Lee S, Kim M, Kim H, Lee KH, Jana B, Park MH, Kwak SK, Kim C, Ryu JH. Stimuli-Responsive Adaptive Nanotoxin to Directly Penetrate the Cellular Membrane by Molecular Folding and Unfolding. J Am Chem Soc 2022; 144:5503-5516. [PMID: 35235326 DOI: 10.1021/jacs.2c00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biological nanomachines, including proteins and nucleic acids whose function is activated by conformational changes, are involved in every biological process, in which their dynamic and responsive behaviors are controlled by supramolecular recognition. The development of artificial nanomachines that mimic the biological functions for potential application as therapeutics is emerging; however, it is still limited to the lower hierarchical level of the molecular components. In this work, we report a synthetic machinery nanostructure in which actuatable molecular components are integrated into a hierarchical nanomaterial in response to external stimuli to regulate biological functions. Two nanometers core-sized gold nanoparticles are covered with ligand layers as actuatable components, whose folding/unfolding motional response to the cellular environment enables the direct penetration of the nanoparticles across the cellular membrane to disrupt intracellular organelles. Furthermore, the pH-responsive conformational movements of the molecular components can induce the apoptosis of cancer cells. This strategy based on the mechanical motion of molecular components on a hierarchical nanocluster would be useful to design biomimetic nanotoxins.
Collapse
Affiliation(s)
- Youngdo Jeong
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Soyeong Jin
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Chemistry, School of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - L Palanikumar
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eunhye Shin
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Changjoon Keum
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seunghwan Bang
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, Biomedical Engineering, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Dongkap Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Chemistry, School of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Seungho Lee
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Minsoo Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,Department of Chemistry, School of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hojun Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kwan Hyi Lee
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Myoung-Hwan Park
- Department of Chemistry & Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Chaekyu Kim
- Fusion Biotechnology, Inc., Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
20
|
O'Donnell A, Salimi S, Hart L, Babra T, Greenland B, Hayes W. Applications of supramolecular polymer networks. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Shen Y, Fei F, Zhong Y, Fan C, Sun J, Hu J, Gong B, Czajkowsky DM, Shao Z. Controlling Water Flow through a Synthetic Nanopore with Permeable Cations. ACS CENTRAL SCIENCE 2021; 7:2092-2098. [PMID: 34963901 PMCID: PMC8704043 DOI: 10.1021/acscentsci.1c01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 05/19/2023]
Abstract
There is presently intense interest in the development of synthetic nanopores that recapitulate the functional properties of biological water channels for a wide range of applications. To date, all known synthetic water channels have a hydrophobic lumen, and while many exhibit a comparable rate of water transport as biological water channels, there is presently no rationally designed system with the ability to regulate water transport, a critical property of many natural water channels. Here, we describe a self-assembling nanopore consisting of stacked macrocyclic molecules with a hybrid hydrophilic/hydrophobic lumen exhibiting water transport that can be regulated by alkali metal ions. Stopped-flow kinetic assays reveal a non-monotonic-dependence of transport on cation size as well as a strikingly broad range of water flow, from essentially none in the presence of the sodium ion to as high a flow as that of the biological water channel, aquaporin 1, in the absence of the cations. All-atom molecular dynamics simulations show that the mechanism underlying the observed sensitivity is the binding of cations to defined sites within this hybrid pore, which perturbs water flow through the channel. Thus, beyond revealing insights into factors that can modulate a high-flux water transport through sub-nm pores, the obtained results provide a proof-of-concept for the rational design of next-generation, controllable synthetic water channels.
