1
|
Venmarath A, Karkal SS, Suresh PV, Kudre TG. Extraction optimization, partial purification, and characterization of sialoglycoproteins from Labeo rohita roes. Int J Biol Macromol 2024; 274:133462. [PMID: 38942403 DOI: 10.1016/j.ijbiomac.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In India, fish roes are generally considered worthless garbage and disposed of without recovering the valuable molecules, creating environmental and disposal problems. The present investigation aimed to optimize the extraction conditions, partial purification, and characterization of sialoglycoproteins (RRSGP) from Labeo rohita (rohu) roes. RSM generated optimum conditions for maximum RRSGP (70.49 %) extraction, which were 1.25 M NaCl, 1:32.5(w/v) solid-to-liquid ratio, 47.5 °C temperature, and 3 h time. Further, sialoglycoproteins from RRSGPs were partially purified, and result revealed that obtained peak-1 (PRRSGP) using QFF anion exchange chromatography exhibited higher glycoprotein and sialic acid content (p < 0.05). SDS-PAGE pattern of PRRSGP presented dominant bands of 97 kDa and 27 kDa glycoproteins. FTIR spectrum of PRRSGP confirmed the presence of glycated proteins. HPLC analysis revealed that PRRSGP consists of Neu5Ac. Furthermore, β-elimination reaction elucidated that PRRSGP contained N-glycosidic linkage. PRRSGP exhibited tyrosine and glutamate as primary amino acids. Glycan part of PRRSGP presented mannose and N-acetyl galactosamine as dominant neutral and amino sugar, respectively. Furthermore, PRRSGP exhibited antioxidant activity with EC50 value for DPPH (8.79 mg/ml) and ABTS (2.21 mg/ml). Besides, RRSGP displayed better protein solubility, foaming, and emulsion properties. Therefore, rohu roes are potential source of sialoglycoproteins that can be recovered and used as bio-functional ingredients in food and nutraceutical applications.
Collapse
Affiliation(s)
- Anushma Venmarath
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sandesh Suresh Karkal
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - P V Suresh
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Tanaji G Kudre
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
2
|
Lu X, Huang L, Chen J, Ou Y, Wu J, Bodjrenou DM, Hu J, Zhang Y, Farag MA, Guo Z, Xiao J, Zheng B. Marine glycoproteins: a mine of their structures, functions and potential applications. Crit Rev Food Sci Nutr 2023; 64:9191-9209. [PMID: 37165485 DOI: 10.1080/10408398.2023.2209183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many bioactive compounds are reported from marine organisms, which are significantly different from those found in terrestrial organisms regarding their chemical structures and pharmacological activities. Marine glycoproteins (MGs) have aroused increasing attention as a good nutrient source owing to their potential applications in medicine, cosmetics and food. However, there is a lack of a comprehensive study on MGs to help readers understand the current state of research on marine-derived glycoproteins. The current review compiles the recent progress made on the structures and functions of MGs with future perspectives to maximize their value and applications via bibliometric analysis methods for the first time. The current research on MGs appears mostly limited to the laboratory, with no large-scale production of marine glycoproteins developed. The sugar chains are bound to proteins through covalent bonds that can readily be cleaved leading to difficultly in their separation and purification. Health effects attributed to MGs include treatment of inflammatory diseases, as well as anti-oxidant, immune modulation, anti-tumor, hypolipidemic, hypoglycemic, anti-bacterial and anti-freeze activities. This review can not only deepen the understanding of the functions of MGs, but also lay an important foundation for the further development and utilization of marine resources.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyao Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaqi Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujia Ou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingru Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - David Mahoudjro Bodjrenou
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Zebin Guo
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo, Ourense, Spain
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Abstract
Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Okagu IU, Aham EC, Ezeorba TPC, Ndefo JC, Aguchem RN, Udenigwe CC. Osteo‐modulatory dietary proteins and peptides: A concise review. J Food Biochem 2022; 46:e14365. [DOI: 10.1111/jfbc.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Emmanuel Chigozie Aham
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology Faculty of Physical Sciences, University of Nigeria Nsukka Nigeria
| | - Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
5
|
