1
|
Sahoo SS, Behera KC, Bag B. Substituted thiourea incorporated rhodamine-based chemosensors for selective detection of aluminium ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125494. [PMID: 39615093 DOI: 10.1016/j.saa.2024.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/10/2024]
Abstract
Various metal ions' contemporary utility, biological essence and environmental impact have stimulated their selective and sensitive detection, particularly when present in traces. In this context, methodological explorations relying on structural and functional modulations of prime components and interactive parameters have been pivotal in developing chemosensors for selective detection of such metal ionic inputs. In this investigation, three thiourea-incorporated rhodamine B derivatives varying in their substituent modified covalent architectures were synthesized, and their photophysical signalling responses were monitored in the presence of different metal ions. The dual mode outputs, colourimetric and fluorescence signals, had displayed significant changes in the selective presence of Al3+ ions attributable to the complexation-induced ring-opening of Rhodamine derivatives. In contrast, other metal ions failed to generate such colour and spectral changes in an aqueous-ethanolic medium. Therefore, these probes would be manifested as a colourimetric and fluorescent output-based chemosensor for selective detection of Al3+ ions with low detection limits (in nM region), higher association constants (∼107 M-1) inferring to a higher degree of probe-metal ion interactions, efficient response time of Rhodamine spiro-ring opening and counter anion driven reversibility in photophysical signals. Despite the retention of selectivity towards Al3+ ion, the parametric signalling variation in these probes was attributed to their stereo-electronic environment of probe-metal ion interaction, which was substantially influenced by the nature of the substituent attached. The paper strip-based investigation endorsed the utility of these probes as potential molecular systems for the selective detection Al3+ ions in the presence of various metal ions.
Collapse
Affiliation(s)
- Sudhanshu Shekhar Sahoo
- CSIR-Institute of Minerals and Materials Technology, Materials Chemistry Department, CSIR-IMMT, P.O.: R. R. L., Bhubaneswar 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanhu Charan Behera
- CSIR-Institute of Minerals and Materials Technology, Materials Chemistry Department, CSIR-IMMT, P.O.: R. R. L., Bhubaneswar 751013, India
| | - Bamaprasad Bag
- CSIR-Institute of Minerals and Materials Technology, Materials Chemistry Department, CSIR-IMMT, P.O.: R. R. L., Bhubaneswar 751013, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Lin Z, Shi Y, Song Y, Yan J, Li H, Xie C. Sensitive Fluorescent Probe for Al 3+, Cr 3+ and Fe 3+: Application in Real Water Samples and Logic Gate. J Fluoresc 2025:10.1007/s10895-024-04130-9. [PMID: 39798023 DOI: 10.1007/s10895-024-04130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025]
Abstract
Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al3+, Cr3+ and Fe3+ ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/H2O (9:1, v/v) was significantly enhanced upon addition of Al3+, Cr3+ and Fe3+ ions while addition of other metal ions (Li+, Na+, K+, Ag+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Hg2+, Ca2+, Mg2+, Ce3+, Bi3+ and Au3+) did not bring about substantial change in fluorescence emission. The calculated detection limits were 0.32 µM, 0.81 µM, and 0.27 µM for Al3+, Cr3+, and Fe3+, respectively. Probe K1 displayed strong anti-interference ability, a large Stokes shift, rapid response, and applicability in a wide pH range for the simultaneous detection of Al3+, Cr3+ and Fe3+ in real water samples. Job's plot test showed that the stoichiometric ratio of the complexes formed between probe K1 and the trivalent metal ions was 1:1. The reversible application of probe K1 was realized by addition of Na2EDTA. A molecular logic gate was built based on the input-output information. This approach may provide a basis for highly selective and sensitive detection of common trivalent cations and for design of memory devices.
Collapse
Affiliation(s)
- Ziyun Lin
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiabao Yan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Chengxiao Xie
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Ullah Q, Khan SA, Arifuddin M, Mohsin M, Kausar S, Fatema N, Ahmer MF. Recent Developments in Colorimetric and Fluorometric Detection Methods of Trivalent Metal Cations (Al 3+, Fe 3+ and Cr 3+) Using Schiff Base Probes: At a Glance. J Fluoresc 2025; 35:543-557. [PMID: 38133749 DOI: 10.1007/s10895-023-03514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
This review basically concerned with the application of different Schiff bases (SB) based fluorimetric (turn-off and turn-on) and colorimetric chemosensors for the detection of heavy metal cations particularly Al(III), Fe(III), and Cr(III) ions. Chemosensors based on Schiff bases have exhibited outstanding performance in the detection of different metal cations due to their facile and in-expensive synthesis, and their excellent coordination ability with almost all metal cations and stabilize them in different oxidation states. Moreover, Schiff bases have also been used as antifungal, anticancer, analgesic, anti-inflammatory, antibacterial, antiviral, antioxidant, and antimalarial etc. The Schiff base also can be used as an intermediate for the formation of various heterocyclic compounds. In this review, we have focused on the research work performed on the development of chemosensors (colorimetric and fluorometric) for rapid detection of trivalent metal cations particularly Al(III), Fe(III), and Cr(III) ions using Schiff base as a ligand during 2020-2022.
Collapse
Affiliation(s)
- Qasim Ullah
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Salman Ahmad Khan
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammed Arifuddin
- Chemistry Department, Directorate of Distance Education (DDE), Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Md Mohsin
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Samrin Kausar
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Nahid Fatema
- Chemistry Section, School of Sciences, Maulana Azad National Urdu University, Gachibowli, Hyderabad, 500032, India
| | - Mohammad Faraz Ahmer
- Department of Electrical and Electronics Engineering, Mewat Engineering College, Nuh Gurugram University Haryana, Gurugram, India.
| |
Collapse
|
4
|
Bartwal G, Manivannan R, Son YA. Synergistic integration of a rhodamine-labelled tripeptide into AIE-active fluorogenic probe: Enabling nanomolar detection of Al 3+ ions through test strips, thin films, and Arduino-assisted optosensing platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124874. [PMID: 39096673 DOI: 10.1016/j.saa.2024.124874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
Peptide-fluorophore conjugates (PFCs) have been expeditiously utilized for metal ion recognition owing to their distinctive characteristics. Selective detection and quantification of aluminum is essential to minimize health and environmental risks. Herein, we report the synthesis and characterization of a new chemoprobe with aggregation-induced emission characteristics by chemically conjugating rhodamine-B fluorophore with a tripeptide. The probe revealed β-sheet secondary conformation in both solid and solution states, as confirmed by FT-IR, PXRD, and CD experiments. AIE characteristics of the probe in water-MeCN mixtures revealed the formation of spherically shaped nanoaggregates with an average size of 353 ± 7 nm, as confirmed by SEM, TEM, and DLS studies. The probe exhibited a large stokes shift (175 nm) and displayed selective colorimetric and fluorometric responses towards Al3+ ions with an extremely low detection limit (51 nm) and a fast response time (≤15 s). Comparative NMR studies confirmed the cleavage of spirolactam ring upon aluminum binding. The probe's practicality was enhanced through integration into test strips and thin films, allowing solid-phase detection of Al3+ ions. Furthermore, an RGB-Arduino enabled optosensing device has been developed to enable instant quantifiable analysis of aluminum concentrations in real-time conditions.
