1
|
Holzer I, Desiatkina O, Anghel N, Johns SK, Boubaker G, Hemphill A, Furrer J, Păunescu E. Synthesis and Antiparasitic Activity of New Trithiolato-Bridged Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates. Molecules 2023; 28:902. [PMID: 36677958 PMCID: PMC9865825 DOI: 10.3390/molecules28020902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.
Collapse
Affiliation(s)
- Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Serena K. Johns
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, UK
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Photoinduced electron transfer in triazole-bridged donor-acceptor dyads – A critical perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Desiatkina O, Mösching M, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J, Păunescu E. New Nucleic Base-Tethered Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Compounds: Synthesis and Antiparasitic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238173. [PMID: 36500266 PMCID: PMC9738179 DOI: 10.3390/molecules27238173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Aiming toward compounds with improved anti-Toxoplasma activity by exploiting the parasite auxotrophies, a library of nucleobase-tethered trithiolato-bridged dinuclear ruthenium(II)-arene conjugates was synthesized and evaluated. Structural features such as the type of nucleobase and linking unit were progressively modified. For comparison, diruthenium hybrids with other type of molecules were also synthesized and assessed. A total of 37 compounds (diruthenium conjugates and intermediates) were evaluated in a primary screening for in vitro activity against transgenic Toxoplasma gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in non-infected host cells (human foreskin fibroblasts, HFF) was determined by alamarBlue assay. Twenty compounds strongly impairing parasite proliferation with little effect on HFF viability were subjected to T. gondii β-gal half maximal inhibitory concentration determination (IC50) and their toxicity for HFF was assessed at 2.5 µM. Two promising compounds were identified: 14, ester conjugate with 9-(2-oxyethyl)adenine, and 36, a click conjugate bearing a 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl substituent, with IC50 values of 0.059 and 0.111 µM respectively, significantly lower compared to pyrimethamine standard (IC50 = 0.326 µM). Both 14 and 36 exhibited low toxicity against HFF when applied at 2.5 µM and are candidates for potential treatment options in a suitable in vivo model.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Mösching
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Laboratoire de Parasitologie, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Post-Functionalization of Organometallic Complexes via Click-Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196494. [PMID: 36235030 PMCID: PMC9614606 DOI: 10.3390/molecules27196494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
CuAAC (Cu catalyzed azide-alkyne cycloaddition) click-reaction is a simple and powerful method for the post-synthetic modification of organometallic complexes of transition metals. This approach allows the selective introduction of additional donor sites or functional groups to the periphery of the ligand environment. This is especially important if a metalloligand with free donor sites, which are of the same nature as the primary site for the coordination of the primary metal, has to be created. The concept of post-synthetic modification of organometallic complexes by click-reaction is relatively recent and the currently available experimental material does not yet allow us to identify trends and formulate recommendations to address specific problems. In the present study, we have applied the CuAAC reaction for the post-synthetic modification of diimine mononuclear complexes Re(I), Pt(II) and Ir(III) with C≡C bonds at the periphery of the ligand environment and demonstrated that click-chemistry is a powerful tool for the tunable chemical post-synthetic modification of coordination compounds.
Collapse
|
5
|
McKenzie LK, Flamme M, Felder PS, Karges J, Bonhomme F, Gandioso A, Malosse C, Gasser G, Hollenstein M. A ruthenium-oligonucleotide bioconjugated photosensitizing aptamer for cancer cell specific photodynamic therapy. RSC Chem Biol 2022; 3:85-95. [PMID: 35128412 PMCID: PMC8729177 DOI: 10.1039/d1cb00146a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Ruthenium complexes have emerged as a promising class of compounds for use as photosensitizers (PSs) in photodynamic therapy (PDT) due to their attractive photophysical properties and relative ease of chemical alteration. While promising, they generally are not inherently targeting to disease sites and may therefore be prone to side effects and require higher doses. Aptamers are short oligonucleotides that bind specific targets with high affinity. One such aptamer is AS1411, a nucleolin targeting, G-quadruplex forming, DNA aptamer. Here we present the first example of direct conjugation of a Ru(ii) polypyridyl complex-based PS to an aptamer and an assessment of its in vitro cancer cell specific photosensitization including discussion of the challenges faced.