Collapse
Affiliation(s)
- Yi Shen
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Fan Fei
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Yulong Zhong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Jielin Sun
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Jun Hu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron
Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bing Gong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Daniel M. Czajkowsky
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Zhifeng Shao
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Andreoni L, Baroncini M, Groppi J, Silvi S, Taticchi C, Credi A. Photochemical Energy Conversion with Artificial Molecular Machines. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:18900-18914. [PMID: 34887620 PMCID: PMC8647081 DOI: 10.1021/acs.energyfuels.1c02921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Indexed: 05/08/2023]
Abstract
The exploitation of sunlight as a clean, renewable, and distributed energy source is key to facing the energetic demand of modern society in a sustainable and affordable fashion. In the past few decades, chemists have learned to make molecular machines, that is, synthetic chemical systems in which energy inputs cause controlled movements of molecular components that could be used to perform a task. A variety of artificial molecular machines operated by light have been constructed by implementing photochemical processes within appropriately designed (supra)molecular assemblies. These studies could open up new routes for the realization of nanostructured devices and materials capable to harness, convert, and store light energy.
Collapse
Affiliation(s)
- Leonardo Andreoni
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 50, 40127 Bologna, Italy
| | - Jessica Groppi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Serena Silvi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Chiara Taticchi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Alberto Credi
- CLAN-Center
for Light Activated Nanostructures, Istituto
ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
23
|
Bravin C, Duindam N, Hunter CA. Artificial transmembrane signal transduction mediated by dynamic covalent chemistry. Chem Sci 2021; 12:14059-14064. [PMID: 34760189 PMCID: PMC8565364 DOI: 10.1039/d1sc04741h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
Reversible formation of covalent adducts between a thiol and a membrane-anchored Michael acceptor has been used to control the activation of a caged enzyme encapsulated inside vesicles. A peptide substrate and papain, caged as the mixed disulfide with methane thiol, were encapsulated inside vesicles, which contained Michael acceptors embedded in the lipid bilayer. In the absence of the Michael acceptor, addition of thiols to the external aqueous solution did not activate the enzyme to any significant extent. In the presence of the Michael acceptor, addition of benzyl thiol led to uncaging of the enzyme and hydrolysis of the peptide substrate to generate a fluorescence output signal. A charged thiol used as the input signal did not activate the enzyme. A Michael acceptor with a polar head group that cannot cross the lipid bilayer was just as effective at delivering benzyl thiol to the inner compartment of the vesicles as a non-polar Michael acceptor that can diffuse across the bilayer. The concentration dependence of the output signal suggests that the mechanism of signal transduction is based on increasing the local concentration of thiol present in the vesicles by the formation of Michael adducts. An interesting feature of this system is that enzyme activation is transient, which means that sequential addition of aliquots of thiol can be used to repeatedly generate an output signal.
Collapse
Affiliation(s)
- Carlo Bravin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Nol Duindam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
24
|
Wang WZ, Huang LB, Zheng SP, Moulin E, Gavat O, Barboiu M, Giuseppone N. Light-Driven Molecular Motors Boost the Selective Transport of Alkali Metal Ions through Phospholipid Bilayers. J Am Chem Soc 2021; 143:15653-15660. [PMID: 34520204 DOI: 10.1021/jacs.1c05750] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A hydrophobic light-driven rotary motor is functionalized with two 18-crown-6 macrocycles and incorporated into phospholipid bilayers. In the presence of this molecular construct, fluorescence assays and patch clamp experiments show the formation of selective alkali ion channels through the membrane. Further, they reveal a strongly accelerated ion transport mechanism under light irradiation. This increase of the fractional ion transport activity (up to 400%) is attributed to the out-of-equilibrium actuation dynamics of the light-driven rotary motors, which help to overcome the activation energy necessary to achieve translocation of alkali ions between macrocycles along the artificial channels.