Gonadal hormone trigger the dynamic microglial alterations through Traf6/TAK1 axis that correlate with depressive behaviors. J Psychiatr Res 2022; 152:128-138. [PMID: 35724494 DOI: 10.1016/j.jpsychires.2022.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/15/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Gonadal hormone deficiency is associated with the development of depression, but what mediates this association is unclear. To test the possibility that it reflects neuroimmune and neuroinflammatory processes, we analyzed how gonadal hormone deficiency and replacement affect microglial activation and inflammatory response during the development of depressive symptomatology in gonadectomized male mice. Testosterone level and the ratio of testosterone to estradiol in the serum and brain tissue of mice exposed to 3-35 days of chronic unpredictable stress were much lower than in control animals. Gonadal hormone sustained deficiency in gonadectomized mice and subsequent led to acute inflammation at day 7 following castration. Activating microglia in mice exposed to 7 days of castration subsequently suppressed the proliferation of microglia, such that their numbers in hippocampus and cortex were lower than the numbers in sham-operated mice after 30 days of castration. Here, we showed that gonadal hormone deficiency induces Traf6-mediated microglia activation, a type of inflammatory mediator. Microglia treated in this way for long time showed down-regulation of activation markers, abnormal morphology and depressive-like behaviors. Restoration and maintenance of a fixed ratio of testosterone to estradiol significantly suppressed microglial activation, neuronal necroptosis, dramatically inducing hippocampal neurogenesis and reducing depressive behaviors via the suppression of Traf6/TAK1 pathway. These findings suggest that activated or immunoreactive microglia contribute to gonadal hormone deficiency-induced depression, as well as testosterone and estradiol exert synergistic anti-depressant effects via suppressing microglial activaton in gonadectomized male mice, possibly through Traf6 signaling.
Collapse
|
6
|
Zhao M, Mei F, Lu J, Xiang Q, Xia G, Zhang X, Liu Z, Zhang C, Shen X, Zhong Q. Gadus morhua Eggs Sialoglycoprotein Prevent Estrogen Deficiency-Induced High Bone Turnover by Controlling OPG/RANKL/TRAF6 Pathway and Serum Metabolism. Front Nutr 2022; 9:871521. [PMID: 35495954 PMCID: PMC9040668 DOI: 10.3389/fnut.2022.871521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, the development of safe and effective anti-osteoporosis factors has attracted extensive attention. In this study, an estrogen-deficient osteoporosis rat model was employed to study the improving mechanism of sialoglycoprotein isolated from Gadus morhua eggs (Gds) against osteoporosis. The results showed that compared with OVX, Gds ameliorated the trabecular microstructure, especially the increased trabecular thickness, decreased trabecular separation, and enhanced the trabecular number. The analysis of qRT-PCR and western blotting found that Gds reduced bone resorption by inhibiting RANKL-induced osteoclastogenesis. The LC-MS/MS was used to investigate serum metabolism, and the enrichment metabolites were analyzed by the KEGG pathway. The results revealed that the Gds significantly altered the fat anabolism pathway, which includes ovarian steroidogenesis pathway and arachidonic acid metabolism pathway. Altogether, Gds could improve osteoporosis by suppressing high bone turnover via controlling OPG/RANKL/TRAF6 pathway, which is implicated with ovarian steroidogenesis pathway and arachidonic acid metabolism pathway. These findings indicated that Gds could be a candidate factor for anti-osteoporosis.
Collapse
Affiliation(s)
- Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Jinfeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
| | - Qingying Xiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- *Correspondence: Guanghua Xia,
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Chenghui Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Qiuping Zhong
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Qiuping Zhong,
| |
Collapse
|
7
|
Feng X, Jiang S, Zhang F, Wang R, Zhao Y, Zeng M. Shell water-soluble matrix protein from oyster shells promoted proliferation, differentiation and mineralization of osteoblasts in vitro and vivo. Int J Biol Macromol 2022; 201:288-297. [PMID: 34998879 DOI: 10.1016/j.ijbiomac.2021.12.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022]
Abstract
Matrix protein is secreted by the membrane of bivalve shellfish to and used to regulate shell biomineralization. In this study, we extracted water-soluble matrix protein (WSMP) from oyster shells to investigate its effects on osteogenic differentiation and mineralization of MC3T3-E1 cells and osteoporosis rats. Our results suggested that WSMP was an acidic glycoprotein by amino acid analysis and secondary structure analysis. In vitro, WSMP could promote osteoblastic proliferation. Moreover, alkaline phosphatase (ALP) and osteocalcin (OCN) were increased, mineralized nodules were increased, and BMP-2 expression was up-regulated. Additionally, in vivo, tartrate-resistant acid phosphatase (TRAP) and Bone alkaline phosphatase (BALP) expressions in the medium-dose and high-dose groups were significantly decreased compared with the model group, while OCN expression was significantly increased. Bone mineral density (BMD) and bone mineral content (BMC) of bone recovered significantly. In summary, WSMP can promote the proliferation, differentiation and mineralization of osteoblasts in vitro and in vivo.