Collapse
Affiliation(s)
- Luke K McKenzie
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Marie Flamme
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
- Université de Paris 12 rue de l'École de Médecine 75006 Paris France
| | - Patrick S Felder
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Frederic Bonhomme
- Institut Pasteur, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique, UMR CNRS 3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Christian Malosse
- Institut Pasteur, Mass Spectrometry for Biology Unit 28 rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France www.gassergroup.com +33 1 85 78 41 51
| | - Marcel Hollenstein
- Institut Pasteur, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523 28 rue du Docteur Roux 75724 Paris Cedex 15 France https://research.pasteur.fr/en/team/bioorganic-chemistry-of-nucleic-acids/ +33 1 44 38 94 66
| |
Collapse
|
6
|
McStay N, Slator C, Singh V, Gibney A, Westerlund F, Kellett A. Click and Cut: a click chemistry approach to developing oxidative DNA damaging agents. Nucleic Acids Res 2021; 49:10289-10308. [PMID: 34570227 PMCID: PMC8501983 DOI: 10.1093/nar/gkab817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Metallodrugs provide important first-line treatment against various forms of human cancer. To overcome chemotherapeutic resistance and widen treatment possibilities, new agents with improved or alternative modes of action are highly sought after. Here, we present a click chemistry strategy for developing DNA damaging metallodrugs. The approach involves the development of a series of polyamine ligands where three primary, secondary or tertiary alkyne-amines were selected and 'clicked' using the copper-catalysed azide-alkyne cycloaddition reaction to a 1,3,5-azide mesitylene core to produce a family of compounds we call the 'Tri-Click' (TC) series. From the isolated library, one dominant ligand (TC1) emerged as a high-affinity copper(II) binding agent with potent DNA recognition and damaging properties. Using a range of in vitro biophysical and molecular techniques-including free radical scavengers, spin trapping antioxidants and base excision repair (BER) enzymes-the oxidative DNA damaging mechanism of copper-bound TC1 was elucidated. This activity was then compared to intracellular results obtained from peripheral blood mononuclear cells exposed to Cu(II)-TC1 where use of BER enzymes and fluorescently modified dNTPs enabled the characterisation and quantification of genomic DNA lesions produced by the complex. The approach can serve as a new avenue for the design of DNA damaging agents with unique activity profiles.
Collapse
Affiliation(s)
- Natasha McStay
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vandana Singh
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alex Gibney
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
7
|
Amini H, Weisbach N, Gauthier S, Kuhn H, Bhuvanesh N, Hampel F, Reibenspies JH, Gladysz JA. Trapping of Terminal Platinapolyynes by Copper(I) Catalyzed Click Cycloadditions; Probes of Labile Intermediates in Syntheses of Complexes with Extended sp Carbon Chains, and Crystallographic Studies. Chemistry 2021; 27:12619-12634. [PMID: 34101914 DOI: 10.1002/chem.202101725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/07/2022]
Abstract
The silylated hexatriynyl complex trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)3 SiEt3 (PtC6 TES) is converted in situ to PtC6 H (wet n-Bu4 N+ F- , THF) and cross coupled with the diyne H(C≡C)2 SiEt3 (HC4 TES; CuCl/TMEDA, O2 ) to give PtC10 TES (71 %). This sequence is repeated twice to afford PtC14 TES (65 %) and then PtC18 TES (27 %). An analogous series of reactions starting with PtC8 TES gives PtC12 TES (60 %), then PtC16 TES (43 %), and then PtC20 TES (17 %). Similar cross couplings with H(C≡C)2 Si(i-Pr)3 (HC4 TIPS) give PtC12 TIPS (68 %), PtC14 TIPS (68 %), and PtC16 TIPS (34 %). The trialkylsilyl species (up to PtC18 TES) are converted to 3+2 "click" cycloadducts or 1,4-disubstituted 1,2,3-triazoles trans-(C6 F5 )(p-tol3 P)2 Pt(C≡C)n-1 C=CHN(CH2 C6 H5 )N=N (29-92 % after workups). The most general procedure involves generating the terminal polyynes PtCx H (wet n-Bu4 N+ F- , THF) in the presence of benzyl azide in DMF and aqueous CuSO4 /ascorbic acid. All of the preceding complexes are crystallographically characterized and the structural and spectroscopic properties analyzed as a function of chain length. Two pseudopolymorphs of PtC20 TES are obtained, both of which feature molecules with parallel sp carbon chains in a pairwise head/tail packing motif with extensive sp/sp van der Waals contacts.