Collapse
Affiliation(s)
- Wen-Zhi Wang
- SAMS Research Group, Institut Charles Sadron UPR22, Centre National de la Recherce Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| | - Li-Bo Huang
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes (IEM), University of Montpellier, 300 Avenue du Professeur Emile Jeanbrau, 34000 Montpellier, France
| | - Shao-Ping Zheng
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes (IEM), University of Montpellier, 300 Avenue du Professeur Emile Jeanbrau, 34000 Montpellier, France
| | - Emilie Moulin
- SAMS Research Group, Institut Charles Sadron UPR22, Centre National de la Recherce Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| | - Odile Gavat
- SAMS Research Group, Institut Charles Sadron UPR22, Centre National de la Recherce Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes (IEM), University of Montpellier, 300 Avenue du Professeur Emile Jeanbrau, 34000 Montpellier, France
| | - Nicolas Giuseppone
- SAMS Research Group, Institut Charles Sadron UPR22, Centre National de la Recherce Scientifique, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
25
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
26
|
Bickerton LE, Johnson TG, Kerckhoffs A, Langton MJ. Supramolecular chemistry in lipid bilayer membranes. Chem Sci 2021; 12:11252-11274. [PMID: 34567493 PMCID: PMC8409493 DOI: 10.1039/d1sc03545b] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Lipid bilayer membranes form compartments requisite for life. Interfacing supramolecular systems, including receptors, catalysts, signal transducers and ion transporters, enables the function of the membrane to be controlled in artificial and living cellular compartments. In this perspective, we take stock of the current state of the art of this rapidly expanding field, and discuss prospects for the future in both fundamental science and applications in biology and medicine.
Collapse
Affiliation(s)
- Laura E Bickerton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Toby G Johnson
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Aidan Kerckhoffs
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
27
|
Canton M, Groppi J, Casimiro L, Corra S, Baroncini M, Silvi S, Credi A. Second-Generation Light-Fueled Supramolecular Pump. J Am Chem Soc 2021; 143:10890-10894. [PMID: 34282901 PMCID: PMC8323096 DOI: 10.1021/jacs.1c06027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/13/2022]
Abstract
We describe the modular design of a pseudorotaxane-based supramolecular pump and its photochemically driven autonomous nonequilibrium operation in a dissipative regime. These properties derive from careful engineering of the energy maxima and minima along the threading coordinate and their light-triggered modulation. Unlike its precursor, this second-generation system is amenable to functionalization for integration into more complex devices.
Collapse
Affiliation(s)
- Martina Canton
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Jessica Groppi
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Lorenzo Casimiro
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Stefano Corra
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Massimo Baroncini
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Serena Silvi
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alberto Credi
- CLAN-Center
for Light Activated Nanostructures, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
28
|
Kartha KK, Takai A, Futera Z, Labuta J, Takeuchi M. Dynamics of Meso–Chiral Interconversion in a Butterfly‐Shape Overcrowded Alkene Rotor Tunable by Solvent Properties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kalathil K. Kartha
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Atsuro Takai
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| | - Zdeněk Futera
- University of South Bohemia Faculty of Science Branišovská 1760 370 05 České Budějovice Czech Republic
| | - Jan Labuta
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group National Institute for Materials Science (NIMS) 1-2-1 Sengen Tsukuba Ibaraki 305-0047 Japan
| |
Collapse
|
29
|
Medina-Mercado I, Colin-Molina A, Barquera-Lozada JE, Rodríguez-Molina B, Porcel S. Gold-Catalyzed Ascorbic Acid-Induced Arylative Carbocyclization of Alkynes with Aryldiazonium Tetrafluoroborates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ignacio Medina-Mercado
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Abraham Colin-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - José Enrique Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
30
|
Cai LZ, Yao ZZ, Lin SJ, Wang MS, Guo GC. Photoinduced Electron-Transfer (PIET) Strategy for Selective Adsorption of CO 2 over C 2 H 2 in a MOF. Angew Chem Int Ed Engl 2021; 60:18223-18230. [PMID: 34114311 DOI: 10.1002/anie.202105491] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Similarities in sizes, shapes, and physical properties between carbon dioxide (CO2 ) and acetylene (C2 H2 ) make it a great challenge to separate the major impurity CO2 from products in C2 H2 production. The use of porous materials is an appealing path to replace current very costly and energy-consuming technologies, such as solvent extraction and cryogenic distillation; however, high CO2 /C2 H2 uptake ratio with minor adsorption of C2 H2 at standard pressure was only unexpectedly observed in scarce examples in recent years although the related research started early at 1950s, and general design strategies to realize this aim are still absent. This work has successfully developed an efficient PIET strategy and obtained the second highest CO2 /C2 H2 adsorption ratio for porous materials in a proof-of-concept MOF with a photochromism-active bipyridinium zwitterion. An unprecedented photocontrollable gate effect, owing to change of interannular dihedral after photoinduced generation of radical species, was also observed for the first time. These findings will inspire design and synthesis of porous materials for high efficient gas adsorption and separation.