Collapse
Affiliation(s)
- Xue Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Suisui Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Fan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Runfang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
8
|
Sea cucumber enzymatic hydrolysates relieve osteoporosis through OPG/RANK/RANKL system in ovariectomized rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Yue H, Wang P, Zhang L, Ning D, Cai W, Wang Y, Wang J. Sialoglycoproteins isolated from the eggs of Carassius auratus alleviates CCL4-induced liver injury via downregulation of the IRE-α/NF-κB signaling pathway. J Food Biochem 2021; 45:e13964. [PMID: 34730246 DOI: 10.1111/jfbc.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
Chemical liver injury is a common cause of liver disease primarily characterized by oxidative stress and inflammation. Sialoglycoproteins isolated from the eggs of Carassius auratus (Ca-SGP) have been proved to exhibit the antioxidant effect. However, the effect of Ca-SGP on liver injury remains unclear. Thus, this study was aimed to determine the effect of Ca-SGP on CCL4-induced chronic chemical liver injury and explore the underlying molecular mechanism. Results showed that Ca-SGP mitigated the elevated levels of serum alanine aminotransferase and aspartate aminotransferase, inhibited the systemic oxidative stress, and reduced the levels of pro-inflammatory factors TNF-α and IL-1β. Histologic results showed that Ca-SGP supplements alleviated hepatocyte necrosis and liver macrophage infiltration. Further, Ca-SGP supplement decreased endoplasmic reticulum stress-related proteins expression, including BiP, IRE-α, p-IRE-α, and TRAF2, and further inhibited the trigger of the NF-κB pathway. In summary, Ca-SGP might be a novel agent for liver injury treatment, and its potential mechanism was related to the inhibition of liver inflammation induced by the endoplasmic reticulum. PRACTICAL APPLICATION: The fish egg is an important by-product in fish processing. Carassius auratus is a common freshwater fish with large catches and low prices. However, the eggs of C. auratus are usually direct discard or processed into salted roe products, and the quality and value of these salted products are unsatisfactory. In this current study, we confirmed that sialoglycoproteins isolated from the C. auratus eggs have the potential for the treatment of liver injury and determined that its mechanism is related to the endoplasmic reticulum and inflammation, which put forward a new idea for solving the by-product of fish processing.
Collapse
Affiliation(s)
- Hao Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ding Ning
- Malvern College Qingdao, Qingdao, China
| | - Weizhen Cai
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanchao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Zheng J, Wang H, Deng Z, Shan Y, Lü X, Zhao X. Structure and biological activities of glycoproteins and their metabolites in maintaining intestinal health. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34619993 DOI: 10.1080/10408398.2021.1987857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glycoproteins formed by covalent links between oligosaccharide and polypeptides are abundant in various food sources. They are less sensitivity to gastrointestinal enzymes, and hence many of them undergo fermentation in the colon by microorganisms. Therefore, the confer various health benefits on the intestinal ecosystem. However, the current understanding of the effect of glycoproteins on intestinal microorganisms and gut health is limited. This is probably due to their heterogeneous structures and complex metabolic programming patterns. The structure and biological activities of glycoproteins and their microbial metabolites were summarized in this review. The metabolic pathways activated by intestinal bacteria were then discussed in relation to their potential benefits on gut health. Food-derived glycoproteins and their metabolites improve gut health by regulating the intestinal bacteria and improving intestinal barrier function, thereby amplifying immune response. The data reviewed here show that food-derived glycoproteins are promising candidates for preventing various gastrointestinal diseases. Further studies should explore the interaction mechanisms between intestinal microorganisms and host metabolites.