Collapse
Affiliation(s)
- Gaurav Bartwal
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Ramalingam Manivannan
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | - Young-A Son
- Department of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea.
| |
Collapse
|
5
|
Ciupa A. Novel polycyclic "turn-on" and "turn-off" pyrazoline and pyrazole fluorescent sensors for selective real-world monitoring of Fe 3+/Fe 2+ in aqueous environments. RSC Adv 2024; 14:34918-34924. [PMID: 39483388 PMCID: PMC11526818 DOI: 10.1039/d4ra06457g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Seven novel polycyclic pyrazoline and pyrazole sensors were synthesised and screened for useful photophysical properties with pyrazoline 2 and pyrazole 7, displaying an Fe3+ "turn-off" response in aqueous environments with Fe3+ limits of detection (LoD) of 2.12 μM and 3.41 μM, respectively. Both 2 and 7 sensors functioned in aqueous environments with real-world examples of Fe3+ detection in tap water and mineral water samples. 2 and 7 are suitable for the detection of Fe3+ at concentrations below the maximum iron limits for drinking water set by the Environmental Protection Agency (EPA) and European Union (EU).
Collapse
Affiliation(s)
- Alexander Ciupa
- Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| |
Collapse
|
6
|
Heena, Yadav V, Saini S, Roy P, Layek S, Goswami T, Kumar S. An Indole-based Chromofluorogenic Probe for Detection of Trivalent Al 3+, Ga 3+, In 3+ and Fe 3+ Ions. Chempluschem 2024; 89:e202300721. [PMID: 38385783 DOI: 10.1002/cplu.202300721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
An easily synthesizable indole-derived chromofluorogenic probe InNS has been demonstrated for recognition of trivalent metal ions (i. e., Al3+, Ga3+, In3+ and Fe3+). Both UV-Vis and emission spectral studies have been employed to assess the cation sensing ability of InNS in semi-aqueous medium. This probe exhibited a chromogenic response for these metal ions, and the related change was accompanied with the appearance of a new absorption near 376 nm. An obvious color change from pale yellow to dark yellow could also be noticed upon addition of the aforementioned metal ions to the probe's solution. Distinctively from the UV-Vis analysis, the fluorescence behavior of InNS was completely different; it displayed a 'turn-on' fluorescence response for only Al3+ among all the studied cations. The detection limit and the association constant (Ka) for Al3+ were determined to be 12.5 nM and 6.85×106 M-1, respectively. A potential 1 : 1 binding mode of Al3+-InNS has been established based on Job's plot, 1H NMR and DFT analyses. The reversibility experiment was conducted using strongly chelating EDTA ion, and a corresponding logic gate has been devised. In terms of practical applications, the InNS has been utilized to detect Al3+ in human breast carcinoma (MCF-7) cell lines displaying promising 'turn-on' bioimaging experiments.
Collapse
Affiliation(s)
- Heena
- Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies (UPES), 248007, Dehradun, Uttarakhand, India
| | - Vikas Yadav
- Nanoscopic Imaging and Sensing Lab, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| | - Saakshi Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, 247667, Roorkee, Uttarakhand, India
| | - Samar Layek
- Department of Physics, School of Engineering, University of Petroleum & Energy Studies (UPES), 248007, Dehradun, Uttarakhand, India
| | - Tapas Goswami
- Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies (UPES), 248007, Dehradun, Uttarakhand, India
| | - Sushil Kumar
- Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies (UPES), 248007, Dehradun, Uttarakhand, India
| |
Collapse
|
7
|
Datta S, Dey S, Sinha C, Dutta B, Banerjee P, Mir MH. Exploitation of a 1D coordination polymer as a portable kit for an eye-catching fluorometric response towards sensing of trivalent cations. Dalton Trans 2024; 53:2859-2866. [PMID: 38231529 DOI: 10.1039/d3dt03939k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The development and utilization of coordination polymers (CPs) have drawn interest for potential applications in different fields. Detection of metal ions in efficient and selective manners is an important field of research. It paves the way to protect human health by balancing toxic metal ions and biologically active metal ions in the atmosphere. In this regard, a new one-dimensional (1D) 4-(1-naphthylvinyl)pyridine (4-nvp) based CP [Cd(NCS)2(4-nvp)2]n (1) was synthesized and characterized structurally by single-crystal X-ray diffraction. Interestingly, this 1D CP underwent supramolecular aggregation via π⋯π stacking interactions, which specifically generated an environment for a potent "turn on" response in the presence of trivalent cations (Fe3+, Al3+, and Cr3+) in the nanomolar range but remained silent in the presence of other metal ions. Density functional theory (DFT) computations and X-ray photoelectron spectroscopy (XPS) were performed to establish the sensing phenomena. Fascinatingly, utilizing the sensitivity of 1 in an aqueous medium, a hands-on portable cotton swab kit was developed for instant identification of these three important trivalent metal cations.
Collapse
Affiliation(s)
- Sourav Datta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, India.
| | - Sunanda Dey
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| | | | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata 700 160, India.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Priyabrata Banerjee
- Electric Mobility & Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713 209, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | |
Collapse
|
8
|
Xu X, Li H, Sun Y, Ma T, Shi L, Mu W, Wang H, Lu Y. Novel "on-off" fluorescence sensing for rapid and accurate determination of Cr 3+ based on g-CNQDs. RSC Adv 2023; 13:28550-28559. [PMID: 37780737 PMCID: PMC10534202 DOI: 10.1039/d3ra05091b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Cr3+ is one of the most essential trace elements in living organisms and plays a vital role in human metabolism. However, both deficiency and excess intake of Cr3+ can be harmful to the human body. Therefore, the quantitative determination of Cr3+ is of great significance in the field of life science. Based on this, in this study, a g-CNQDs@p-acetaminophenol fluorescence sensing system was developed for the quantitative detection of Cr3+ in actual complex samples. G-CNQDs were synthesized with sodium citrate and urea as precursors. The fluorescence signal was enhanced by the synergistic effect between p-acetaminophenol (APAP) and g-CNQDs. The fluorescence quenching phenomenon can be produced when Cr3+ is introduced into the fluorescence-enhanced g-CNQDs@p-acetaminophenol system. An "on-off" fluorescence sensing system was constructed based on g-CNQDs@p-acetaminophenol for the quantitative detection of Cr3+. The experimental data showed a wide linear region in the concentration range of 0.64-63.0 μM, and the detection limit was as low as 0.23 μM. The construction of the sensor system broadens the research field for the practical application of Cr3+.
