1
|
Hormann J, Verbitsky O, Zhou X, Battistella B, van der Meer M, Sarkar B, Zhao C, Kulak N. Experimental and computational investigation of heteroatom substitution in nucleolytic Cu(II) cyclen complexes for balancing stability and redox activity. Dalton Trans 2023; 52:3176-3187. [PMID: 36790350 DOI: 10.1039/d2dt03284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cu(II) complexes of cyclen-based ligands CuL1-CuL6 were synthesized and characterized. The corresponding ligands L1-L6 comprise different donor sets including S and O atoms. Whereas cyclen (L1) is commercially available, L2-L6 were synthesized according to protocols available in the literature. Cleavage activity of the complexes towards plasmid DNA was tested in the presence and absence of ascorbate as a reducing agent (oxidative vs. hydrolytic cleavage). As previously shown, the substitution of N donor atoms with hard donor O atoms leads to efficient oxidative nucleases, but dissociation of the complex upon reduction. We thus opted for S substitution (soft donors) to stabilize the reduced Cu(I) species. Increasing the S content, however, leads to species that are difficult to reoxidize in order to ensure efficient oxidative DNA cleavage. We are showing by experimental (cyclic voltammetry) and computational means (DFT) that the rational combination of O and S atoms next to two nitrogen donors within the macrocycle (oxathiacyclen complex CuL6) leads to the stabilization of both redox states. The complex thus exhibits the highest oxidative DNA cleavage activity within this family of cyclen-based Cu(II) complexes - without leaching of the metal ion during reduction.
Collapse
Affiliation(s)
- Jan Hormann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Olga Verbitsky
- Institut für Chemie, Otto-von-Guericke-Universität, Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, XinGang Rd. W., Guangzhou 510275, China.
| | - Beatrice Battistella
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Margarete van der Meer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, XinGang Rd. W., Guangzhou 510275, China.
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität, Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
2
|
Malikidogo KP, Drommi M, Atrián-Blasco E, Hormann J, Kulak N, Esmieu C, Hureau C. Ability of Azathiacyclen Ligands To Stop Cu(Aβ)-Induced Production of Reactive Oxygen Species: [3N1S] Is the Right Donor Set. Chemistry 2023; 29:e202203667. [PMID: 36606721 DOI: 10.1002/chem.202203667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease that leads to the progressive and irreversible loss of mental functions. The amyloid beta (Aβ) peptide involved in the disease is responsible for the production of damaging reactive oxygen species (ROS) when bound to Cu ions. A therapeutic approach that consists of removing Cu ions from Aβ to alter this deleterious interaction is currently being developed. In this context, we report the ability of five different 12-membered thiaazacyclen ligands to capture Cu from Aβ and to redox silence it. We propose that the presence of a sole sulfur atom in the ligand increases the rate of Cu capture and removal from Aβ, while the kinetic aspect of the chelation was an issue encountered with the 4N parent ligand. The best ligand for removing Cu from Aβ and inhibiting the associated ROS production is the 1-thia-4,7,10-triazacyclododecane [3N1S]. Indeed the replacement of more N by S atoms makes the corresponding Cu complexes easier to reduce and thus able to produce ROS on their own. In addition, the ligand with three sulfur atoms has a weaker affinity for CuII than Aβ, and is thus unable to remove Cu from CuAβ.
Collapse
Affiliation(s)
- Kyangwi P Malikidogo
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Université Grenoble Alpes, DCM (UMR 5250) - CNRS and CEA, IRIG, LCBM (UMR, 5249, Grenoble, France
| | - Marielle Drommi
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Elena Atrián-Blasco
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Jan Hormann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | | |
Collapse
|
3
|
Ghorbanpour M, Soltani B, Mota A, Jahanbin Sardroodi J, Mehdizadeh Aghdam E, Shayanfar A, Molavi O, Mohammad-Rezaei R, Ebadi-Nahari M, Ziegler CJ. Copper (II) complexes with N, S donor pyrazole-based ligands as anticancer agents. Biometals 2022; 35:1095-1111. [PMID: 36001216 DOI: 10.1007/s10534-022-00426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
A group of bidentate nitrogen and sulfur donor pyrazole derivative ligands abbreviated as Na[RNCS(Pz)], Na[RNCS(PzMe2)], Na[RNCS(PzMe3)], Na[RNCS(PzPhMe)], Na[RNCS(PzPh2)], where (R = Et, Ph), and their Cu (II) complexes were synthesized and characterized by spectroscopic and physicochemical methods. The crystal structure of [Cu(PhNCSPzMe3)2] was determined by X-ray crystallography analysis and the results described a distorted square planar coordination geometry for this complex. Also, the cyclic voltammetry investigations indicated that the synthesized copper complex is an electrochemically active species. Moreover, the cytotoxic activity of all of the twenty synthesized compounds was evaluated using MTT assay against the MCF-7 (human breast carcinoma) cell lines, in vitro. Cu (II) complexes indicate significant cytotoxicity against the MCF-7 cell lines as compared with the free ligands. The docking studies showed that the copper complexes have better interactions with EGFR and CDK2 proteins, compared to the free ligands, and most of the studied compounds have a higher value of binding energy relative to the studied controls. The results of QSAR analysis suggest that dipole moment is in direct correlation with the obtained IC50 values, and it strongly impact the anticancer effects generated by the compounds. Our findings suggest that the developed copper complexes can be good candidates for further evaluations as chemotherapeutic agents in the treatment of cancer.