Collapse
Affiliation(s)
- Li-Zhen Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Zi-Zhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou, Fujian, 350002, P. R. China
| | - Shu-Juan Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
31
|
Cai L, Yao Z, Lin S, Wang M, Guo G. Photoinduced Electron‐Transfer (PIET) Strategy for Selective Adsorption of CO
2
over C
2
H
2
in a MOF. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Li‐Zhen Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Zi‐Zhu Yao
- Fujian Provincial Key Laboratory of Polymer Materials Fujian Normal University 32 Shangsan Road Fuzhou Fujian 350002 P. R. China
| | - Shu‐Juan Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Ming‐Sheng Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Guo‐Cong Guo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
32
|
Kartha KK, Takai A, Futera Z, Labuta J, Takeuchi M. Dynamics of Meso-Chiral Interconversion in a Butterfly-Shape Overcrowded Alkene Rotor Tunable by Solvent Properties. Angew Chem Int Ed Engl 2021; 60:16466-16471. [PMID: 33905168 DOI: 10.1002/anie.202102719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/15/2021] [Indexed: 11/10/2022]
Abstract
Elucidation of dynamics of molecular rotational motion is an essential part and challenging area of research. We demonstrate reversible diastereomeric interconversion of a molecular rotor composed of overcrowded butterfly-shape alkene (FDF). Its inherent dual rotatory motion (two rotors, one stator) with interconversion between two diastereomers, chiral trans-FDF and meso cis-FDF forms, has been examined in detail upon varying temperatures and solvents. The free energy profile of 180° revolution of one rotor part has a bimodal shape with unevenly positioned maxima (transition states). FDF in aromatic solvents adopts preferentially meso cis-conformation, while in non-aromatic solvents a chiral trans-conformation is more abundant owing to the solvent interactions with peripheral hexyl chains (solvophobic effect). Moderate correlations between the trans-FDF/cis-FDF ratio and solvent parameters, such as refractive index, polarizability, and viscosity were found.
Collapse
Affiliation(s)
- Kalathil K Kartha
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Zdeněk Futera
- University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Jan Labuta
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
33
|
Ghosh A, Paul I, Schmittel M. Multitasking with Chemical Fuel: Dissipative Formation of a Pseudorotaxane Rotor from Five Distinct Components. J Am Chem Soc 2021; 143:5319-5323. [PMID: 33787253 DOI: 10.1021/jacs.1c01948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 3-fold completive self-sorted library of dynamic motifs was integrated into the design of the pseudorotaxane-based rotor [Zn(2·H+)(3)(4)]2+ operating at k298 = 15.4 kHz. The rotational motion in the five-component device is based on association/dissociation of the pyridyl head of the pseudorotaxane rotator arm between two zinc(II) porphyrin stations. Addition of TFA or 2-cyano-2-phenylpropanoic acid as a chemical fuel to a zinc release system and the loose rotor components 2-4 enabled the liberated zinc(II) ions and protons to act in unison, setting up the rotor through the formation of a heteroleptic zinc complex and a pseudorotaxane linkage. With chemical fuel, the dissipative system was reproducibly pulsed three times without a problem. Due to the double role of the fuel acid, two kinetically distinct processes played a role in both the out-of-equilibrium assembly and disassembly of the rotor, highlighting the complex issues in multitasking of chemical fuels.