Collapse
Affiliation(s)
- Xiaohua Xu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Huye Li
- The Fourth People's Hospital of Qinghai Province Xining 810007 China
| | - Yapeng Sun
- No. 2 Middle School in Xining City Xining 810007 Qinghai Province China
| | - Tianfeng Ma
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Lin Shi
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Wencheng Mu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Huan Wang
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Yongchang Lu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| |
Collapse
|
9
|
Saha S, Alam R. Recent developments in the creation of a single molecular sensing tool for ternary iron (III), chromium (III), aluminium (III) ionic species: A review. LUMINESCENCE 2023; 38:1026-1046. [PMID: 36251318 DOI: 10.1002/bio.4399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
Rational design of a molecular sensing tool is an important topic in molecular recognition, signalling, and optoelectronics that has piqued the interest of chemists, biologists, and environmental scientists. Approximately 150 years have passed since the beginning of the fluorescent chemosensor sector. Due to the paramagnetic properties of Cr3+ and Al3+ , it is tough to prepare a photoluminescence plug-in detector. Most dye-based Al3+ sensors must be utilized in organic or mixed solvents for robust hydration of Al3+ in water. The sophisticated molecular design of sensors, conversely, allows for the detection of these metal ions in aqueous medium. The design of chemosensors using various fluorophores and their mechanisms of action have been thoroughly discussed. A literature survey covering the design of chemosensors and their mechanisms of action have been thoroughly discussed covering the period 2010-2022 and that was carried out including innovative and exemplary activities from numerous groups throughout the world that have significantly contributed to this sector. The most important advantages of these probes are their aqueous solubility and quick response with outstanding selectivity and sensitivity for temporal distribution with high fidelity of metals in living cells.
Collapse
Affiliation(s)
- Sudipta Saha
- Department of Chemistry (UG+PG), Triveni Devi Bhalotia College, Raniganj, Paschim Bardhaman, India
| | - Rabiul Alam
- Department of Chemistry, Rabindra Mahavidyalaya, Champadanga, Hooghly, India
| |
Collapse
|
10
|
Zeng J, Xu X, Xue L, Xu Y, Wang X, Zhang Y, Wang H. A Novel Pyridine and Julolidine Based Chemosensor for Al
3+
Detection. ChemistrySelect 2023. [DOI: 10.1002/slct.202204556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Junzhu Zeng
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Xin Xu
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Lei Xue
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Yang Xu
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Xin Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Yang Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Haibin Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| |
Collapse
|
11
|
Bis naphthalene derived dual functional chemosensor: Specific signalling for Al3+ and Fe3+ ions with on-the-spot detection, bio-imaging, and logic gate applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Khatun M, Ghorai P, Mandal J, Ghosh Chowdhury S, Karmakar P, Blasco S, García-España E, Saha A. Aza-phenol Based Macrocyclic Probes Design for "CHEF-on" Multi Analytes Sensor: Crystal Structure Elucidation and Application in Biological Cell Imaging. ACS OMEGA 2023; 8:7479-7491. [PMID: 36873024 PMCID: PMC9979245 DOI: 10.1021/acsomega.2c06549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Metal bound macrocyclic compounds found in biological systems inspired us to design and synthesize two Robson-type macrocyclic Schiff-base chemosensors, H 2 L1 (H 2 L1=1,11-dimethyl-6,16-dithia-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol) and H 2 L2 (H 2 L2=1,11-dimethyl-6,16-dioxa-3,9,13,19-tetraaza-1,11(1,3)-dibenzenacycloicosaphane-2,9,12,19-tetraene-1,11-diol). Both the chemosensors have been characterized with different spectroscopic techniques. They act as multianalyte sensor and exhibit "turn-on" fluorescence toward different metal ions in 1X PBS (Phosphate Buffered Saline) solution. In presence of Zn2+, Al3+, Cr3+ and Fe3+ ions, H 2 L1 exhibits ∼6-fold enhancement of emission intensity, while H 2 L2 shows ∼6-fold enhancement of emission intensity in the presence of Zn2+, Al3+ and Cr3+ ions. The interaction between the different metal ion and chemosensor have been examined by absorption, emission, and 1H NMR spectroscopy as well as by ESI-MS+ analysis. We have successfully isolated and solved the crystal structure of the complex [Zn(H 2 L1)(NO3)]NO3 (1) by X-ray crystallography. The crystal structure of 1 shows 1:1 metal:ligand stoichiometry and helps to understand the observed PET-Off-CHEF-On sensing mechanism. LOD values of H 2 L1 and H 2 L2 toward metal ions are found to be ∼10-8 and ∼10-7 M, respectively. Large Stokes shifts of the probes against analytes (∼100 nm) make them a suitable candidate for biological cell imaging studies. Robson type phenol based macrocyclic fluorescence sensors are very scarce in the literature. Therefore, the tuning of structural parameters as the number and nature of donor atoms, their relative locations and presence of rigid aromatic groups can lead to the design of new chemosensors, which can accommodate different charged/neutral guest(s) inside its cavity. The study of the spectroscopic properties of this type of macrocyclic ligands and their complexes might open a new avenue of chemosensors.
Collapse
Affiliation(s)
- Mohafuza Khatun
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Pravat Ghorai
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Jayanta Mandal
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Parimal Karmakar
- Department
of Life Science and Biotechnology, Jadavpur
University, Kolkata 700032, India
| | - Salvador Blasco
- Institute
of Molecular Sciences, Universitat de València, C/Catedrático José
Beltrán Martínez, 2, Paterna, Valencia 46980, Spain
| | - Enrique García-España
- Institute
of Molecular Sciences, Universitat de València, C/Catedrático José
Beltrán Martínez, 2, Paterna, Valencia 46980, Spain
| | - Amrita Saha
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Kamaci M. Poly(Azomethine-urethane)-based Fluorescent Chemosensor for the Detection of Cr 3+ Cations in Different Water Samples. J Fluoresc 2023; 33:53-59. [PMID: 36220942 DOI: 10.1007/s10895-022-03037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/29/2022] [Indexed: 02/03/2023]
Abstract
A highly selective, and effective poly(azomethine-urethane)-based chemosensor (HIMA) was prepared, and it used as a fluorescent sensor for the detection of Cr3+ cations in different solutions. The HIMA was prepared in two-step reactions by using hexamethylene diisocyanate, 2,4-dihydroxy benzaldehyde, and 2-aminophenol. The sensitivity and selectivity of the fluorescent probe were tested in the presence of different metal ions. The obtained findings indicated that the chemosensor exhibited a quenching effect against the only Cr3+ ion. The limit of detection (LOD) and limit of quantitation (LOQ) of the chemosensor HIMA were calculated as 7.98 × 10-7 M, and 2.42 × 10-6 M, respectively. In addition, the binding constant (Ka) of the chemosensor was calculated as 5.31 × 105 M-1.
