1
|
Meloni G, Morgan L, Cappelletti D, Bevilacqua M, Graiff C, Pinter P, Biffis A, Tubaro C, Baron M. Exploring the reductive CO 2 fixation with amines and hydrosilanes using readily available Cu(II) NHC-phenolate catalyst precursors. Dalton Trans 2024; 53:18128-18140. [PMID: 39474859 DOI: 10.1039/d4dt02936d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
N-Methylation of amines is of great interest in the synthesis of pharmaceuticals and valuable compounds, and the possibility to perform this reaction with an inexpensive and non-toxic substrate like CO2 and its derivatives is quite appealing. Herein, the synthesis of four novel homoleptic Cu(II) complexes with hybrid NHC-phenolate (NHC = N-Heterocyclic Carbene) ligands is reported, and their use in the catalytic N-methylation of amines with CO2 in the presence of hydrosilanes is explored. Both bidentate or tetradentate ligands can be used in the preparation of the complexes provided that the structural requirement that the two NHC and the two phenolate donors in the metal coordination sphere are mutually in trans is fulfilled. A new reaction protocol to perform the N-methylation of secondary aromatic amines and dibenzylamine in high yield under mild reaction conditions is developed, using the ionic liquid [BMMIM][NTf2] (1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide) as solvent and the catalyst precursor [Cu(L2)2]. Reactivity studies indicate that the reaction follows two different pathways with different hydrosilanes, and that the starting Cu(II) complexes are reduced under the catalytic conditions.
Collapse
Affiliation(s)
- Giammarco Meloni
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Luca Morgan
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - David Cappelletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Matteo Bevilacqua
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Claudia Graiff
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | | | - Andrea Biffis
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Baron
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
- Consorzio Interuniversitario per le Reattività Chimiche e la Catalisi, Unità di Ricerca di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Hood TM, Charman RSC, Liptrot DJ, Chaplin AB. Copper(I) Catalysed Diboron(4) Reduction of Nitrous Oxide. Angew Chem Int Ed Engl 2024; 63:e202411692. [PMID: 39011672 DOI: 10.1002/anie.202411692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
A process for the catalytic reduction of nitrous oxide using NHC-ligated copper(I) tert-butoxide precatalysts and B2pin2 as the reductant is reported. These reactions proceed under mild conditions via copper(I)-boryl intermediates which react with N2O by facile O-atom insertion into the Cu-B bond and liberate N2. Turnover numbers >800 can be achieved at 80 °C under 1 bar N2O.
Collapse
Affiliation(s)
- Thomas M Hood
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Rex S C Charman
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David J Liptrot
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adrian B Chaplin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| |
Collapse
|
3
|
Dutta I, Gholap SS, Rahman MM, Tan D, Zhang L, Dighe SU, Huang KW. Homogeneous Catalysis in N-Formylation/N-Methylation Utilizing Carbon Dioxide as the C1 Source. Chem Asian J 2024:e202400497. [PMID: 39152629 DOI: 10.1002/asia.202400497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The growing emphasis on sustainable chemistry has driven research into utilizing carbon dioxide (CO2) as a nontoxic, abundant, and cost-effective C1 building block. CO2 offers a promising avenue for direct conversion into valuable chemicals ranging from fuels to pharmaceuticals. This review focuses on the utilization of CO2 for reductive N-formylation/N-methylation reactions of various amines, providing advantages over conventional methods involving toxic CO and other methylating reagents. The approach employs readily available reductants such as silane, borane reagents, and hydrogen (H2). The discussion encompasses recent developments in transition metal and organocatalyst systems for these reactions, highlighting mechanistic interpretations and factors influencing product selectivity.
Collapse
Affiliation(s)
- Indranil Dutta
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sandeep Suryabhan Gholap
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Mohammad Misbahur Rahman
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Davin Tan
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Lili Zhang
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Shashikant U Dighe
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Agency for Science, Technology and Research (A*STAR), Institute of Sustainability for Chemicals, Energy and Environment (ICSE2), Singapore, 138634, Singapore
| |
Collapse
|
4
|
Seidel RW, Goddard R, Lang M, Richter A. Nα-Aroyl-N-Aryl-Phenylalanine Amides: A Promising Class of Antimycobacterial Agents Targeting the RNA Polymerase. Chem Biodivers 2024; 21:e202400267. [PMID: 38588490 DOI: 10.1002/cbdv.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of death from a bacterium in the world. The global prevalence of clinically relevant infections with opportunistically pathogenic non-tuberculous mycobacteria (NTM) has also been on the rise. Pharmacological treatment of both TB and NTM infections usually requires prolonged regimens of drug combinations, and is often challenging because of developed or inherent resistance to common antibiotic drugs. Medicinal chemistry efforts are thus needed to improve treatment options and therapeutic outcomes. Nα-aroyl-N-aryl-phenylalanine amides (AAPs) have been identified as potent antimycobacterial agents that target the RNA polymerase with a low probability of cross resistance to rifamycins, the clinically most important class of antibiotics known to inhibit the bacterial RNA polymerase. In this review, we describe recent developments in the field of AAPs, including synthesis, structural characterization, in vitro microbiological profiling, structure-activity relationships, physicochemical properties, pharmacokinetics and early cytotoxicity assessment.