Collapse
Affiliation(s)
- Amit Ghosh
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| |
Collapse
|
34
|
Zhang H, Guo Y, Chipot C, Cai W, Shao X. Nanomachine-Assisted Ion Transport Across Membranes: From Mechanism to Rational Design and Applications. J Phys Chem Lett 2021; 12:3281-3287. [PMID: 33764777 DOI: 10.1021/acs.jpclett.1c00525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assisting ion transport across membranes by means of sophisticated molecular machines has promising applications in the treatment of diseases induced by dysregulated ion transport. To develop such nanoscale devices imbued with specific functions, rational de novo design, upstream from costly syntheses, is eminently desirable but would require the atomic detail of the translocation mechanism, which is still largely missing. We have explored the full ion capture-transport-release process over an aggregate simulation time of 60 μs, employing leading-edge enhanced-sampling algorithms to disentangle with unprecedented detail the mechanism that underlies ion transport mediated by a membrane-spanning [2]rotaxane composed of an ion carrier linked to a wheel threaded onto an axle. Beyond validating the reliability of our methodology through careful examination of the clockwork of a documented nanomachine, we put forth an original pH-controlled nano-object that can assist transient unidirectional ion transport across membranes.
Collapse
Affiliation(s)
- Hong Zhang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yichang Guo
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR no. 7019, Université de Lorraine, BP 70239, Vandoeuvre-lès-Nancy F-54506, France
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Hao D, Tang X, An Y, Sun L, Li J, Dong A, Shan X, Lu X. Orientation Switching of Single Molecules on Surface Excited by Tunneling Electrons and Ultrafast Laser Pulses. J Phys Chem Lett 2021; 12:2011-2016. [PMID: 33600173 DOI: 10.1021/acs.jpclett.0c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the orientation switching of individual azobenzene molecules adsorbed on a Au(111) surface using a laser-assisted scanning tunneling microscope (STM). It is found that the rotational motion of the molecule can be regulated by both sample bias and laser wavelength. By measuring the switching rate and state occupation as a function of both bias voltage and photon energy, the threshold in sample bias and the minimal photon energy are derived. It has been revealed that the tip-induced local electrostatic potential remarkably contributes to the reduction in hopping barrier. We also find that the tunneling electrons and photons play distinct roles in controlling rotational dynamics of single azobenzene molecules on the surface, which are useful for understanding dynamic behaviors in similar molecular systems.
Collapse
Affiliation(s)
- Dong Hao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangqian Tang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yang An
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lihuan Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianmei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Anning Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Topological Quantum Computation, Beijing 100190, China
- Songshan Lake Laboratory for Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
36
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
37
|
Yang X, Cheng Q, Monnier V, Charles L, Karoui H, Ouari O, Gigmes D, Wang R, Kermagoret A, Bardelang D. Guest Exchange by a Partial Energy Ratchet in Water. Angew Chem Int Ed Engl 2021; 60:6617-6623. [DOI: 10.1002/anie.202014399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Xue Yang
- Aix Marseille Univ CNRS ICR Marseille France
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | - Valerie Monnier
- Aix Marseille Univ CNRS Centrale Marseille, FSCM Spectropole Marseille France
| | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Avenida da Universidade Taipa Macau China
| | | | | |
Collapse
|
38
|
Bayoumi M, Nomidis SK, Willems K, Carlon E, Maglia G. Autonomous and Active Transport Operated by an Entropic DNA Piston. NANO LETTERS 2021; 21:762-768. [PMID: 33342212 PMCID: PMC7809690 DOI: 10.1021/acs.nanolett.0c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present a synthetic nanoscale piston that uses chemical energy to perform molecular transport against an applied bias. Such a device comprises a 13 by 5 nm protein cylinder, embedded in a biological membrane enclosing a single-stranded DNA (ssDNA) rod. Hybridization with DNA cargo rigidifies the rod, allowing for transport of a selected DNA molecule across the nanopore. A strand displacement reaction from ssDNA fuel on the other side of the membrane then liberates the DNA cargo back into solution and regenerates the initial configuration. The entropic penalty of ssDNA confinement inside the nanopore drives DNA transport regardless of the applied bias. Multiple automated and reciprocating cycles are observed, in which the DNA piston moves through the 10 nm length of the nanopore. In every cycle, a single DNA molecule is transported across the nanopore against an external bias force, which is the hallmark of biological transporters.