Collapse
Affiliation(s)
- Musa Kamaci
- Piri Reis University, 34940, Tuzla, Istanbul, Turkey.
| |
Collapse
|
14
|
Ghosh S, Roy P. A rhodamine based chemodosimeter for the detection of Group 13 metal ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:17-26. [PMID: 36472156 DOI: 10.1039/d2ay01701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new rhodamine derivative, HL-CIN, derived from a reaction between N-(rhodamine-6G)lactam-ethylenediamine (L1) and trans-cinnamaldehyde, is reported here for the colorimetric and fluorogenic sensing of Group 13 trivalent cations, namely Al3+, Ga3+, In3+ and Tl3+. The absorption intensity of the probe increases significantly at 530 nm whereas the fluorescence intensity enhances massively at 558 nm upon interaction with these metal ions. Other relevant metal ions could not impart any noticeable color change or fluorescence enhancement. The quantum yield or fluorescence life time of HL-CIN increases considerably in the presence of these Group 13 metal ions. Different spectral studies such as ESI-mass, FT-IR, 1H and 13C NMR spectra, establish that HL-CIN undergoes hydrolysis in the presence of the trivalent cations and a rhodamine species in its ring opened form (i.e. N-(2-aminoethyl)-2-((6Z)-3-(ethylamino)-6-(ethylimino)-2,7-dimethyl-6H-xanthen-9-yl)benzamide, (L2)) along with cinnamaldehyde are produced. The rhodamine species in its ring opened form (L2) is responsible for the color change and strong increment in the absorbance and fluorescence of HL-CIN with Group 13 cations. Interaction between L1 and these metal ions could not produce the same outcome. It has been used in test paper strips and to detect these cations in real samples.
Collapse
Affiliation(s)
- Sneha Ghosh
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
15
|
Spectroscopic and DFT/TD-DFT studies on selective and sensitive fluorescent detection of Al(III) ion. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Mandal J, Pal K, Ghosh Chowdhury S, Karmakar P, Panja A, Banerjee S, Saha A. Two rhodamine-azo based fluorescent probes for recognition of trivalent metal ions: crystal structure elucidation and biological applications. Dalton Trans 2022; 51:15555-15570. [PMID: 36168977 DOI: 10.1039/d2dt00399f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two rhodamine and azo based chemosensors (HL1 = (3',6'-bis(ethylamino)-2-((2-hydroxy-3-methoxy-5-(phenyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) and HL2 = (3',6'-bis(ethylamino)-2-(((2-hydroxy-3-methoxy-5-(p-tolyldiazenyl)benzylidene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one) have been synthesized for colorimetric and fluorometric detection of three trivalent metal ions, Al3+, Cr3+ and Fe3+. The chemosensors have been thoroughly characterized by different spectroscopic techniques and X-ray crystallography. They are non-fluorescent due to the presence of a spirolactam ring. The trivalent metal ions initiate an opening of the spirolactam ring when excited at 490 nm in Britton-Robinson buffer solution (H2O/MeOH 1 : 9 v/v; pH 7.4). The opening of the spirolactam ring increases conjugation within the probe, which is supported by an intense fluorescent pinkish-yellow colouration and an enhancement of the fluorescence intensity of the chemosensors by ∼400 times in the presence of Al3+ and Cr3+ ions and by ∼100 times in the presence of Fe3+ ions. Such a type of enormous fluorescence enhancement is rarely observed in other chemosensors for the detection of trivalent metal ions. A 2 : 1 binding stoichiometry of the probes with the respective ions has been confirmed by Job's plot analysis. Elucidation of the crystal structures of the Al3+ bound chemosensors (1 and 4) also justifies the 2 : 1 binding stoichiometry and the presence of an open spirolactam ring within the chemosensor framework. The limit of detection (LOD) values for both the chemosensors towards the respective metal ions are in the order of ∼10-9 M which supports their application in the biological field. The biocompatibility of the ligands has been studied with the help of the MTT assay. The results show that no significant toxicity was observed up to 100 μM of chemosensor concentration. The capability of our synthesized chemosensors to detect intracellular Al3+, Cr3+ and Fe3+ ions in the cervical cancer cell line HeLa was evaluated with the aid of fluorescence imaging.
Collapse
Affiliation(s)
- Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Kunal Pal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata-700032, India
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India
| | - Snehasis Banerjee
- Department of Higher Education, University Branch, Bikash Bhavan, Salt Lake, Sector-3, Kolkata, 700091, India
| | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
17
|
Roy S, Kundu S, Saha S, Muddukrishnaiah K, Pramanik R, Biswas B. Visible light‐triggered Pyrazole‐Functionalized Reversible Ionophore for Selective Monitoring of Aluminium (III) ion. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Suvojit Roy
- Department of Chemistry University of North Bengal Darjeeling India
| | - Subhankar Kundu
- Department of Chemistry University of North Bengal Darjeeling India
| | - Subhajit Saha
- Department of Chemistry University of North Bengal Darjeeling India
| | | | - Rajib Pramanik
- Department of Chemistry Berhampore Girls’ College Berhampore India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Darjeeling India
| |
Collapse
|
18
|
Krishnan U, Kulathu Iyer S. Iminothiophenol Schiff base-based fluorescent probe for dual detection of Hg2+ and Cr3+ ions and its application in real sample analysis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Hazra A, Roy P. A rhodamine based dye for sensing of Group 13 metal ions. Anal Chim Acta 2022; 1193:339378. [DOI: 10.1016/j.aca.2021.339378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022]
|
20
|
Matsumoto S, Umeno T, Suzuki N, Usui K, Kawahata M, Karasawa S. Chelate-free “turn-on”-type fluorescence detection of trivalent metal ions. Chem Commun (Camb) 2022; 58:12435-12438. [DOI: 10.1039/d2cc04815a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the detection of trivalent ions, the chelate-free pH-responsive “Turn-ON”-type fluorescence probes based on INAs were constructed. Based on the X-ray analysis, cationic INAs formed unique outer-sphere complexes for AlIII ions.