Collapse
Affiliation(s)
- Rüdiger W Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Lang
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| |
Collapse
|
5
|
Wang D, Lang W, Wang W, Zou Q, Yang C, Liu F, Zhao T. CuH-Catalyzed Selective N-Methylation of Amines Using Paraformaldehyde as a C1 Source. ACS OMEGA 2023; 8:30640-30645. [PMID: 37636962 PMCID: PMC10448681 DOI: 10.1021/acsomega.3c04332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Copper hydride (CuH) complexes have been proposed as key intermediates in synthesis and catalysis. Herein, we developed a highly efficient strategy for CuH-catalyzed N-methylation of aromatic and aliphatic amines using paraformaldehyde and polymethylhydrosiloxane (PMHS) under mild reaction conditions. The reaction proceeded smoothly without additives to furnish the corresponding N-methylated products using cyclic(alkyl)(amino)carbene (CAAC)CuH as a reaction intermediate, which results from a reaction between PMHS and (CAAC)CuCl.
Collapse
Affiliation(s)
- Diedie Wang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Wanglv Lang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Wan Wang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Qizhuang Zou
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Chunliang Yang
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Fei Liu
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Tianxiang Zhao
- Key Laboratory of Green Chemical and
Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
6
|
Song Z, Liu J, Xing S, Shao X, Li J, Peng J, Bai Y. PNP-type ligands enabled copper-catalyzed N-formylation of amines with CO 2 in the presence of silanes. Org Biomol Chem 2023; 21:832-837. [PMID: 36602113 DOI: 10.1039/d2ob01986h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The sustainable catalytic transformation of carbon dioxide into valuable fine chemicals with high efficiency is a global challenge as although CO2 is an abundant, nontoxic, and sustainable carbon feedstock it is also the most important factor behind the Greenhouse Effect. We describe herein a PNP-type ligand-enabled copper-catalyzed N-formylation of amines utilizing CO2 as the building block in the presence of hydrosilane as the reductant. Our current protocol featured newly synthesized PNP-type ligands with broad substrate scope under mild reaction conditions.
Collapse
Affiliation(s)
- Zijie Song
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jun Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Shuya Xing
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiayun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Haque MZU, Hashmi IA, Qureshi MT, Bari A, Musharraf SG, Ali FI. Mild and Efficient Reductive
N,N‐
Dimethylation of Amines by Using 1,3‐Dimethylimidazole‐2‐ylidene Borane (diMe‐Imd‐BH
3
). ChemistrySelect 2022. [DOI: 10.1002/slct.202203404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
| | - Imran Ali Hashmi
- Department of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| | - Muhammad Taha Qureshi
- Department of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| | - Ahmad Bari
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University P.O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| | - Firdous Imran Ali
- Department of Chemistry University of Karachi Main University Road Karachi 75270 Sindh Pakistan
| |
Collapse
|
8
|
Chen L, Zhou X, Chen Z, Wang C, Wang S, Teng H. A versatile way for the synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with the NaBH 4/I 2 system. Beilstein J Org Chem 2022; 18:1032-1039. [PMID: 36105729 PMCID: PMC9443423 DOI: 10.3762/bjoc.18.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
An economical and versatile protocol for the one-pot synthesis of monomethylamines by reduction of N-substituted carbonylimidazoles with NaBH4/I2 in THF at reflux temperature is described. This method used no special catalyst and various monomethylamines can be easily obtained in moderate to good yields from a wide range of raw materials including amines (primary amines and secondary amines), carboxylic acids and isocyanates. Besides, an interesting reduction selectivity was observed. Exploration of the reaction process shows that it undergoes a two-step pathway via a formamide intermediate and the reduction of the formamide intermediate to monomethylamine as the rate-determining step. This work can contribute significantly expanding the applications of N-substituted carbonylimidazoles.