Collapse
Affiliation(s)
- Mariam Bayoumi
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200G, Leuven 3001, Belgium
- Center for
Brain & Disease Research, VIB-KU Leuven, Leuven 3000, Belgium
| | - Stefanos K. Nomidis
- Flemish
Institute for Technological Research (VITO), Boeretang 200, Mol B-2400, Belgium
- KU Leuven, Soft Matter and Biophysics Unit,
Department of Physics
and Astronomy, Celestijnenlaan
200D, 3001 Leuven, Belgium
| | | | - Enrico Carlon
- KU Leuven, Soft Matter and Biophysics Unit,
Department of Physics
and Astronomy, Celestijnenlaan
200D, 3001 Leuven, Belgium
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen 9747 AG , The Netherlands
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200G, Leuven 3001, Belgium
| |
Collapse
|
39
|
Evans JD, Krause S, Feringa BL. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discuss 2021; 225:286-300. [DOI: 10.1039/d0fd00016g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simulations reveal the influence of rotating molecular motors and the importance of orientation and directionality for altering the transport properties of fluids. This has outlined that motors with specific rotation can generate directed diffusion.
Collapse
Affiliation(s)
- Jack D. Evans
- Department of Inorganic Chemistry
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Simon Krause
- Centre for Systems Chemistry
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Ben L. Feringa
- Centre for Systems Chemistry
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| |
Collapse
|
40
|
Abstract
Nanorobotics, which has long been a fantasy in the realm of science fiction, is now a reality due to the considerable developments in diverse fields including chemistry, materials, physics, information and nanotechnology in the past decades. Not only different prototypes of nanorobots whose sizes are nanoscale are invented for various biomedical applications, but also robotic nanomanipulators which are able to handle nano-objects obtain substantial achievements for applications in biomedicine. The outstanding achievements in nanorobotics have significantly expanded the field of medical robotics and yielded novel insights into the underlying mechanisms guiding life activities, remarkably showing an emerging and promising way for advancing the diagnosis & treatment level in the coming era of personalized precision medicine. In this review, the recent advances in nanorobotics (nanorobots, nanorobotic manipulations) for biomedical applications are summarized from several facets (including molecular machines, nanomotors, DNA nanorobotics, and robotic nanomanipulators), and the future perspectives are also presented.
Collapse
|
41
|
Moreno S, Sharan P, Engelke J, Gumz H, Boye S, Oertel U, Wang P, Banerjee S, Klajn R, Voit B, Lederer A, Appelhans D. Light-Driven Proton Transfer for Cyclic and Temporal Switching of Enzymatic Nanoreactors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002135. [PMID: 32783385 DOI: 10.1002/smll.202002135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Temporal activation of biological processes by visible light and subsequent return to an inactive state in the absence of light is an essential characteristic of photoreceptor cells. Inspired by these phenomena, light-responsive materials are very attractive due to the high spatiotemporal control of light irradiation, with light being able to precisely orchestrate processes repeatedly over many cycles. Herein, it is reported that light-driven proton transfer triggered by a merocyanine-based photoacid can be used to modulate the permeability of pH-responsive polymersomes through cyclic, temporally controlled protonation and deprotonation of the polymersome membrane. The membranes can undergo repeated light-driven swelling-contraction cycles without losing functional effectiveness. When applied to enzyme loaded-nanoreactors, this membrane responsiveness is used for the reversible control of enzymatic reactions. This combination of the merocyanine-based photoacid and pH-switchable nanoreactors results in rapidly responding and versatile supramolecular systems successfully used to switch enzymatic reactions ON and OFF on demand.