Collapse
Affiliation(s)
- Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Noriko Suzuki
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Kazuteru Usui
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida 194-8543, Japan
| |
Collapse
|
21
|
Kumar A, Sahoo PR, Prakash K, Arya Y, Kumar S. Light controlled dimerization of spiropyran as a tool to achieve dual responsive capture and release system in aqueous media. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Immanuel David C, Prabakaran G, Nandhakumar R. Recent approaches of 2HN derived fluorophores on recognition of Al3+ ions: A review for future outlook. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Tarai A, Li Y, Liu B, Zhang D, Li J, Yan W, Zhang J, Qu J, Yang Z. A review on recognition of tri-/tetra-analyte by using simple organic colorimetric and fluorometric probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
A new furan based fluorescent chemosensor for the recognition of Cr3+ ion and its application in real sample analysis. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Mahata S, Janani G, Mandal BB, Manivannan V. A coumarin based visual and fluorometric probe for selective detection of Al(III), Cr(III) and Fe(III) ions through “turn-on” response and its biological application. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Zhou X, Liu L, Kou H, Zheng S, Song M, Lu J, Tai X. A Multifunctional 3D Supermolecular Co Coordination Polymer With Potential for CO 2 Adsorption, Antibacterial Activity, and Selective Sensing of Fe 3+/Cr 3+ Ions and TNP. Front Chem 2021; 9:678993. [PMID: 34336785 PMCID: PMC8321245 DOI: 10.3389/fchem.2021.678993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
A 3D supermolecular structure [Co3(L)2 (2,2′-bipy)2](DMF)3(H2O)3 1) (H3L = 4,4′,4″-nitrilotribenzoic acid) has been constructed based on H3L, and 2,2′-bipy ligands under solvothermal conditions. Compound 1 can be described as a (3, 6)-connected kgd topology with a Schläfli symbol (43)2(46.66.83) formed by [Co3(CO2)6] secondary building units. The adsorption properties of the activated sample 1a has been studied; the result shows that 1a has a high adsorption ability: the CO2 uptakes were 74 cm3·g−1 at 273 K, 50 cm3·g−1 at 298 K, the isosteric heat of adsorption (Qst) is 25.5 kJ mol−1 at zero loading, and the N2 adsorption at 77 K, 1 bar is 307 cm3 g−1. Magnetic measurements showed the existence of an antiferromagnetic exchange interaction in compound 1, besides compound 1 exhibits effective luminescent performance for Fe3+/Cr3+ and TNP.
Collapse
Affiliation(s)
- Xiaojing Zhou
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Lili Liu
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Hang Kou
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Shimei Zheng
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Mingjun Song
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Jitao Lu
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| | - Xishi Tai
- School of Chemical and Chemical Engineering and Environmental Engineering, Weifang University, Weifang, China
| |
Collapse
|
27
|
Singha D, Pal A, Uyama H, Roy P, Nandi M. Discriminatory behavior of a rhodamine 6G decorated mesoporous silica based multiple cation sensor towards Cu 2+ and Hg 2+vis-à-vis Al 3+, Cr 3+ and Fe 3+: selective removal of Cu 2+ and Hg 2+ from aqueous media. Dalton Trans 2021; 50:12478-12494. [PMID: 34240725 DOI: 10.1039/d1dt01542g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Selective identification of metal ions as well as their removal is possible when a sensing unit is anchored to a solid support. In this paper, functionalized mesoporous silica with a pendant rhodamine 6G moiety (R6FMS) has been obtained by successive grafting of an aldehyde derivative of bisphenol A followed by rhodamine 6G over a 3-aminopropyl anchored mesoporous silica framework. The materials have been characterized by powder X-ray diffraction, nitrogen sorption and electron microscopy studies, FT-IR and solid state MAS NMR spectral studies, and thermal analysis. In ethanol, the colorless silica material gives pink coloration in the presence of Al3+, Cr3+, Fe3+ and Cu2+ which is also clearly evident from the generation of an absorption peak at 525 nm. Upon excitation at 500 nm, the fluorescence intensity of the probe increases by 36-, 17-, 40- and 89-fold in the presence of Al3+, Cr3+, Fe3+ and Cu2+ ions, respectively. This suggests that R6FMS is a colorimetric and fluorescent chemosensor for these cations in ethanol. However, when the solvent is changed from ethanol to water, it becomes a selective chemosensor only for Cu2+ and Hg2+, by the generation of a pink color and strong fluorescence at ca. 550 nm, thereby discriminating the trivalent cations. Cations induce the opening of the spirolactam ring resulting in pink coloration and strong fluorescence. The quantum yield and lifetime of the probe have been increased considerably in the presence of these cations in ethanol as well as in aqueous media. The detection limit values for these cations range from 10-6 to 10-8 M. R6FMS has been used to remove Hg2+ and Cu2+ from their aqueous solution with a maximum adsorption capacity of 35 mg g-1 and 148 mg g-1 for Cu2+ and Hg2+, respectively.
Collapse
Affiliation(s)
- Debdas Singha
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | - Ananya Pal
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| |
Collapse
|
28
|
Sun J, Li TR, Yang ZY. A novel fluorescent probe based on 7,8-benzochromone-3-carbaldehyde-(rhodamine B carbonyl) hydrazone for detection of trivalent cations and Zn2+ in different systems. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
A cell-compatible red light-emitting multianalyte chemosensor via three birds, one stone strategy. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Wang B, Li J, Shui S, Xu J. An acylhydrazone-based AIE organogel for the selective sensing of submicromolar level Al 3+ and Al( iii)-based metallogel formation to detect oxalic acid. NEW J CHEM 2021. [DOI: 10.1039/c9nj06340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The compound L can be fluorescence-tunable depending on the water volume fraction and optically sense Al3+ without interference.