Collapse
Affiliation(s)
- Lin Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Xuan Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zhiyong Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Changxu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Shunjie Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Hanbing Teng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
9
|
Even D, Berkland C. Selectivity of dehydrogenative silicone–oxygen bond formation in diphenylsilane by base and base‐activated catalysts. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dakota Even
- Honeywell Federal Manufacturing and Technologies 64147 Kansas City Kansas USA
- Department of Chemical and Petroleum Engineering University of Kansas 66045 Lawrence Kansas USA
| | - Cory Berkland
- Department of Chemical and Petroleum Engineering University of Kansas 66045 Lawrence Kansas USA
| |
Collapse
|
10
|
|
11
|
Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Liu J, Song Y, Wu X, Ma L. N-Dimethylation and N-Functionalization of Amines Using Ru Nanoparticle Catalysts and Formaldehyde or Functional Aldehydes as the Carbon Source. ACS OMEGA 2021; 6:22504-22513. [PMID: 34514223 PMCID: PMC8427653 DOI: 10.1021/acsomega.1c01961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
N-methylated amines are essential bioactive compounds and have been widely used in the fine and bulk chemical industries, as well as in pharmaceuticals, agrochemicals, and dyes. Developing green, efficient, and low-cost catalysts for methylation of amines by using efficient and easily accessible methylating reagents is highly desired yet remains a significant challenge. Herein, we report the selective N-dimethylation of different functional amines with different functional aldehydes under easy-to-handle and industrially applicable conditions using carbon-supported Ru nanoparticles (Ru/C) as a heterogeneous catalyst. A broad spectrum of amines could be efficiently converted to their corresponding N,N-dimethyl amines with good compatibility of various functional groups. This method is widely applicable to N-dimethylation of primary amines including aromatic, aliphatic amines with formaldehyde, and synthesis of tertiary amines from primary, secondary amines with different functional aldehydes. The advantage of this newly described method includes operational simplicity, high turnover number, the ready availability of the catalyst, and good functional group compatibility. This Ru/C catalyzed N-dimethylation reaction possibly proceeds through a two-step N-methylation reaction process.
Collapse
Affiliation(s)
- Jianguo Liu
- Key
Laboratory of Energy Thermal Conversion and Control of Ministry of
Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
- Dalian
National Laboratory for Clean Energy, Chinese
Academy of Sciences, Dalian 116023, P. R. China
| | - Yanpei Song
- CAS
Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Xiang Wu
- CAS
Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Longlong Ma
- Key
Laboratory of Energy Thermal Conversion and Control of Ministry of
Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
- CAS
Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory
of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Wu S, Huang Z, Jiang X, Yan F, Li Y, Du CX. Recyclable Oxofluorovanadate-Catalyzed Formylation of Amines by Reductive Functionalization of CO 2 with Hydrosilanes. CHEMSUSCHEM 2021; 14:1763-1766. [PMID: 33587333 DOI: 10.1002/cssc.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Indexed: 06/12/2023]
Abstract
An efficient method has been developed for the reductive amination of CO2 by using readily available and recyclable oxofluorovanadates as catalysts. Various amines are transformed into the desired N-formylated products in moderate to excellent yields at room temperature in the presence of phenylsilane. Mechanistic studies based on in situ infrared spectroscopy suggest a reaction pathway initiated through F-Si interactions. The activated phenylsilane allows for CO2 insertion to produce phenylsilyl formate, which undergoes attack by the amine to generate the target product.
Collapse
Affiliation(s)
- Shanxuan Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zijun Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Xiaolin Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Fachao Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chen-Xia Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
14
|
Laikov DN. Optimization of atomic density-fitting basis functions for molecular two-electron integral approximations. J Chem Phys 2020; 153:114121. [PMID: 32962362 DOI: 10.1063/5.0014639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A general procedure for the optimization of atomic density-fitting basis functions is designed with the balance between accuracy and numerical stability in mind. Given one-electron wavefunctions and energies, weights are assigned to the product densities, modeling their contribution to the exchange and second-order correlation energy, and a simple weighted error measure is minimized. Generally contracted Gaussian auxiliary basis sets are optimized to match the wavefunction basis sets [D. N. Laikov, Theor. Chem. Acc. 138, 40 (2019)] for all 102 elements in a scalar-relativistic approximation [D. N. Laikov, J. Chem. Phys. 150, 061103 (2019)].
Collapse
Affiliation(s)
- Dimitri N Laikov
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
15
|
P S, Mandal SK. From CO 2 activation to catalytic reduction: a metal-free approach. Chem Sci 2020; 11:10571-10593. [PMID: 34094313 PMCID: PMC8162374 DOI: 10.1039/d0sc03528a] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Over exploitation of natural resources and human activities are relentlessly fueling the emission of CO2 in the atmosphere. Accordingly, continuous efforts are required to find solutions to address the issue of excessive CO2 emission and its potential effects on climate change. It is imperative that the world looks towards a portfolio of carbon mitigation solutions, rather than a single strategy. In this regard, the use of CO2 as a C1 source is an attractive strategy as CO2 has the potential to be a great asset for the industrial sector and consumers across the globe. In particular, the reduction of CO2 offers an alternative to fossil fuels for various organic industrial feedstocks and fuels. Consequently, efficient and scalable approaches for the reduction of CO2 to products such as methane and methanol can generate value from its emissions. Accordingly, in recent years, metal-free catalysis has emerged as a sustainable approach because of the mild reaction conditions by which CO2 can be reduced to various value-added products. The metal-free catalytic reduction of CO2 offers the development of chemical processes with low cost, earth-abundant, non-toxic reagents, and low carbon-footprint. Thus, this perspective aims to present the developments in both the reduction and reductive functionalization chemistry of CO2 during the last decade using various metal-free catalysts.