Collapse
Affiliation(s)
- Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Priyanka Sharan
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Johanna Engelke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Hannes Gumz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Ulrich Oertel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Peng Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Susanta Banerjee
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| |
Collapse
|
42
|
Krause S, Feringa BL. Towards artificial molecular factories from framework-embedded molecular machines. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0209-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Bravin C, Hunter CA. Template effects of vesicles in dynamic covalent chemistry. Chem Sci 2020; 11:9122-9125. [PMID: 34123161 PMCID: PMC8163447 DOI: 10.1039/d0sc03185b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Vesicle lipid bilayers have been employed as templates to modulate the product distribution in a dynamic covalent library of Michael adducts formed by mixing a Michael acceptor with thiols. In methanol solution, all possible Michael adducts were obtained in similar amounts. Addition of vesicles to the dynamic covalent library led to the formation of a single major product. The equilibrium constants for formation of the Michael adducts are similar for all of the thiols used in this experiment, and the effect of the vesicles on the composition of the library is attributed to the differential partitioning of the library members between the lipid bilayer and the aqueous solution. The results provide a quantitative approach for exploiting dynamic covalent chemistry within lipid bilayers.
Collapse
Affiliation(s)
- Carlo Bravin
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
44
|
Ahmadi Y, Nord AL, Wilson AJ, Hütter C, Schroeder F, Beeby M, Barišić I. The Brownian and Flow-Driven Rotational Dynamics of a Multicomponent DNA Origami-Based Rotor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001855. [PMID: 32363713 DOI: 10.1002/smll.202001855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 05/21/2023]
Abstract
Nanomechanical devices are becoming increasingly popular due to the very diverse field of potential applications, including nanocomputing, robotics, and drug delivery. DNA is one of the most promising building materials to realize complex 3D structures at the nanoscale level. Several mechanical DNA origami structures have already been designed capable of simple operations such as a DNA box with a controllable lid, bipedal walkers, and cargo sorting robots. However, the nanomechanical properties of mechanically interlinked DNA nanostructures that are in general highly deformable have yet to be extensively experimentally evaluated. In this work, a multicomponent DNA origami-based rotor is created and fully characterized by electron microscopy under negative stain and cryo preparations. The nanodevice is further immobilized on a microfluidic chamber and its Brownian and flow-driven rotational behaviors are analyzed in real time by single-molecule fluorescence microscopy. The rotation in previous DNA rotors based either on strand displacement, electric field or Brownian motion. This study is the first to attempt to manipulate the dynamics of an artificial nanodevice with fluidic flow as a natural force.
Collapse
Affiliation(s)
- Yasaman Ahmadi
- Molecular Diagnostics, Centre for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna, 1210, Austria
- Department for Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, 1190, Austria
| | - Ashley L Nord
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ Montpellier, 29 Rue de Navacelles, Montpellier, 34090, France
| | - Amanda J Wilson
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Christiane Hütter
- Molecular Diagnostics, Centre for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna, 1210, Austria
| | - Fabian Schroeder
- Computational Statistics, Technical University of Vienna, Karlsplatz 13, Vienna, 1040, Austria
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Ivan Barišić
- Molecular Diagnostics, Centre for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna, 1210, Austria
| |
Collapse
|
45
|
Biagini C, Capocasa G, Del Giudice D, Cataldi V, Mandolini L, Di Stefano S. Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines. Org Biomol Chem 2020; 18:3867-3873. [PMID: 32373832 DOI: 10.1039/d0ob00669f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Second-order rate constants of the aminolysis of 2-cyano-2-phenylpropanoic anhydride 3 by a series of N-methylanilines differently substituted in the aromatic moiety (4a-d) were measured in dichloromethane. The common reaction product of aminolysis is 2-cyano-2-phenylpropanoic acid 1, which is known to be an effective fuel for acid-base driven molecular machines, but cannot be used in molar excess with respect to the machine. The motivation behind the kinetic study has been the prospect of using the aminolysis of 3 to supply the machine with fuel at a rate that is never so high as to overfeed the system, thus avoiding the malfunction of the machine with concomitant waste of fuel. Knowledge of the kinetic parameters dictated the choice of 4c as the best nucleophile in the lot for feeding acid 1 into a catenane-based molecular machine at a rate that ensured a correct operation.