Collapse
Affiliation(s)
- Bin Wang
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province of China
| | - Juan Li
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
| | - Shipeng Shui
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
| | - Jie Xu
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong
- People's Republic of China
| |
Collapse
|
31
|
|
32
|
A Schiff base based on triphenylamine and thiophene moieties as a fluorescent sensor for Cr (III) ions: Synthesis, characterization and fluorescent applications. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Dhineshkumar E, Iyappan M, Anbuselvan C. A novel dual chemosensor for selective heavy metal ions Al3+, Cr3+ and its applicable cytotoxic activity, HepG2 living cell images and theoretical studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
A New Schiff Base Based Fluorescent Sensor for Al(III) Based on 2-Hydroxyacetophenone and o-Phenylenediamine. J Fluoresc 2020; 30:751-757. [PMID: 32410084 DOI: 10.1007/s10895-020-02527-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
A simple Schiff base (L) based on 2-hydroxyacetophenone and o-phenylenediamine was prepared which acts as an effective fluorescent sensor for Al3+ with ca. 9.0 fold enhancement in fluorescence intensity and detection limit 10-4.3 M. L can quite clearly distinguish Al3+ over other metal ions Zn2+, Hg2+, Cd2+, Pb2+, Mn2+, Mg2+, Co2+, Ni2+, Cu2+, Ca2+, K+, Li+, Na+ and Fe3+. Cyclic voltammogram and square wave voltammogram of L shows a significant change on interaction with Al3+. Spectroscopic data and DFT calculations confirm 1:1 interaction between L and Al3+ which is reversible with respect to Na2EDTA.
Collapse
|
35
|
Dutta B, Dey S, Pal K, Bera S, Naaz S, Jana K, Sinha C, Mir MH. Supramolecular assembly of a 4-(1-naphthylvinyl)pyridine-appended Zn( ii) coordination compound for the turn-on fluorescence sensing of trivalent metal ions (Fe 3+, Al 3+, and Cr 3+) and cell imaging application. NEW J CHEM 2020. [DOI: 10.1039/d0nj01608j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The as-synthesized Zn(ii) coordination compound exhibited turn-on fluorescence sensing of analytical group-IIIA metal ions (Fe3+, Al3+, and Cr3+) and applications in cell imaging.
Collapse
Affiliation(s)
- Basudeb Dutta
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Sunanda Dey
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Kunal Pal
- Department of Life Science and Biotechnology
- Jadavpur University
- Kolkata 700032
- India
- Division of Molecular Medicine and Centre for Translational Research
| | | | - Sanobar Naaz
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Kuladip Jana
- Division of Molecular Medicine and Centre for Translational Research
- Bose Institute
- Kolkata 700056
- India
| | | | | |
Collapse
|
36
|
Chandra R, Manna AK, Sahu M, Rout K, Patra GK. Simple salicylaldimine-functionalized dipodal bis Schiff base chromogenic and fluorogenic chemosensors for selective and sensitive detection of Al3+ and Cr3+. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Roy A, Das S, Sacher S, Mandal SK, Roy P. A rhodamine based biocompatible chemosensor for Al 3+, Cr 3+ and Fe 3+ ions: extraordinary fluorescence enhancement and a precursor for future chemosensors. Dalton Trans 2019; 48:17594-17604. [PMID: 31754672 DOI: 10.1039/c9dt03833g] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodamine based chemosensor, 3-(((2-(3',6'-bis(ethylamino)-2',7'-dimethyl-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)ethyl)imino)methyl)-2-hydroxy-5-methylbenzaldehyde (HL-CHO), has been developed for the detection of Al3+, Cr3+ and Fe3+ ions. The absorbance of HL-CHO at 528 nm increases significantly in HEPES buffer in methanol : water (9 : 1, v/v) (pH 7.4) in the presence of Al3+, Cr3+ and Fe3+ ions with the alteration of solution color from colorless to pink. The fluorescence intensity of the probe at 550 nm enhances by 1465, 588 and 800 fold in the presence of Al3+, Cr3+ and Fe3+ ions, respectively. To the best of our knowledge, this huge increase in fluorescence intensity with Al3+ and Cr3+ has not been observed for other rhodamine based chemosensing systems. The weak fluorescence and no coloration of the probe are due to the existence of a spirolactam ring. The trivalent cations induce the opening of the spirolactam ring and consequently change the color and the fluorescence intensity followed by the 1 : 1 complex formation with HL-CHO which are evident from Job's analysis, ESI mass spectral analysis and elemental analysis. The quantum yield and lifetime of HL-CHO have increased considerably in the presence of the trivalent cations. The high sensitivity of the probe towards all the cations is evident from the nM order of LOD values. This has been used in living cell imaging studies with the human neuroblastoma SH-SY5Y cell line. Having appended -CHO groups for Schiff-base condensation with other amines, HL-CHO could be a potential precursor for future chemosensors.
Collapse
Affiliation(s)
- Ankita Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| | | | | | | | | |
Collapse
|
38
|
Vishaka HV, Saxena M, Chandan HR, Ojha AA, Balakrishna RG. Paper based field deployable sensor for naked eye monitoring of copper (II) ions; elucidation of binding mechanism by DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117291. [PMID: 31284241 DOI: 10.1016/j.saa.2019.117291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
The study demonstrates the fabrication of test strips made from newly synthesized ortho-Vanillin based colorimetric chemosensor (probe P) that could be employed as field deployable tool for rapid and naked eye detection of Cu2+. Upon addition of Cu2+ to the chemosensor, it exhibits rapid pink color from colorless and can be easily seen through the naked eye. This probe exhibits a remarkable colorimetric "ON" response and the absorbance intensity of the probe enhances significantly in presence of Cu2+. The sensing mechanism has been deduced using FTIR, XPS, LCMS and DFT studies. The binding mechanism of the probe to Cu2+ was substantiated by DFT studies. HOMO of the probe suggests that a high electronic density resides on O, N atoms and thus these are the favorable binding site for the metal ions. Study revealed that the P + Cu2+ complex is -35.64 eV more stable than individual reactants. The Cu2+ binds to the probe in 1:1 stoichiometry with a binding constant of 2.6 × 104 M-1 as calculated by Job's plot and Benesi-Hildebrand plot. The chemosensor shows 1.8 × 10-8 M detection limit, which is considerably lesser than that of the WHO admissible limit of [Cu2+] in drinking water. Possible interfering ions namely Ca2+, Mg2+, Fe2+, Co2+, Ni2+, Cd2+, Hg2+, Mn2+, Al3+ and Cr3+ do not show any appreciable interference in the colorimetric response of the probe towards Cu2+. Particularly, the colorimetric "ON-OFF-ON" responses are proved to be repeated over 5 times by the sequential inclusion of Cu2+ and S2-. Sensitivity of the probe in real-time water and blood samples is found at par with results with AAS and ICP-OES techniques. Further, the reversibility of the probe and the easy fabrication of deployable strips for real-field naked eye detection of Cu2+ suggest importance of synthesized probe.