Collapse
Affiliation(s)
- Hashem Amini
- Department of Chemistry, Texas A&M University P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Nancy Weisbach
- Department of Chemistry, Texas A&M University P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Sébastien Gauthier
- Department of Chemistry, Texas A&M University P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Helene Kuhn
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054, Erlangen, Germany
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - Frank Hampel
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054, Erlangen, Germany
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University P.O. Box 30012, College Station, Texas, 77842-3012, USA
| | - John A Gladysz
- Department of Chemistry, Texas A&M University P.O. Box 30012, College Station, Texas, 77842-3012, USA
| |
Collapse
|
8
|
Hou C, Xu H, Jiang X, Li Y, Deng S, Zang M, Xu J, Liu J. Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS APPLIED BIO MATERIALS 2021; 4:5961-5974. [PMID: 35006905 DOI: 10.1021/acsabm.1c00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rodlike and spherelike viruses are various monodisperse nanoparticles that can display small molecules or polymers with unique distribution following chemical modifications. Because of the monodisperse property, aggregates in synthetic protein-polymer nanoparticles could be eliminated, thus improving the probability for application in protein-polymer drug. In addition, the monodisperse virus could direct the growth of metal materials or inorganic materials, finding applications in hydrogel, drug delivery, and optoelectronic and catalysis materials. Benefiting from the advantages, the virus or viruslike particles have been widely explored in the field of supramolecular chemistry. In this review, we describe the modification and application of virus and viruslike particles in surpramolecular structures and biomedical research.
Collapse
Affiliation(s)
- Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hanxin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shengchao Deng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
9
|
Lin M, Zou S, Liao X, Chen Y, Luo D, Ji L, Chao H. Ruthenium(II) complexes as bioorthogonal two-photon photosensitizers for tumour-specific photodynamic therapy against triple-negative breast cancer cells. Chem Commun (Camb) 2021; 57:4408-4411. [PMID: 33949487 DOI: 10.1039/d1cc00661d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, we developed the first Ru(ii) complex-based bioorthogonal two-photon photosensitizers. Through bioorthogonal labelling, they realize effective tumour-specific photodynamic therapy against triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Mingwei Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Shanshan Zou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Diqing Luo
- Department of Dermatology, The Eastern Division of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
10
|
Synthesis and Antiparasitic Activity of New Conjugates—Organic Drugs Tethered to Trithiolato-Bridged Dinuclear Ruthenium(II)–Arene Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9080059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tethering known drugs to a metalorganic moiety is an efficient approach for modulating the anticancer, antibacterial, and antiparasitic activity of organometallic complexes. This study focused on the synthesis and evaluation of new dinuclear ruthenium(II)–arene compounds linked to several antimicrobial compounds such as dapsone, sulfamethoxazole, sulfadiazine, sulfadoxine, triclosan, metronidazole, ciprofloxacin, as well as menadione (a 1,4-naphtoquinone derivative). In a primary screen, 30 compounds (17 hybrid molecules, diruthenium intermediates, and antimicrobials) were assessed for in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in noninfected host cells (human foreskin fibroblasts, HFF) was determined by an alamarBlue assay. When assessed at 1 µM, five compounds strongly impaired parasite proliferation by >90%, and HFF viability was retained at 50% or more, and they were further subjected to T. gondii β-gal dose-response studies. Two compounds, notably 11 and 13, amide and ester conjugates with sulfadoxine and metronidazole, exhibited low IC50 (half-maximal inhibitory concentration) values 0.063 and 0.152 µM, and low or intermediate impairment of HFF viability at 2.5 µM (83 and 64%). The nature of the anchored drug as well as that of the linking unit impacted the biological activity.
Collapse
|
11
|
Gómez J, Sierra D, Cárdenas C, Guzmán F. Bio-organometallic Peptide Conjugates: Recent Advances in Their Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200309093938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One area of organometallic chemistry that has attracted great interest in recent
years is the syntheses, characterization and study of organometallic complexes conjugated
to biomolecules with different steric and electronic properties as potential therapeutic
agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview
focuses on the unique structural diversity that has recently been discovered in α-
amino acids and the reactions of metallocene complexes with peptides having different
chemical behavior and potential medical applications. Replacing α-amino acids with metallocene
fragments is an effective way of selectively influencing the physicochemical,
structural, electrochemical and biological properties of the peptides. Consequently, research
in the field of bioorganometallic chemistry offers the opportunity to develop bioactive
metal compounds as an innovative and promising approach in the search for pharmacological control of
different diseases.