Collapse
Affiliation(s)
- Sreejyothi P
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| |
Collapse
|
16
|
Tanaka N, Usuki T. Can Heteroarenes/Arenes Be Hydrogenated Over Catalytic Pd/C Under Ambient Conditions? European J Org Chem 2020. [DOI: 10.1002/ejoc.202000695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nao Tanaka
- Department of Materials and Life Sciences, Faculty of Science and Technology Sophia University 7‐1 Kioicho, Chiyoda‐ku 102‐8554 Tokyo Japan
| | - Toyonobu Usuki
- Department of Materials and Life Sciences, Faculty of Science and Technology Sophia University 7‐1 Kioicho, Chiyoda‐ku 102‐8554 Tokyo Japan
| |
Collapse
|
17
|
Du C, Chen Y. Zinc Powder Catalysed Formylation and Urealation of Amines Using
CO
2
as a
C1
Building Block
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chongyang Du
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
18
|
Jiang Y, Zhang X, Fei H. N-heterocyclic carbene-functionalized metal-organic frameworks for the chemical fixation of CO 2. Dalton Trans 2020; 49:6548-6552. [PMID: 32301467 DOI: 10.1039/d0dt01022g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
N-heterocyclic carbenes (NHCs) are a class of molecules with a lone pair of carbene electrons and thus, they have the ability to activate CO2 to form imidazolium carboxylates. The incorporation of activated, metal-free NHC moieties into metal-organic frameworks (MOFs) without the decomposition of metal-carboxylate coordination motifs is highly desired owing to the high CO2 affinity and versatile chemical functionalities in MOFs. Herein, we have summarized the recent in situ generation approaches to form metal-free NHC-functionalized MOFs, which are a unique class of CO2-conversion catalysts with high catalytic activity, selectivity and stability, superior to those of homogenous and other heterogeneous NHC analogues. The NHC-functionalized MOFs for catalytic CO2 reduction include reactions such as the hydroboration of CO2, hydrosilylation of CO2, N-methylation using CO2 and hydrogenation of CO2 to formic acid. Overall, the synthetic strategy of metal-free NHC-functionalized MOFs, the unique catalytic pathways of NHC-functionalized MOFs, and potentially new research directions of NHC-functionalized MOFs are discussed, which will guide researchers to attempt to design new NHC-MOFs and extend their catalytic applications in the chemical fixation of CO2.
Collapse
Affiliation(s)
- Yilin Jiang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, P. R. China.
| | - Xu Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, P. R. China.
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai 200092, P. R. China.
| |
Collapse
|
19
|
Jiang L, Guo F, Wang Y, Jiang J, Duan Y, Hou Z. Selective
N
‐Monomethylation of Anilines with Methanol Catalyzed by Commercial Pd/C as an Efficient and Reusable Catalyst. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116012 China
| | - Fang Guo
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116012 China
| | - Yinran Wang
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116012 China
| | - Jialin Jiang
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116012 China
| | - Yangzhi Duan
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116012 China
| | - Zhaomin Hou
- State Key Laboratory of Fine Chemicals Department of Polymer Science and Engineering School of Chemical EngineeringDalian University of Technology Dalian 116012 China
- Organometallic Chemistry Laboratory and Center for Sustainable Resource Science RIKEN 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| |
Collapse
|
20
|
Zhang X, Jiang Y, Fei H. UiO-type metal-organic frameworks with NHC or metal-NHC functionalities for N-methylation using CO 2 as the carbon source. Chem Commun (Camb) 2019; 55:11928-11931. [PMID: 31531430 DOI: 10.1039/c9cc06659d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We demonstrate the first metal-organic framework (MOF) that catalyzes N-methylation of amines using 1 atm CO2 and phenylsilane under ambient conditions. Compared with its homogeneous analog, the incorporation of N-heterocyclic carbene (NHC) into the MOF provides more efficient catalysis with improved reaction kinetics, turnover numbers and recyclability. Moreover, the metalated NHC functionalized MOF achieves direct N-methylation of amines bearing carboxylate moieties, which are common building blocks in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xu Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji Universtiy, 1239 Siping Rd., Shanghai 200092, P. R. China.
| | - Yilin Jiang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji Universtiy, 1239 Siping Rd., Shanghai 200092, P. R. China.
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji Universtiy, 1239 Siping Rd., Shanghai 200092, P. R. China.