Collapse
Affiliation(s)
- Monireh Ghorbanpour
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Behzad Soltani
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran.
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Jahanbin Sardroodi
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahim Mohammad-Rezaei
- Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University, P. O. Box 53714-161, Tabriz, Iran
| | - Mostafa Ebadi-Nahari
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | |
Collapse
|
4
|
Copper (II) complexes based bis(pyrazolyl)borate derivatives as efficient anticancer agents: synthesis, characterization, X-ray structure, cytotoxicity, molecular docking and QSAR studies. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Rotärmel T, Becker J, Schindler S. Syntheses and investigation of metal complexes with macrocyclic polythioether ligands. Faraday Discuss 2022; 234:70-85. [PMID: 35171171 DOI: 10.1039/d1fd00062d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(I) complexes with the macrocyclic thioether ligands 1,4,8,11-tetrathiacyclotetradecane (tetrathiacyclam, 14-S4) and 1,8-dithia-4,11-diazacyclotetradecane (dithiacyclam, 14-N2S2) were synthesised and structurally characterised. While the copper(I) complexes showed no reactivity towards dioxygen, the formation of "dioxygen adduct complexes" could be spectroscopically detected with ozone using low temperature stopped-flow techniques. Furthermore, it was possible to synthesise and characterise iron(II) and cobalt(II) complexes with the tetrathiacyclam ligand. No "dioxygen adduct" intermediates were observed when these complexes were reacted with dioxygen or ozone. Depending on the reaction conditions, the coordination of the metal ions could be controlled (endo- vs. exo-coordination and cis- vs. trans-coordination) and in addition to mononuclear complexes, also coordination polymers were obtained.
Collapse
Affiliation(s)
- Thomas Rotärmel
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany.
| | - Jonathan Becker
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany.
| | - Siegfried Schindler
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany.
| |
Collapse
|
6
|
Johnson A, Iffland L, Northcote-Smith J, Singh K, Ortu F, Apfel UP, Suntharalingam K. A bioinspired redox-modulating copper(II)-macrocyclic complex bearing non-steroidal anti-inflammatory drugs with anti-cancer stem cell activity. Dalton Trans 2022; 51:5904-5912. [DOI: 10.1039/d2dt00788f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(II) coordination compounds have been investigated for their anticancer properties for decades, however, none have reached advanced human clinical trials. The poor translation of copper(II) complexes from in vitro studies...
Collapse
|
7
|
Ghorbanpour M, Soltani B, Ziegler CJ, Jamshidi-Ghaleh K. Novel pyrazolate-bridged binuclear Ni(II), Cu(II) and Zn(II) complexes: Synthesis, X‐ray crystal structure and nonlinear optical studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Shuvaev S, Suturina EA, Rotile NJ, Astashkin A, Ziegler CJ, Ross AW, Walker TL, Caravan P, Taschner IS. Revisiting dithiadiaza macrocyclic chelators for copper-64 PET imaging. Dalton Trans 2020; 49:14088-14098. [PMID: 32970072 PMCID: PMC7967274 DOI: 10.1039/d0dt02787a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterisation of a dithiadiaza chelator NSNS2A, as well as copper complexes thereof are reported in this paper. Solution structures of copper(i/ii) complexes were calculated using density functional theory (DFT) and validated by both NMR and EPR spectroscopy. DFT calculations revealed a switch in the orientation of tetragonal distortion upon protonation, which might be responsible for poor stability of the Cu(II)NSNS2A complex in aqueous media, whilst the same switch in tetragonal distortion was experimentally observed by changing the solvent. The chelator was radiolabeled with 64Cu and evaluated using PET/MRI in rats. Despite a favorable redox potential to stabilize the cuprous state in vivo, the 64Cu(II)NSNS2A complex showed suboptimal stability compared to its tetraazamacrocyclic analogue, 64Cu(TE2A), with a significant 64Cu uptake in the liver.