Collapse
Affiliation(s)
- Johana Gómez
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Diego Sierra
- Instituto de Quimica y Bioquimica, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaíso, Chile
| | - Constanza Cárdenas
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Fanny Guzmán
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| |
Collapse
|
12
|
Min I, Tamaki Y, Ishitani O, Serizawa T, Ito Y, Uzawa T. Effective Suppression of O2 Quenching of Photo-Excited Ruthenium Complex Using RNA Aptamer. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Iljae Min
- RIKEN CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Uzawa
- RIKEN CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Markiewicz G, Orwat B, Piechocki M, Jankowska K, Kownacki I, Stefankiewicz AR. A substituent-induced post-assembly modification cascade of a metallosupramolecular imine-type Co-complex. Dalton Trans 2020; 49:12793-12797. [PMID: 32959826 DOI: 10.1039/d0dt01934h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report a reaction cascade employing the substituent-induced post-assembly modification of a Co(iii) complex. Unexpectedly, we found that the (triisopropylsilyl)alkynyl moiety introduced to the Sonogashira reaction with the bromo-functionalized Co(iii) assembly plays a "Trojan horse" role, triggering a subsequent, second step of the cascade, i.e. Co(iii) to Co(ii) reduction. The reported substituent-activated Sonogashira-redox cascade reaction might set a new direction in the construction of specific chemical sensors.
Collapse
Affiliation(s)
- Grzegorz Markiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Bartosz Orwat
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Miłosz Piechocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Kamila Jankowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Sánchez-Murcia PA, Nogueira JJ, Plasser F, González L. Orbital-free photophysical descriptors to predict directional excitations in metal-based photosensitizers. Chem Sci 2020; 11:7685-7693. [PMID: 32864087 PMCID: PMC7425079 DOI: 10.1039/d0sc01684e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 12/02/2022] Open
Abstract
The development of dye-sensitized solar cells, metalloenzyme photocatalysis or biological labeling heavily relies on the design of metal-based photosensitizes with directional excitations. Directionality is most often predicted by characterizing the excitations manually via canonical frontier orbitals. Although widespread, this traditional approach is, at the very least, cumbersome and subject to personal bias, as well as limited in many cases. Here, we demonstrate how two orbital-free photophysical descriptors allow an easy and straightforward quantification of the degree of directionality in electron excitations using chemical fragments. As proof of concept we scrutinize the effect of 22 chemical modifications on the archetype [Ru(bpy)3]2+ with a new descriptor coined "substituent-induced exciton localization" (SIEL), together with the concept of "excited-electron delocalization length" (EEDL n ). Applied to quantum ensembles of initially excited singlet and the relaxed triplet metal-to-ligand charge-transfer states, the SIEL descriptor allows quantifying how much and whereto the exciton is promoted, as well as anticipating the effect of single modifications, e.g. on C-4 atoms of bpy units of [Ru(bpy)3]2+. The general applicability of SIEL and EEDL n is further established by rationalizing experimental trends through quantification of the directionality of the photoexcitation. We thus demonstrate that SIEL and EEDL descriptors can be synergistically employed to design improved photosensitizers with highly directional and localized electron-transfer transitions.