| |
Collapse
|
21
|
Li W, Zhu D, Li G, Chen J, Xia J. Iron‐Catalyzed Selective
N
‐Methylation and
N
‐Formylation of Amines with CO
2. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wen‐Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Dao‐Yong Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Gang Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Jie Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| | - Ji‐Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
22
|
Synergistic catalysis of Cu+/Cu0 for efficient and selective N-methylation of nitroarenes with para-formaldehyde. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Catalytic Reductive N‐Alkylations Using CO
2
and Carboxylic Acid Derivatives: Recent Progress and Developments. Angew Chem Int Ed Engl 2019; 58:12820-12838. [DOI: 10.1002/anie.201810121] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 12/12/2022]
|
24
|
Cabrero‐Antonino JR, Adam R, Beller M. Katalytische reduktive N‐Alkylierungen unter Verwendung von CO
2
und Carbonsäurederivaten: Aktuelle Entwicklungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose R. Cabrero‐Antonino
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC) Avda. de los Naranjos s/n València 46022 Spanien
| | - Rosa Adam
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
- Instituto de Tecnología Química, Universitat Politécnica de València-Consejo Superior Investigaciones Científicas (UPV-CSIC) Avda. de los Naranjos s/n València 46022 Spanien
| | - Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a Rostock 18059 Deutschland
| |
Collapse
|
25
|
Liu XF, Li XY, He LN. Transition Metal-Catalyzed Reductive Functionalization of CO2. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801833] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao-Fang Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Xiao-Ya Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
- College of Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300071 China
| |
Collapse
|
26
|
Zhang S, Ibrahim JJ, Yang Y. A pincer ligand enabled ruthenium catalyzed highly selective N-monomethylation of nitroarenes with methanol as the C1 source. Org Chem Front 2019. [DOI: 10.1039/c9qo00544g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A straightforward and highly selective N-monomethylation of nitroarenes with methanol as the C1 source was developed.
Collapse
Affiliation(s)
- Shaochun Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- PR China
| | - Jessica Juweriah Ibrahim
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- PR China
- University of Chinese Academy of Sciences
| | - Yong Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- PR China
| |
Collapse
|
27
|
Chen Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chemistry 2018; 25:3405-3439. [DOI: 10.1002/chem.201803642] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yantao Chen
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZeneca Gothenburg Sweden
| |
Collapse
|
28
|
Li H, Gonçalves TP, Zhao Q, Gong D, Lai Z, Wang Z, Zheng J, Huang KW. Diverse catalytic reactivity of a dearomatized PN 3P*-nickel hydride pincer complex towards CO 2 reduction. Chem Commun (Camb) 2018; 54:11395-11398. [PMID: 30175825 DOI: 10.1039/c8cc05948a] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dearomatized PN3P*-nickel hydride complex has been prepared using an oxidative addition process. The first nickel-catalyzed hydrosilylation of CO2 to methanol has been achieved, with unprecedented turnover numbers. Selective methylation and formylation of amines with CO2 were demonstrated by such a PN3P*-nickel hydride complex, highlighting its versatile functions in CO2 reduction.
Collapse
Affiliation(s)
- Huaifeng Li
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gopakumar A, Akçok I, Lombardo L, Le Formal F, Magrez A, Sivula K, J. Dyson P. Iron-Rich Natural Mineral Gibeon Meteorite Catalyzed N
-formylation of Amines using CO2
as the C1 Source. ChemistrySelect 2018. [DOI: 10.1002/slct.201802646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aswin Gopakumar
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Ismail Akçok
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Loris Lombardo
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Florian Le Formal
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Arnaud Magrez
- Institute of Physics (IPHYS), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Kevin Sivula
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| |
Collapse
|
30
|
Lator A, Gaillard S, Poater A, Renaud JL. Well-Defined Phosphine-Free Iron-Catalyzed N-Ethylation and N-Methylation of Amines with Ethanol and Methanol. Org Lett 2018; 20:5985-5990. [PMID: 30234993 DOI: 10.1021/acs.orglett.8b02080] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An iron(0) complex bearing a cyclopentadienone ligand catalyzed N-methylation and N-ethylation of aryl and aliphatic amines with methanol or ethanol in mild and basic conditions through a hydrogen autotransfer borrowing process is reported. A broad range of aromatic and aliphatic amines underwent mono- or dimethylation in high yields. DFT calculations suggest molecular hydrogen acts not only as a reducing agent but also as an additive to displace thermodynamic equilibria.