Collapse
Affiliation(s)
- Sergey Shuvaev
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | | | - Nicholas J Rotile
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Andrei Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | - Alana W Ross
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Tia L Walker
- Department of Chemistry, Indiana University Northwest, Gary, IN 46408, USA.
| | - Peter Caravan
- A. A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Ian S Taschner
- Department of Chemistry, Indiana University Northwest, Gary, IN 46408, USA.
| |
Collapse
|
9
|
Nickel (II) and cobalt (II) complexes with bidentate nitrogen-sulfur donor pyrazole derivative ligands: Syntheses, characterization, X-ray structure, electrochemical studies, and antibacterial activity. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Taschner IS, Aubuchon E, Schrage BR, Ziegler CJ, van der Est A. Synthesis and structural studies of copper(ii) complex with N 2S 2 based N-substituted pendant phosphonic acid arms. Dalton Trans 2020; 49:3545-3552. [PMID: 32118216 DOI: 10.1039/c9dt04869c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis of a heteromacrocyclic bifunctional chelator with phosphonic acid pendent arms is presented along copper(ii) complexation. Ligand N2S2-POH featuring N,N'-bis-substituted phosphonate pendent arms was isolated in respectable yields, characterized, and chelated to copper(ii). Implementation of both Moedritzer-Irani and Kabachnik-Fields conditions using aza-thia macrocycle 1,8-dithia-4,11-diazacyclotetradecane afforded 1,8-dithia-4,11-diazacyclotetradecane-4,11-diyl-bis-(methylene)-bis-(phosphonic acid) (N2S2-POH). Kinetic NMR studies provided four acid dissociation constants with respect to hydronium ion concentration. Benesi-Hildebrand binding experiment provided a conditional formation constant of 2.8 × 104 M-1. Heteromacrocycle N2S2-POH readily formed an encapsulated copper(ii) chelate at room temperature, which was examined through EPR analysis.
Collapse
Affiliation(s)
- Ian S Taschner
- Department of Chemistry, Indiana University Northwest, Gary, Indiana 46408, USA.
| | | | | | | | | |
Collapse
|
11
|
Taschner IS, Walker TL, DeHaan HS, Schrage BR, Ziegler CJ, Taschner MJ. Synthesis, Characterization, and Copper(II) Chelates of 1,11-Dithia-4,8-diazacyclotetradecane. J Org Chem 2019; 84:11091-11102. [PMID: 31454235 DOI: 10.1021/acs.joc.9b01682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthesis of 1,11-dithia-4,8-diazacyclotetradecane (L1), a constitutional isomer of the macrocyclic [14]aneN2S2 series, is accompanied with reaction and method optimization. Chelation of L1 with copper(II) provided assessment of lattice packing, ring contortion, and evidence of conformational fluxionality in solution through two unique crystal structures: L1Cu(ClO4)2 and [(L1Cu)2μ-Cl](ClO4)3. Multiple synthetic approaches are presented, supplemented with reaction methodology and reagent screening to access [14]aneN2S2 L1. Reductive alkylation of bis-tosyl-cystamine was integrated into the synthetic route, eliminating the use and isolation of volatile thiols and streamlining the synthetic scale-up. Late-stage cleavage of protecting sulfonamides was addressed using reductive N-S cleavage to furnish macrocyclic freebase L1.