Collapse
Affiliation(s)
- Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria . ;
| | - Juan J Nogueira
- Department of Chemistry and Institute for Advanced Research in Chemistry , Universidad Autónoma de Madrid , Madrid , 28049 , Spain
| | - Felix Plasser
- Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , UK
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria . ;
- Vienna Research Platform for Accelerating Photoreaction Discovery , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria
| |
Collapse
|
15
|
Finn S, Byrne A, Gkika KS, Keyes TE. Photophysics and Cell Uptake of Self-Assembled Ru(II)Polypyridyl Vesicles. Front Chem 2020; 8:638. [PMID: 32850654 PMCID: PMC7406788 DOI: 10.3389/fchem.2020.00638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/04/2022] Open
Abstract
Effective delivery of luminescent probes for cell imaging requires both cell membrane permeation and directing to discrete target organelles. Combined, these requirements can present a significant challenge for metal complex luminophores, that have excellent properties as imaging probes but typically show poor membrane permeability. Here, we report on highly luminescent Ruthenium polypyridyl complexes based on the parent; [Ru(dpp)2(x-ATAP)](PF6)2 structure, where dpp is 4,7-diphenyl-1,10-phenanthroline and x-ATAP is 5-amino-1,10-phenanthroline with pendant alkyl-acetylthio chains of varying length; where x is 6; 5-Amido-1,10-phenanthroline-(6-acetylthio-hexanyl). 8; 5-Amido-1,10-phenanthroline-(8-acetylthio-octanyl). 11; 5-Amido-1,10-phenanthroline-(11-acetylthio-undecanyl); and 16; 5-Amido-1,10-phenanthroline-(16-acetylthio-hexadecanyl). Soluble in organic media, the alkyl-acetylthiolated complexes form nanoaggregates of low polydispersity in aqueous solution. From dynamic light scattering the nanoaggregate diameter was measured as 189 nm and 135 nm for 5 × 10-6 M aqueous solutions of [Ru(dpp)2(N∧N)](PF6)2 with the hexadecanoyl and hexanyl tails respectivly. The nanoaggregate exhibited dual exponential emission decays with kinetics that matched closely those of the [Ru(dpp)2(16-ATAP)]2+ incorporated into the membrane of a DPPC liposome. Cell permeability and distribution of [Ru(dpp)2(11-ATAP)]2+ or [Ru(dpp)2(16-ATAP)]2+ were evaluated in detail in live HeLa and CHO cell lines and it was found from aqueous media, that the nanoaggregate complexes spontaneously cross the membrane of mammalian cells. This process seems, on the basis of temperature dependent studies to be activated. Fluorescence imaging of live cells reveal that the complexes localize highly specifically within organelles and that organelle localization changes dramatically in switching the pendent alkyl chains from C16 to C11 as well as on cell line identity. Our data suggests that building metal complexes capable of self-assembling into nano-dimensional vesicles in this way may be a useful means of promoting cell membrane permeability and driving selective targeting that is facile and relatively low cost compared to use of biomolecular vectors.
Collapse
Affiliation(s)
| | | | | | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
16
|
Du Z, Yu D, Du X, Scott P, Ren J, Qu X. Self-triggered click reaction in an Alzheimer's disease model: in situ bifunctional drug synthesis catalyzed by neurotoxic copper accumulated in amyloid-β plaques. Chem Sci 2019; 10:10343-10350. [PMID: 32110322 PMCID: PMC6984331 DOI: 10.1039/c9sc04387j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022] Open
Abstract
Cu is one of the essential elements for life. Its dyshomeostasis has been demonstrated to be closely related to neurodegenerative disorders, such as Alzheimer's disease (AD), which is characterized by amyloid-β (Aβ) aggregation and Cu accumulation. It is a great challenge as to how to take advantage of neurotoxic Cu to fight disease and make it helpful. Herein, we report that the accumulated Cu in Aβ plaques can effectively catalyze an azide-alkyne bioorthogonal cycloaddition reaction for fluorophore activation and drug synthesis in living cells, a transgenic AD model of Caenorhabditis elegans CL2006, and brain slices of triple transgenic AD mice. More importantly, the in situ synthesized bifunctional drug 6 can disassemble Aβ-Cu aggregates by extracting Cu and photo-oxygenating Aβ synergistically, suppressing Aβ-mediated paralysis and diminishing the locomotion defects of the AD model CL2006 strain. Our results demonstrate that taking the accumulated Cu ions in the Aβ plaque for an in situ click reaction can achieve both a self-triggered and self-regulated drug synthesis for AD therapy. To the best of our knowledge, a click reaction catalyzed by local Cu in a physiological environment has not been reported. This work may open up a new avenue for in situ multifunctional drug synthesis by using endogenous neurotoxic metal ions for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi Du
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
- University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
- University of Science and Technology of China , Hefei , Anhui 230029 , China
| | - Xiubo Du