Collapse
Affiliation(s)
- Alexis Lator
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Sylvain Gaillard
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| | - Albert Poater
- Departament de Química, Institut de Química Computacional i Catàlisi (IQCC) , Universitat de Girona , c/Ma Aurèlia Capmany 69 , 17003 Girona , Catalonia , Spain
| | - Jean-Luc Renaud
- Normandie Université, LCMT, ENSICAEN, UNICAEN, CNRS , 6 boulevard du Maréchal Juin , 14000 Caen , France
| |
Collapse
|
31
|
Guo Z, Zhang B, Wei X, Xi C. 1,4-Dioxane-Tuned Catalyst-Free Methylation of Amines by CO 2 and NaBH 4. CHEMSUSCHEM 2018; 11:2296-2299. [PMID: 29893474 DOI: 10.1002/cssc.201801037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/08/2018] [Indexed: 06/08/2023]
Abstract
A catalyst-free reductive functionalization of CO2 with amines and NaBH4 was developed. The N-methylation of amines was carried out with CO2 as a C1 building block and 1,4-dioxane as the solvent. Notably, the six-electron reduction of CO2 to form the methyl group occurred simultaneously with formation of the C-N bond to give the N-methylated amine.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Fernández‐Alvarez FJ, Oro LA. Homogeneous Catalytic Reduction of CO
2
with Silicon‐Hydrides, State of the Art. ChemCatChem 2018. [DOI: 10.1002/cctc.201800699] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Francisco J. Fernández‐Alvarez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza Facultad de Ciencias 50009 Zaragoza Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza Facultad de Ciencias 50009 Zaragoza Spain
- Center of Refining & PetrochemicalsKing Fahd University of Petroleum & Minerals 31261 Dhahran Saudi Arabia
| |
Collapse
|
33
|
Li G, Chen J, Zhu DY, Chen Y, Xia JB. DBU-Catalyzed Selective N
-Methylation and N
-Formylation of Amines with CO2
and Polymethylhydrosiloxane. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800140] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gang Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
- School Chemistry of Chemical Engineering; Guizhou University; Guiyang, 550025, People's Republic of China
| | - Jie Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Dao-Yong Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| | - Ye Chen
- School Chemistry of Chemical Engineering; Guizhou University; Guiyang, 550025, People's Republic of China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP); Chinese Academy of Sciences; Lanzhou 730000 People's Republic of China
| |
Collapse
|
34
|
Zhao TX, Zhai GW, Liang J, Li P, Hu XB, Wu YT. Catalyst-free N-formylation of amines using BH 3NH 3 and CO 2 under mild conditions. Chem Commun (Camb) 2018; 53:8046-8049. [PMID: 28671215 DOI: 10.1039/c7cc03860g] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The catalyst-free N-formylation of amines using CO2 as the C1 source and BH3NH3 as the reductant has been developed for the first time. The corresponding formylated products of both primary and secondary amines are obtained in good to excellent yields (up to 96% of isolated yield) under mild conditions.
Collapse
Affiliation(s)
- Tian-Xiang Zhao
- School of Chemistry and Chemical Engineering, Separation Engineering Research Center, Nanjing University, Nanjing 210093, P. R. China.
| | | | | | | | | | | |
Collapse
|
35
|
Niu H, Lu L, Shi R, Chiang CW, Lei A. Catalyst-free N-methylation of amines using CO 2. Chem Commun (Camb) 2018; 53:1148-1151. [PMID: 28054084 DOI: 10.1039/c6cc09072a] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, utilizing CO2 as a methylation reagent to construct functional chemicals has attracted significant attention. However, the conversion of CO2 is still a challenge due to its inherent inertness. In this study, we have developed a catalyst-free N-methylation of amines to prepare numerous methylamines using CO2 as a methyl source. By utilizing 2 eq. PhSiH3 as the reductant, amines could undergo N-methylation under 1 atm of CO2 in DMF at 90 °C. Aliphatic and aromatic amines were compatible, generating the desired products in up to 95% yield.
Collapse
Affiliation(s)
- Huiying Niu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Lijun Lu
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Renyi Shi
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Chien-Wei Chiang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. and National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
36
|
Liu XF, Qiao C, Li XY, He LN. DMF-promoted reductive functionalization of CO2 with secondary amines and phenylsilane to methylamines. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
An amide-promoted protocol was developed for the reductive functionalization of CO2 with amines/imine and phenylsilane to produce methylamine. Secondary amines and an imine were methylated successfully to methylamines with up to 98% yield under atmospheric pressure of CO2 and 80°C. Furthermore, a tentative mechanism involving amide-promoted CO2 reduction to the silyl acetal species was proposed. Striking features of this metal-free protocol are selective six-electron reduction of CO2 with hydrosilane as a reductant in the presence of amine.
Collapse
Affiliation(s)
- Xiao-Fang Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Chang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Xiao-Ya Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China , Fax: +86 22 23503878
| |
Collapse
|
37
|
Recent Advances on CO2 Utilization as C1 Building Block in C-N and C-O Bond Formation. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem Rev 2017; 118:434-504. [PMID: 29220170 DOI: 10.1021/acs.chemrev.7b00435] [Citation(s) in RCA: 943] [Impact Index Per Article: 117.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CO2 conversion covers a wide range of possible application areas from fuels to bulk and commodity chemicals and even to specialty products with biological activity such as pharmaceuticals. In the present review, we discuss selected examples in these areas in a combined analysis of the state-of-the-art of synthetic methodologies and processes with their life cycle assessment. Thereby, we attempted to assess the potential to reduce the environmental footprint in these application fields relative to the current petrochemical value chain. This analysis and discussion differs significantly from a viewpoint on CO2 utilization as a measure for global CO2 mitigation. Whereas the latter focuses on reducing the end-of-pipe problem "CO2 emissions" from todays' industries, the approach taken here tries to identify opportunities by exploiting a novel feedstock that avoids the utilization of fossil resource in transition toward more sustainable future production. Thus, the motivation to develop CO2-based chemistry does not depend primarily on the absolute amount of CO2 emissions that can be remediated by a single technology. Rather, CO2-based chemistry is stimulated by the significance of the relative improvement in carbon balance and other critical factors defining the environmental impact of chemical production in all relevant sectors in accord with the principles of green chemistry.