Collapse
Affiliation(s)
- Halali V Vishaka
- Centre for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India
| | - H R Chandan
- Centre for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India
| | | | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain University, Ramanagaram, Bangalore 562112, India.
| |
Collapse
|
39
|
Shi Z, Zhao Z. Microwave irradiation synthesis of novel indole triazole Schiff base fluorescent probe for Al3+ ion. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Naha S, Arshad MK, Velmathi S. A Simple Red Emitting “Turn-On” Optical Relay Detector for Al3+ and CN−. Application in the Real Sample and RAW264.7 Cell Imaging. J Fluoresc 2019; 29:1401-1410. [DOI: 10.1007/s10895-019-02460-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
|
41
|
Ye F, Wu N, Li P, Liu YL, Li SJ, Fu Y. A lysosome-targetable fluorescent probe for imaging trivalent cations Fe 3+, Al 3+ and Cr 3+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117242. [PMID: 31207489 DOI: 10.1016/j.saa.2019.117242] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
An effective morpholine-type naphthalimide chemsensor, N-p-chlorophenyl-4-(2-aminoethyl)morpholine-1,8-naphthalimide (CMN) has been developed as a lysosome-targeted fluorometric sensor for trivalent metal ions (Fe3+, Al3+ and Cr3+). Upon the addition of Fe3+, Al3+ or Cr3+ ions, the probe CMN showed an evident naked-eye color changes which pale yellow solution of CMN turned deepened and it displayed turn-on fluorescence response in methanol. CMN showed a significant selective and sensitive toward Fe3+, Al3+ or Cr3+ ions, while there was no obvious behavior to other monovalent or divalent metal ions from the UV-vis and fluorescence spectrum. Based on the Job's plot analyses the 1:1 coordination mode of CMN with Fe3+, Al3+ or Cr3+ was proposed. The limit of detection (LOD) observed were 0.65, 0.69 and 0.68 μM for Fe3+, Al3+ and Cr3+ ions, respectively. The N-atom of morpholine directly involved in complex formation, CMN emitted fluorescence through inhibition of photoinduced electron transfer (PET). This probe exhibited excellent imaging ability for Fe3+, Al3+and Cr3+ ions in living cells with low cytotoxicity. Significantly, the cellular confocal microscopic research indicated that the lysosome-targeted group of morpholine moiety was introduced which realized the capability of imaging lysosomal trivalent metal ions in living cells for the first time.
Collapse
Affiliation(s)
- Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Wu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ping Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Long Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Jie Li
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China; College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
42
|
Mala R, Suman K, Nandhagopal M, Narayanasamy M, Thennarasu S. Chelation of specific metal ions imparts coplanarity and fluorescence in two imidazo[1,2-a]pyridine derivatives: Potential chemosensors for detection of metal ions in aqueous and biosamples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117236. [PMID: 31200265 DOI: 10.1016/j.saa.2019.117236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/01/2019] [Accepted: 06/01/2019] [Indexed: 05/21/2023]
Abstract
Synthesis and chelation induced fluorescence emission from two imidazo[1,2-a]pyridine derivatives are described. The nonfluorescent molecule 1 containing N and O donor atoms, achieves coplanarity upon interactions with trivalent cations Al3+, Fe3+ and Cr3+, that favors fluorescence emission. Molecule 2 containing two N donor atoms attains coplanarity upon interaction with the only Zn2+ and becomes fluorescent. Both molecules 1 and 2 form a 1:1 complex with interacting metal ions. Other trivalent metal ions (including Bi3+ and In3+) and common divalent metal ions (including Hg2+ and Cd2+) fail to form any complex with 1 or 2, and they do not interfere in the detection of Zn2+, Al3+, Fe3+ or Cr3+ ions. Noninterference of other metal ions renders 1 and 2 suitable for the detection of fungal cells contaminated with Zn2+, Al3+, Fe3+ or Cr3+ ions.
Collapse
Affiliation(s)
- Ramanjaneyulu Mala
- Organic and Biorgnic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Koorathota Suman
- Organic and Biorgnic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Manivannan Nandhagopal
- Biocontrol and Microbial Metabolites Lab, Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| | - Mathivanan Narayanasamy
- Biocontrol and Microbial Metabolites Lab, Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| | - Sathiah Thennarasu
- Organic and Biorgnic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.
| |
Collapse
|
43
|
Mabhai S, Dolai M, Dey SK, Dhara A, Choudhury SM, Das B, Dey S, Jana A. Rhodamine-azobenzene based single molecular probe for multiple ions sensing: Cu 2+, Al 3+, Cr 3+ and its imaging in human lymphocyte cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:319-332. [PMID: 31054496 DOI: 10.1016/j.saa.2019.04.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
A photoinduced electron transfer (PET) and chelation-enhanced fluorescence (CHEF) regulated rhodamine-azobenzene chemosensor (L) was synthesized for chemoselective detection of Al3+, Cr3+, and Cu2+ by UV-Visible absorption study whereas Al3+ and Cr3+ by fluorimetric study in EtOH-H2O solvent. L showed a clear fluorescence emission enhancement of 21 and 16 fold upon addition of Al3+ and Cr3+ due to the 1:1 host-guest complexation, respectively. This is first report on rhodamine-azobenzene based Cr3+ chemosensor. The complex formation, restricted imine isomerization, inhibition of PET (photo-induced electron transfer) process with the concomitant opening of the spirolactam ring induced a turn-on fluorescence response. The higher binding constants 6.7 × 103 M-1 and 3.8 × 103 M-1 for Al3+ and Cr3+, respectively and lower detection limits 1 × 10-6 M and 2 × 10-6 M for Al3+ and Cr3+, respectively in a buffered solution with high reversible nature describes the potential of L as an effective tool for detecting Al3+ and Cr3+ in a biological system with higher intracellular resolution. Finally, L was used to map the intracellular concentration of Al3+ and Cr3+ in human lymphocyte cells (HLCs) at physiological pH very effectively. Altogether, our findings will pave the way for designing new chemosensors for multiple analytes and those chemosensors will be effective for cell imaging study.