- College of Life Sciences and Oceanography , Shenzhen Key Laboratory of Microbial Genetic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Peter Scott
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| |
Collapse
|
17
|
Wintergerst P, Mengele AK, Nauroozi D, Tschierlei S, Rau S. Impact of Alkyne Functionalization on Photophysical and Electrochemical Properties of 1,10-Phenanthrolines and Their RuII
Complexes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pascal Wintergerst
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Djawed Nauroozi
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Stefanie Tschierlei
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
18
|
Mahmoud AG, Guedes da Silva MFC, Mahmudov KT, Pombeiro AJL. Arylhydrazone ligands as Cu-protectors and -catalysis promoters in the azide-alkyne cycloaddition reaction. Dalton Trans 2019; 48:1774-1785. [PMID: 30640328 DOI: 10.1039/c8dt04771e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of water soluble copper(ii) complexes, [Cu(κO1O2N-H2L1)(H2O)2]·2H2O (2), [Cu(κO-H3L1)2(H2O)4] (3), [Cu(κO-H4L2)2(H2O)4] (5) and [Cu(H2O)6]·2H2L3·2(CH3)2NCHO (7), were prepared by the reaction of Cu(NO3)2·3H2O with sodium (Z)-2-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)benzenesulfonate, [Na(μ4-1:2κO1,2κO2,3κO3,4κO4-H3L1)]n (1; for 2 and 3), sodium (Z)-3-(2-(1-amino-1,3-dioxobutan-2-ylidene)hydrazineyl)-4-hydroxybenzene-sulfonate, [Na(μ-1κO1,2κO2-H4L2)]2 (4; for 5) or sodium (Z)-2-(2-(1,3-dioxo-1-(phenylamino)butan-2-ylidene)hydrazineyl)naphthalene-1-sulfonate, [Na(μ-1κO1O2,2κO3-H2L3)(CH3OH)2]2 (6; for 7). Compounds 1-7 were fully characterized, also by single-crystal X-ray diffraction analysis, and applied as homogeneous catalysts for the azide-alkyne cycloaddition (AAC) reaction to afford 1,4-disubstituted 1,2,3-triazoles. A structure-catalytic activity relationship has been recognized for the first time on the basis of the occurrence of resonance- and charge-assisted hydrogen bond interactions (RAHB and CAHB), in charge and ligand binding modes, enabling the catalytic activity of the compounds to be ordered as follows: Cu(NO3)2≪7 (complex salt with RAHB and CAHB) < 3 (with RAHB and CAHB) < 5 (with RAHB) < 2 (neither RAHB nor CAHB). Complex 2, without such non-covalent interactions, was found to be the most efficient catalyst for the AAC reaction, affording up to 98% product yield after being placed for 15 min, at 125 °C, in a water/acetonitrile mixture under low power (10 W) MW irradiation.
Collapse
Affiliation(s)
- Abdallah G Mahmoud
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, 11795 Cairo, Egypt
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. and Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan.
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
19
|
Mede T, Jäger M, Schubert US. "Chemistry-on-the-complex": functional Ru II polypyridyl-type sensitizers as divergent building blocks. Chem Soc Rev 2018; 47:7577-7627. [PMID: 30246196 DOI: 10.1039/c8cs00096d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium polypyridyl type complexes are potent photoactive compounds, and have found - among others - a broad range of important applications in the fields of biomedical diagnosis and phototherapy, energy conversion schemes such as dye-sensitized solar cells (DSSCs) and molecular assemblies for tailored photo-initiated processes. In this regard, the linkage of RuII polypyridyl-type complexes with specific functional moieties is highly desirable to enhance their inherent photophysical properties, e.g., with a targeting function to achieve cell selectivity, or with a dye or redox-active subunits for energy- and electron-transfer. However, the classical approach of performing ligand syntheses first and the formation of Ru complexes in the last steps imposes synthetic limitations with regard to tolerating functional groups or moieties as well as requiring lengthy convergent routes. Alternatively, the diversification of Ru complexes after coordination (termed "chemistry-on-the-complex") provides an elegant complementary approach. In addition to the Click chemistry concept, the rapidly developing synthesis and purification methodologies permit the preparation of Ru conjugates via amidation, alkylation and cross-coupling reactions. In this regard, recent developments in chromatography shifted the limits of purification, e.g., by using new commercialized surface-modified silica gels and automated instrumentation. This review provides detailed insights into applying the "chemistry-on-the-complex" concept, which is believed to stimulate the modular preparation of unpreceded molecular assemblies as well as functional materials based on Ru-based building blocks, including combinatorial approaches.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | |
Collapse
|
20
|
da Silva MRE, Auvray T, Laramée-Milette B, Franco MP, Braga AAC, Toma HE, Hanan GS. Unusual Photooxidation of S-Bonded Mercaptopyridine in a Mixed Ligand Ruthenium(II) Complex with Terpyridine and Bipyridine Ligands. Inorg Chem 2018; 57:4898-4905. [DOI: 10.1021/acs.inorgchem.7b02965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Rosana E. da Silva
- Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Butanta, 05508-000, São Paulo, SP, Brazil