Collapse
Affiliation(s)
- Jens Artz
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany
| | - Thomas E Müller
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany
| | - Katharina Thenert
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany
| | - Johanna Kleinekorte
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - Raoul Meys
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - André Sternberg
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - André Bardow
- Chair of Technical Thermodynamics, RWTH Aachen University , Schinkelstrasse 8, Aachen 52056, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University , Worringerweg 2, Aachen 52074, Germany.,Max-Planck-Institute for Chemical Energy Conversion , Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
39
|
Lu Y, Gao ZH, Chen XY, Guo J, Liu Z, Dang Y, Ye S, Wang ZX. Formylation or methylation: what determines the chemoselectivity of the reaction of amine, CO 2, and hydrosilane catalyzed by 1,3,2-diazaphospholene? Chem Sci 2017; 8:7637-7650. [PMID: 29568428 PMCID: PMC5849201 DOI: 10.1039/c7sc00824d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/06/2017] [Indexed: 12/02/2022] Open
Abstract
DFT computations have been performed to gain insight into the mechanisms of formylation/methylation of amines (e.g. methylaniline (1a)/2,2,4,4-tetramethylpiperidine (2a)) with CO2 and hydrosilane ([Si]H2, [Si] = Ph2Si), catalyzed by 1,3,2-diazaphospholene ([NHP]H). Different from the generally proposed sequential mechanism for the methylation of amine with CO2, i.e. methylation proceeds via formylation, followed by further reduction of formamide to give an N-methylated amine, the study characterized a competition mechanism between formylation and methylation. The chemoselectivity originates from the competition between the amine and [NHP]H hydride to attack the formyloxy carbon of [Si](OCHO)2 (the insertion product of CO2 into [Si]H2). When the attack of an amine (e.g.1a) wins, the transformation affords formamide (1b) but would otherwise (e.g.2a) result in an N-methylated amine (2c). The reduction of formamide by [Si]H2 or [NHP]H is highly unfavorable kinetically, thus we call attention to the sequential mechanism for understanding the methylation of amine with CO2. In addition, the study has the following key mechanistic findings. The activation of CO2 by [NHP]H establishes an equilibrium: [NHP]H + CO2 ⇄ [NHP]OCHO ⇄ [NHP]+ + HCO2-. The ions play catalytic roles to promote formylation via HCO2- or methylation via[NHP]+ . In 1a formylation, HCO2- initiates the reaction, giving 1b and silanol byproducts. However, after the initiation, the silanol byproducts acting as hydrogen transfer shuttles are more effective than HCO2- to promote formylation. In 2a methylation, [NHP]+ promotes the generation of the key species, formaldehyde and a carbocation species (IM17+ ). Our experimental study corroborates our computed mechanisms.
Collapse
Affiliation(s)
- Yu Lu
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Zhong-Hua Gao
- Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Xiang-Yu Chen
- Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Jiandong Guo
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Zheyuan Liu
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Yanfeng Dang
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| | - Song Ye
- Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Zhi-Xiang Wang
- School of Chemistry and Chemical Engineering , University of the Chinese Academy of Sciences , Beijing 100049 , China .
| |
Collapse
|
40
|
Pedrajas E, Sorribes I, Guillamón E, Junge K, Beller M, Llusar R. Efficient and Selective N-Methylation of Nitroarenes under Mild Reaction Conditions. Chemistry 2017; 23:13205-13212. [PMID: 28767165 DOI: 10.1002/chem.201702783] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C1 source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo3 PtS4 catalyst. For the preparation of the novel [Mo3 Pt(PPh3 )S4 Cl3 (dmen)3 ]+ (3+ ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo3 S4 Cl3 (dmen)3 ]+ (1+ ) and Pt(PPh3 )4 (2) complexes. The heterobimetallic 3+ cation preserves the main structural features of its 1+ cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3+ catalyst co-exists with its trinuclear 1+ precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol.