Collapse
Affiliation(s)
- Subhabrata Mabhai
- Department of Chemistry, Mahishadal Raj College, East Midnapore, Mahishadal, West Bengal, Pin No. 721628, India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur 721401, India
| | - Surya Kanta Dey
- Department of Human Physiology with Community Health, Vidyasagar University, Rangamati, Medinipur, West Bengal, Pin No. 721102, India
| | - Anamika Dhara
- Department of Chemistry, Jadavpur University, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Sujata Maiti Choudhury
- Department of Human Physiology with Community Health, Vidyasagar University, Rangamati, Medinipur, West Bengal, Pin No. 721102, India
| | - Bhriguram Das
- Department of Chemistry, Tamralipta Mahavidyalaya, East Midnapore, West Bengal, Pin No. 721636, India
| | - Satyajit Dey
- Department of Chemistry, Tamralipta Mahavidyalaya, East Midnapore, West Bengal, Pin No. 721636, India.
| | - Atanu Jana
- Center for Superfunctional Materials, Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
| |
Collapse
|
44
|
Kumar V, Kumar P, Kumar S, Singhal D, Gupta R. Turn-On Fluorescent Sensors for the Selective Detection of Al 3+ (and Ga 3+) and PPi Ions. Inorg Chem 2019; 58:10364-10376. [PMID: 31342750 DOI: 10.1021/acs.inorgchem.9b01550] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rationally designed multiple hydroxyl-group-based chemosensors L1-L4 containing arene-based fluorophores are presented for the selective detection of Al3+ and Ga3+ ions. Changes in the absorption and emission spectra of L1-L4 in ethanol were easily observable upon the addition of Al3+ and Ga3+ ions. Competitive binding studies, detection limits, and binding constants illustrate significant sensing abilities of these chemosensors with L4, showing the best results. The interaction of Al3+/Ga3+ ions with chemosensor L4 was investigated by fluorescence lifetime measurements, whereas Job's plot, high-resolution mass spectrometry, and 1H NMR spectral titrations substantiated the stoichiometry between L4 and Al3+/Ga3+ ions. The solution-generated [L-M3+] species further detected pyrophosphate ion (PPi) by exhibiting emission enhancement and a visible color change. The binding of Al3+/Ga3+ ions with chemosensor L4 was further supported by density functional theory studies. Reversibility for the detection of Al3+/Ga3+ ions was achieved by utilizing a suitable proton source. The multiionic response, reversibility, and optical visualization of the present chemosensors make them ideal for practical applications for real samples, which have been illustrated by paper-strip as well as polystyrene film-based detection.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Pramod Kumar
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Sushil Kumar
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Divya Singhal
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Rajeev Gupta
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| |
Collapse
|
45
|
Adhikari S, Ta S, Ghosh A, Guria S, Pal A, Ahir M, Adhikary A, Hira SK, Manna PP, Das D. A 1,8 naphthalimide anchor rhodamine B based FRET probe for ratiometric detection of Cr3+ion in living cells. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Orojloo M, Amani S. Colorimetric Detection of Pollutant Trivalent Cations and HSO 4− in Aqueous Media Using a New Schiff-base Probe: An Experimental and DFT Studies. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1567561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Saeid Amani
- Department of Chemistry Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
47
|
Wu YC, Jiang K, Luo SH, Cao L, Wu HQ, Wang ZY. Novel dual-functional fluorescent sensors based on bis(5,6-dimethylbenzimidazole) derivatives for distinguishing of Ag + and Fe 3+ in semi-aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:632-641. [PMID: 29880253 DOI: 10.1016/j.saa.2018.05.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Three novel bisbenzimidazole derivatives have been synthesized and developed as dual-functional fluorescent sensors for the rapid and highly selective detection of Ag+ and Fe3+ ions in semi-aqueous medium with distinct spectral response for the first time. The absorption intensity is drastically decreased after the addition of Ag+. Contrarily, it is markedly increased upon the addition of Fe3+. And there is a good linear relation at low concentration of both Ag+ and Fe3+, which provides a quantitative method for their detection. Similarly, the sensors show a distinct fluorescence response towards Ag+ and Fe3+ with a different fluorescence color change under UV light. In addition, no significant changes and interference can be observed with other metal ions. The sensing mechanism studies confirm that the N atom in CN of benzimidazole ring of sensor 4a may bind with Ag+ or Fe3+ ion to form metal complex. And there is only a static quenching process for the 4-Ag+ complex system, but both dynamic and static quenching processes occur in the 4-Fe3+ complex system. Moreover, sensors 4 can steadily work in solution with a wide range of pH 4-13 and rapidly respond to Ag+ and Fe3+ with a response time of 10 s. Finally, the sensors have been successfully applied to the visual detection of Ag+ and Fe3+ not only in solution, but also in test paper.
Collapse
Affiliation(s)
- Yan-Cheng Wu
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Jiang
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China
| | - Shi-He Luo
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | - Liang Cao
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China
| | - Han-Qing Wu
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China
| | - Zhao-Yang Wang
- School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
48
|
Singha D, Das T, Satyanarayana L, Roy P, Nandi M. Rhodamine functionalized mesoporous silica as a chemosensor for the efficient sensing of Al3+, Cr3+ and Fe3+ ions and their removal from aqueous media. NEW J CHEM 2019. [DOI: 10.1039/c9nj03010g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhodamine incorporated mesoporous silica acts as a selective chemosensor for Al3+, Cr3+ and Fe3+ ions and it is used for their separation from an aqueous medium.
Collapse
Affiliation(s)
- Debdas Singha
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| | - Trisha Das
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| | - Lanka Satyanarayana
- Analytical Chemistry Department
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| |
Collapse
|
49
|
Das D, Alam R, Katarkar A, Ali M. A differentially selective probe for trivalent chemosensor upon single excitation with cell imaging application: potential applications in combinatorial logic circuit and memory devices. Photochem Photobiol Sci 2019; 18:242-252. [DOI: 10.1039/c8pp00381e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new rhodamine 6G-benzylamine-based sensor (L1) shows selective recognition of trivalent metal ions with advanced level molecular logic gate and bio-imaging applications.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Rabiul Alam
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
| | - Atul Katarkar
- Department of Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Mahammad Ali
- Department of Chemistry Jadavpur University
- Kolkata 700 032
- India
- Vice-Chancellor
- Aliah University
| |
Collapse
|
50
|
Wu ZY, Xu ZY, Yan JW, Li Y, Kou Q, Zhang L. Development of rhodamine-based fluorescent probes for sensitive detection of Fe3+ in water: spectroscopic and computational investigations. NEW J CHEM 2019. [DOI: 10.1039/c8nj05366a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Four novel rhodamine-based fluorescent probes (RE1–RE4) were designed and synthesized for sensitive detection of Fe3+ in water.
Collapse
Affiliation(s)
- Zi-ying Wu
- School of Biology and Biological Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Zhong-yong Xu
- School of Biology and Biological Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
| | - Jin-wu Yan
- School of Biology and Biological Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmceuticals
| | - Yafang Li
- The Sixth Affiliated Hospital of Sun Yat-Sen University
- Guangzhou 510655
- P. R. China
| | - Qiuye Kou
- The Sixth Affiliated Hospital of Sun Yat-Sen University
- Guangzhou 510655
- P. R. China
| | - Lei Zhang
- School of Biology and Biological Engineering
- South China University of Technology
- Guangzhou 510006
- P. R. China
- Guangdong Provincial Engineering and Technology Research Center of Biopharmceuticals
| |
Collapse
|