- Département de Chimie, Université de Montréal, Montréal, Québec H3T-1J4, Canada
| | - Thomas Auvray
- Département de Chimie, Université de Montréal, Montréal, Québec H3T-1J4, Canada
| | | | - Maurício P. Franco
- Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Butanta, 05508-000, São Paulo, SP, Brazil
| | - Ataualpa A. C. Braga
- Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Butanta, 05508-000, São Paulo, SP, Brazil
| | - Henrique E. Toma
- Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, Butanta, 05508-000, São Paulo, SP, Brazil
| | - Garry S. Hanan
- Département de Chimie, Université de Montréal, Montréal, Québec H3T-1J4, Canada
| |
Collapse
|
21
|
Stumper A, Lämmle M, Mengele AK, Sorsche D, Rau S. One Scaffold, Many Possibilities - Copper(I)-Catalyzed Azide-Alkyne Cycloadditions, Strain-Promoted Azide-Alkyne Cycloadditions, and Maleimide-Thiol Coupling of Ruthenium(II) Polypyridyl Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Stumper
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Martin Lämmle
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Dieter Sorsche
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sven Rau
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
22
|
Scattergood PA, Sinopoli A, Elliott PI. Photophysics and photochemistry of 1,2,3-triazole-based complexes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Ross DAW, Scattergood PA, Babaei A, Pertegás A, Bolink HJ, Elliott PIP. Luminescent osmium(ii) bi-1,2,3-triazol-4-yl complexes: photophysical characterisation and application in light-emitting electrochemical cells. Dalton Trans 2017; 45:7748-57. [PMID: 27055067 DOI: 10.1039/c6dt00830e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The series of osmium(ii) complexes [Os(bpy)3-n(btz)n][PF6]2 (bpy = 2,2'-bipyridyl, btz = 1,1'-dibenzyl-4,4'-bi-1,2,3-triazolyl, n = 0, n = 1, n = 2, n = 3), have been prepared and characterised. The progressive replacement of bpy by btz leads to blue-shifted UV-visible electronic absorption spectra, indicative of btz perturbation of the successively destabilised bpy-centred LUMO. For , a dramatic blue-shift relative to the absorption profile for is observed, indicative of the much higher energy LUMO of the btz ligand over that of bpy, mirroring previously reported data on analogous ruthenium(ii) complexes. Unlike the previously reported ruthenium systems, heteroleptic complexes and display intense emission in the far-red/near-infrared (λmax = 724 and 713 nm respectively in aerated acetonitrile at RT) as a consequence of higher lying, and hence less thermally accessible, (3)MC states. This assertion is supported by ground state DFT calculations which show that the dσ* orbitals of to are destabilised by between 0.60 and 0.79 eV relative to their Ru(ii) analogues. The homoleptic complex appears to display extremely weak room temperature emission, but on cooling to 77 K the complex exhibits highly intense blue emission with λmax 444 nm. As complexes to display room temperature luminescent emission and readily reversible Os(ii)/(iii) redox couples, light-emitting electrochemical cell (LEC) devices were fabricated. All LECs display electroluminescent emission in the deep-red/near-IR (λmax = 695 to 730 nm). Whilst devices based on and show inferior current density and luminance than LECs based on , the device utilising shows the highest external quantum efficiency at 0.3%.
Collapse
Affiliation(s)
- Daniel A W Ross
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Paul A Scattergood
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Azin Babaei
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980 Paterna, Spain.
| | - Antonio Pertegás
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980 Paterna, Spain.
| | - Henk J Bolink
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/ Catedrático José Beltrán, 2, 46980 Paterna, Spain.
| | - Paul I P Elliott
- Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
24
|
Queyriaux N, Andreiadis ES, Torelli S, Pecaut J, Veldkamp BS, Margulies EA, Wasielewski MR, Chavarot-Kerlidou M, Artero V. CuAAC-based assembly and characterization of a ruthenium-copper dyad containing a diimine-dioxime ligand framework. Faraday Discuss 2017; 198:251-261. [PMID: 28276542 DOI: 10.1039/c6fd00204h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The design of molecular dyads combining a light-harvesting unit with an electroactive centre is highly demanded in the field of artificial photosynthesis. The versatile Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC) procedure was employed to assemble a ruthenium tris-diimine unit to an unprecedented azide-substituted copper diimine-dioxime moiety. The resulting RuIICuII dyad 4 was characterized by electrochemistry, 1H NMR, EPR, UV-visible absorption, steady-state fluorescence and transient absorption spectroscopies. Photoinduced electron transfer from the ruthenium to the copper centre upon light-activation in the presence of a sacrificial electron donor was established thanks to EPR-monitored photolysis experiments, opening interesting perspectives for photocatalytic applications.