Collapse
Affiliation(s)
- Elena Pedrajas
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| | - Iván Sorribes
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany.,Present address: Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Av. De los Naranjos s/n, 46022, Valencia, Spain
| | - Eva Guillamón
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| | - Kathrin Junge
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der, Universität Rostock, Albert Einstein Str. 29a, 18059, Rostock, Germany
| | - Rosa Llusar
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castelló, Spain
| |
Collapse
|
41
|
Dang TT, Seayad AM. Efficient [Cu(NHC)]-Catalyzed Multicomponent Synthesis of Pyrroles. Chem Asian J 2017; 12:2383-2387. [DOI: 10.1002/asia.201701045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Tuan Thanh Dang
- Faculty of Chemistry; VNU University of Science; Hanoi. 19 Le Thanh Tong street Hanoi Vietnam
| | - Abdul Majeed Seayad
- Organic Chemistry; Institute of Chemical and Engineering Sciences; 8 Biomedical Grove, #07-01 Neuros 138665 Singapore Singapore
| |
Collapse
|
42
|
Julián A, Guzmán J, Jaseer EA, Fernández-Alvarez FJ, Royo R, Polo V, García-Orduña P, Lahoz FJ, Oro LA. Mechanistic Insights on the Reduction of CO2
to Silylformates Catalyzed by Ir-NSiN Species. Chemistry 2017. [DOI: 10.1002/chem.201702246] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alejandro Julián
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain)
| | - Jefferson Guzmán
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain)
| | - E. A. Jaseer
- Center of Refining & Petrochemicals; King Fahd University of Petroleum & Minerals; 31261 Dhahran Saudi Arabia
| | - Francisco J. Fernández-Alvarez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain)
| | - Raquel Royo
- Departamento de Química Física, Instituto de Biocomputación y Física de Sistemas complejos (BIFI); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain
| | - Víctor Polo
- Departamento de Química Física, Instituto de Biocomputación y Física de Sistemas complejos (BIFI); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain
| | - Pilar García-Orduña
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain)
| | - Fernando J. Lahoz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain)
| | - Luis A. Oro
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH); Universidad de Zaragoza, Facultad de Ciencias; 50009 Zaragoza Spain)
- Center of Refining & Petrochemicals; King Fahd University of Petroleum & Minerals; 31261 Dhahran Saudi Arabia
| |
Collapse
|
43
|
Thiel NO, Kemper S, Teichert JF. Copper(I)-catalyzed stereoselective hydrogenation of 1,3-diynes and enynes. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Li W, Kim CK. Theoretical investigations on the methylation of N H bond using CO 2 and hydrosilane catalyzed by Zinc II complexes: Mechanism and ligand effect. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Liu XF, Li XY, Qiao C, Fu HC, He LN. Betaine Catalysis for Hierarchical Reduction of CO2with Amines and Hydrosilane To Form Formamides, Aminals, and Methylamines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702734] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiao-Fang Liu
- State Key Laboratory and Institute of Elemento-organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Xiao-Ya Li
- State Key Laboratory and Institute of Elemento-organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Chang Qiao
- State Key Laboratory and Institute of Elemento-organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Hong-Chen Fu
- State Key Laboratory and Institute of Elemento-organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-organic Chemistry; College of Chemistry; Nankai University; Tianjin 300071 China
- Collaborative Innovation Center of Chemical Science and Engineering; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
46
|
Liu XF, Li XY, Qiao C, Fu HC, He LN. Betaine Catalysis for Hierarchical Reduction of CO 2 with Amines and Hydrosilane To Form Formamides, Aminals, and Methylamines. Angew Chem Int Ed Engl 2017; 56:7425-7429. [PMID: 28470931 DOI: 10.1002/anie.201702734] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/14/2017] [Indexed: 12/31/2022]
Abstract
An efficient, sustainable organocatalyst, glycine betaine, was developed for the reductive functionalization of CO2 with amines and diphenylsilane. Methylamines and formamides were obtained in high yield by tuning the CO2 pressure and reaction temperature. Based on identification of the key intermediate, that is, the aminal, an alternative mechanism for methylation involving the C0 silyl acetal and aminal is proposed. Furthermore, reducing the CO2 amount afforded aminals with high yield and selectivity. Therefore, betaine catalysis affords products with a diversified energy content that is, formamides, aminals and methylamines, by hierarchical two-, four- and six-electron reduction, respectively, of CO2 coupled with C-N bond formation.
Collapse
Affiliation(s)
- Xiao-Fang Liu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Ya Li
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chang Qiao
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hong-Chen Fu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P.R. China
| |
Collapse
|
47
|
He Z, Liu H, Qian Q, Lu L, Guo W, Zhang L, Han B. N-methylation of quinolines with CO2 and H2 catalyzed by Ru-triphos complexes. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9024-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
|
49
|
Qiao C, Liu XF, Liu X, He LN. Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO2. Org Lett 2017; 19:1490-1493. [DOI: 10.1021/acs.orglett.7b00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiao-Fang Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xi Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry and ‡Collaborative Innovation
Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Morris DS, Weetman C, Wennmacher JTC, Cokoja M, Drees M, Kühn FE, Love JB. Reduction of carbon dioxide and organic carbonyls by hydrosilanes catalysed by the perrhenate anion. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00772h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A simple quaternary ammonium perrhenate salt catalyses the hydrosilylation of aldehydes, ketones, and carbon dioxide, and the methylation of amines using carbon dioxide. DFT calculations show that a perrhenate hypervalent silicate interacts directly with CO2.
Collapse
Affiliation(s)
- Danny S. Morris
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh EH9 3FJ
- UK
| | - Catherine Weetman
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh EH9 3FJ
- UK
| | | | - Mirza Cokoja
- Catalysis Research Center
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Markus Drees
- Catalysis Research Center
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Fritz E. Kühn
- Catalysis Research Center
- Technische Universität München
- D-85747 Garching bei München
- Germany
| | - Jason B. Love
- EaStCHEM School of Chemistry
- University of Edinburgh
- Edinburgh EH9 3FJ
- UK
| |
Collapse
|