Collapse
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Valerio Cataldi
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Luigi Mandolini
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma "La Sapienza", and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
46
|
Corra S, Curcio M, Baroncini M, Silvi S, Credi A. Photoactivated Artificial Molecular Machines that Can Perform Tasks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906064. [PMID: 31957172 DOI: 10.1002/adma.201906064] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Indexed: 05/24/2023]
Abstract
Research on artificial photoactivated molecular machines has moved in recent years from a basic scientific endeavor toward a more applicative effort. Nowadays, the prospect of reproducing the operation of natural nanomachines with artificial counterparts is no longer a dream but a concrete possibility. The progress toward the construction of molecular-machine-based devices and materials in which light irradiation results in the execution of a task as a result of nanoscale movements is illustrated here. After a brief description of a few basic types of photoactivated molecular machines, significant examples of their exploitation to perform predetermined functions are presented. These include switchable catalysts, nanoactuators that interact with cellular membranes, transporters of small molecular cargos, and active joints capable of mechanically coupling molecular-scale movements. Investigations aimed at harnessing the collective operation of a multitude of molecular machines organized in arrays to perform tasks at the microscale and macroscale in hard and soft materials are also reviewed. Surfaces, gels, liquid crystals, polymers, and self-assembled nanostructures are described wherein the nanoscale movement of embedded molecular machines is amplified, allowing the realization of muscle-like actuators, microfluidic devices, and polymeric materials for light energy transduction and storage.
Collapse
Affiliation(s)
- Stefano Corra
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Massimiliano Curcio
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Massimo Baroncini
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40127, Bologna, Italy
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
47
|
Liang X, Li L, Tang J, Komiyama M, Ariga K. Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200012] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Lin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Jiaxuan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
48
|
Biagini C, Di Stefano S. Abiotic Chemical Fuels for the Operation of Molecular Machines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| |
Collapse
|
49
|
Biagini C, Di Stefano S. Abiotic Chemical Fuels for the Operation of Molecular Machines. Angew Chem Int Ed Engl 2020; 59:8344-8354. [DOI: 10.1002/anie.201912659] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Chiara Biagini
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Istituto CNR per i Sistemi Biologici (ISB-CNR) Sezione Meccanismi di Reazione Università di Roma “La Sapienza” P. le A. Moro 5 00185 Roma Italy
| |
Collapse
|
50
|
Ayala Orozco C, Liu D, Li Y, Alemany LB, Pal R, Krishnan S, Tour JM. Visible-Light-Activated Molecular Nanomachines Kill Pancreatic Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:410-417. [PMID: 31815419 DOI: 10.1021/acsami.9b21497] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, synthetic molecular nanomachines (MNMs) that rotate unidirectionally in response to UV light excitation have been used to produce nanomechanical action on live cells to kill them through the drilling of holes in their cell membranes. In the work here, visible-light-absorbing MNMs are designed and synthesized to enable nanomechanical activation by 405 nm light, thereby using a wavelength of light that is less phototoxic than the previously employed UV wavelengths. Visible-light-absorbing MNMs that kill pancreatic cancer cells upon response to light activation are demonstrated. Evidence is presented to support the conclusion that MNMs do not kill cancer cells by the photothermal effect when used at low optical density. In addition, MNMs suppress the formation of reactive oxygen species, leaving nanomechanical action as the most plausible working mechanism for cell killing under the experimental conditions.
Collapse
Affiliation(s)
- Ciceron Ayala Orozco
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Yongjiang Li
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Robert Pal
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , U.K
| | - Sunil Krishnan
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | |
Collapse
|