Collapse
Affiliation(s)
- Nicolas Queyriaux
- Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, CNRS UMR 5249, CEA, 17 rue des martyrs, F-38054, Grenoble Cedex 9, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sartor V, Irvoas J, Bordeau G, Chouini-Lalanne N. Multivalent Azide-Functionalized Polypyridyl Ruthenium Complexes and Their DNA Conjugates through Click Chemistry. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Valerie Sartor
- Laboratoire des IMRCP; Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Joris Irvoas
- Laboratoire des IMRCP; Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Guillaume Bordeau
- Laboratoire des IMRCP; Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Nadia Chouini-Lalanne
- Laboratoire des IMRCP; Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
26
|
Suntrup L, Klenk S, Klein J, Sobottka S, Sarkar B. Gauging Donor/Acceptor Properties and Redox Stability of Chelating Click-Derived Triazoles and Triazolylidenes: A Case Study with Rhenium(I) Complexes. Inorg Chem 2017; 56:5771-5783. [DOI: 10.1021/acs.inorgchem.7b00393] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lisa Suntrup
- Institut für Chemie und Biochemie,
Anorganische Chemie, Freie Universität Berlin, Fabeckstraße
34−36, D-14195 Berlin, Germany
| | - Sinja Klenk
- Institut für Chemie und Biochemie,
Anorganische Chemie, Freie Universität Berlin, Fabeckstraße
34−36, D-14195 Berlin, Germany
| | - Johannes Klein
- Institut für Chemie und Biochemie,
Anorganische Chemie, Freie Universität Berlin, Fabeckstraße
34−36, D-14195 Berlin, Germany
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie,
Anorganische Chemie, Freie Universität Berlin, Fabeckstraße
34−36, D-14195 Berlin, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie,
Anorganische Chemie, Freie Universität Berlin, Fabeckstraße
34−36, D-14195 Berlin, Germany
| |
Collapse
|
27
|
Schweinfurth D, Hettmanczyk L, Suntrup L, Sarkar B. Metal Complexes of Click-Derived Triazoles and Mesoionic Carbenes: Electron Transfer, Photochemistry, Magnetic Bistability, and Catalysis. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700030] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- David Schweinfurth
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Lara Hettmanczyk
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Lisa Suntrup
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie; Freie Universität Berlin; Fabeckstraße 34-36 14195 Berlin Germany
| |
Collapse
|
28
|
Noshiranzadeh N, Emami M, Bikas R, Kozakiewicz A. Green click synthesis of β-hydroxy-1,2,3-triazoles in water in the presence of a Cu(ii)–azide catalyst: a new function for Cu(ii)–azide complexes. NEW J CHEM 2017. [DOI: 10.1039/c6nj03865d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for preparing 1,2,3-triazols via a [3+2]-cycloaddition reaction is introduced. The effect of reaction temperature on the epoxide ring opening reactions is also investigated.
Collapse
Affiliation(s)
- Nader Noshiranzadeh
- Department of Chemistry
- Faculty of Sciences
- University of Zanjan
- 45195-313 Zanjan
- Islamic Republic of Iran
| | - Marzieh Emami
- Department of Chemistry
- Faculty of Sciences
- University of Zanjan
- 45195-313 Zanjan
- Islamic Republic of Iran
| | - Rahman Bikas
- Department of Chemistry
- Faculty of Sciences
- University of Zanjan
- 45195-313 Zanjan
- Islamic Republic of Iran
| | - Anna Kozakiewicz
- Faculty of Chemistry
- Nicolaus Copernicus University in Toruń
- 87-100 Toruń
- Poland
| |
Collapse
|
29
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
30
|
Braumüller M, Staniszewska M, Guthmuller J, Rau S. CLICK 'n' Sleep: Light-Switch Behavior of Triazole-Containing Tris(bipyridyl)ruthenium Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Markus Braumüller
- Anorganische Chemie I; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Magdalena Staniszewska
- Faculty of Applied Physics and Mathematics; Gdańsk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| | - Julien Guthmuller
- Faculty of Applied Physics and Mathematics; Gdańsk University of Technology; Narutowicza 11/12 80-233 Gdańsk Poland
| | - Sven Rau
- Anorganische Chemie I; Universität Ulm; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|