Collapse
Affiliation(s)
- Ian S Taschner
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Tia L Walker
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Hunter S DeHaan
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Briana R Schrage
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Christopher J Ziegler
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Michael J Taschner
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
12
|
Walker TL, Taschner IS, Chandra M S, Taschner MJ, Engle JT, Schrage BR, Ziegler CJ, Gao X, Wheeler SE. Lone-Pair-Induced Topicity Observed in Macrobicyclic Tetra-thia Lactams and Cryptands: Synthesis, Spectral Identification, and Computational Assessment. J Org Chem 2018; 83:10025-10036. [PMID: 30067366 DOI: 10.1021/acs.joc.8b01382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The synthesis of a rigid macrobicyclic N,S lactam L1 and a topologically favored in/in N,S cryptand L2 are reported with X-ray structure analysis, dynamic correlation NMR spectroscopy, and computational analysis. Lactam L1 exhibits two distinct rotameric conformations (plus their enantiomeric counterparts) at 25 °C, as confirmed via NMR spectroscopy and computational analysis. Coalescence of the resonances of L1 was observed at 115 °C, allowing for complete nuclei to frequency correlation. Combining computational investigations with experimental data, topological equilibria and relative energies/strain relating to the perturbation of the pore were determined. Due to the increased conformational strain of the N2S2 template, the nitrogen lone pairs in L2 elicit a unique transannular interaction, resulting in a thermodynamically favored in/in nephroidal racemate. The combination of preferred topology, steric relief, and electronic localization of L2 induces a chiral environment imparted through the amine with a computed inversion barrier of 10.3 kcal mol-1.
Collapse
Affiliation(s)
- Tia L Walker
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Ian S Taschner
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Sharath Chandra M
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States
| | - Michael J Taschner
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - James T Engle
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Briana R Schrage
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Christopher J Ziegler
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Xinfeng Gao
- Department of Chemistry , Indiana University Bloomington , Bloomington , Indiana 47405 , United States
| | - Steven E Wheeler
- Department of Chemistry , Texas A&M University , College Station , Texas 77842 , United States.,Center for Computational Quantum Chemistry, Department of Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
13
|
Musina EI, Wittmann TI, Lönnecke P, Hey-Hawkins E, Karasik AA, Sinyashin OG. Novel representatives of 16-membered aminomethylphosphines with alkyl substituents at nitrogen and their gold(I) complexes. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2078-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Antony R, Marimuthu R, Vishnoi P, Murugavel R. Ethoxysilane appended M(II) complexes and their SiO2/MCM-41 supported forms as catalysts for efficient oxidation of secondary alcohols. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Taraboletti A, Walker T, Avila R, Huang H, Caporoso J, Manandhar E, Leeper TC, Modarelli DA, Medicetty S, Shriver LP. Cuprizone Intoxication Induces Cell Intrinsic Alterations in Oligodendrocyte Metabolism Independent of Copper Chelation. Biochemistry 2017; 56:1518-1528. [PMID: 28186720 PMCID: PMC6145805 DOI: 10.1021/acs.biochem.6b01072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cuprizone intoxication is a common animal model used to test myelin regenerative therapies for the treatment of diseases such as multiple sclerosis. Mice fed this copper chelator develop reversible, region-specific oligodendrocyte loss and demyelination. While the cellular changes influencing the demyelinating process have been explored in this model, there is no consensus about the biochemical mechanisms of toxicity in oligodendrocytes and about whether this damage arises from the chelation of copper in vivo. Here we have identified an oligodendroglial cell line that displays sensitivity to cuprizone toxicity and performed global metabolomic profiling to determine biochemical pathways altered by this treatment. We link these changes with alterations in brain metabolism in mice fed cuprizone for 2 and 6 weeks. We find that cuprizone induces widespread changes in one-carbon and amino acid metabolism as well as alterations in small molecules that are important for energy generation. We used mass spectrometry to examine chemical interactions that are important for copper chelation and toxicity. Our results indicate that cuprizone induces global perturbations in cellular metabolism that may be independent of its copper chelating ability and potentially related to its interactions with pyridoxal 5'-phosphate, a coenzyme essential for amino acid metabolism.
Collapse
Affiliation(s)
| | - Tia Walker
- Department of Chemistry, Indiana University Northwest, Gary, Indiana 46408, United States
| | - Robin Avila
- Renovo Neural, Inc., Cleveland, Ohio 44106, United States
| | - He Huang
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Joel Caporoso
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Erendra Manandhar
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | - Thomas C. Leeper
- Department of Chemistry, College of Wooster, Wooster, Ohio 44691, United States
| | - David A. Modarelli
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
| | | | - Leah P. Shriver
- Department of Chemistry, University of Akron, Akron, Ohio 44325, United States
- Department of Biology, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Kim S, Minier MA, Loas A, Becker S, Wang F, Lippard SJ. Addition to “Achieving Reversible Sensing of Nitroxyl by Tuning the Ligand Environment of Azamacrocyclic Copper(II) Complexes”. J Am Chem Soc 2016; 138:4268. [DOI: 10.1021/jacs.6b01932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|