Collapse
Affiliation(s)
- Jiaqi Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Haotian Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhanfei Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Xue Zhao
- Department of Nursing, Shandong College of Traditional Chinese Medicine, Yantai, PR China
| |
Collapse
|
11
|
Feng X, Jiang S, Zhang F, Wang R, Zhang T, Zhao Y, Zeng M. Extraction and characterization of matrix protein from pacific oyster ( Crassostrea gigs) shell and its anti-osteoporosis properties in vitro and in vivo. Food Funct 2021; 12:9066-9076. [PMID: 34387295 DOI: 10.1039/d1fo00010a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Matrix protein is a kind of secretory protein that regulates the biomineralization of the bivalve shell. In this study, a water-soluble matrix protein (WSMP) from Pacific oysters (Crassostrea gigs) shell was isolated, and its structure was analyzed in detail, in addition to its anti-osteoporosis activity in vitro and in vivo. Results showed that WSMP was an acidic protein with an apparent molecular mass of 47 and 79 kDa and contained a glycoprotein structure. In vitro, the reduction of Tartrate-resistant acid phosphatase (TRAP) and deoxypyridinoline (DPD) indicated that osteoclast activity was inhibited compared with the model group. Moreover, the increased osteocalcin (OCN) and BMD levels suggested that the high osteoblast activity and bone mineralization was improved. SEM analysis of the femur showed that there were fewer bone pits in experimental groups, which was consistent with the above results. In vivo, WSMP promoted the expression of alkaline phosphatase (ALP) and osteogenic differentiation factor BMP-2 in osteoblasts. In addition, the activity of osteoclasts was inhibited by regulating the process of osteoclast differentiation induced by RANKL. Both in vitro and in vivo studies showed that WSMP could promote osteogenesis and inhibit osteoclast absorption, thus demonstrating their potential applications in osteoporosis.
Collapse
Affiliation(s)
- Xue Feng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Suisui Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Runfang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Tietao Zhang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
12
|
Meng K, Mei F, Zhu L, Xiang Q, Quan Z, Pan F, Xia G, Shen X, Yun Y, Zhang C, Zhong Q, Chen H. Arecanut (Areca catechu L.) seed polyphenol improves osteoporosis via gut-serotonin mediated Wnt/β-catenin pathway in ovariectomized rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Transcriptome Analysis of Egg Yolk Sialoglycoprotein on Osteogenic Activity in MC3T3-E1 Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, the effects of egg yolk sialoglycoprotein (EYG) on osteogenesis in MC3T3-E1 cells were investigated and the DEGs (differentially expressed genes) were explored by transcriptome analysis. The results found that EYG effectively increased cell proliferation, enhanced ALP activity, promoted the secretion of extracellular matrix protein COL-I and OCN, enhanced bone mineralization activity, exhibiting good osteogenic activity. Further study of the mechanism was explored through transcriptome analysis. Transcriptome analysis showed that 123 DEGs were triggered by EYG, of which 78 genes were downregulated and 45 genes were upregulated. GO (gene ontology) analysis showed that EYG mainly caused differences in gene expression of biological processes and cell composition categories in the top 30 most enriched items. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that EYG inhibited inflammatory factors and downregulated inflammation-related pathways. The results also showed EYG regulated such genes as COL2A1, COL4A1 and COL4A2 to up-regulate pathways including ECM–receptor interaction, focal adhesion and protein digestion and absorption, enhancing the proliferation and differentiation of osteoblasts. Gene expression of COL-I, Runx2, BMP2 and β-catenin was determined by qRT-PCR for verification, which found that EYG significantly increased COL-I, Runx2, BMP2 and β-catenin gene expression, suggesting that BMP-2 mediated osteogenesis pathway was activated.
Collapse
|
14
|
Tang BM, Li ZW, Wang ZY. PERK activator CCT020312 prevents inflammation-mediated osteoporosis in the ovariectomized rats. Gynecol Endocrinol 2021; 37:342-348. [PMID: 33480297 DOI: 10.1080/09513590.2021.1874904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the therapeutic effects of PERK activator CCT020312 (CCT) on inflammation-mediated osteoporosis (IMO) in ovariectomized rats. METHODS Rats were divided into Sham, IMO, IMO + 1 mg/kg CCT and IMO + 2 mg/kg CCT groups. IMO models were constructed by bilateral ovariectomy (OVX) on 1st day followed by injection with magnesium silicate (Talc) on the 59th day. Sham rats did not undergo OVX surgery and were injected with saline instead of Talc. From 60th to 79th day, rats were treated with DMSO (vehicle control) in the Sham and IMO groups, and 1 or 2 mg/kg CCT020312 in treatment groups. Osteopontin (OPN), osteocalcin (OCN), tartrate-resistant acid phosphatase (TRAP), C-terminal telopeptide of type I collagen (CTX-I), and pro-inflammatory factors were measured on the 80th day. ProdigyDEXA was used to evaluate bone mineral density and content (BMD/BMC). Bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number (Tb.N), and trabecular separation (Tb.Sp) was assessed using 3D micro-CT scanner. RESULTS CCT up-regulated Conn.D, BV/TV, and Tb.N, but down-regulated Tb.Sp in IMO rats. Besides, the declined femoral BMD and BMC in IMO rats were elevated after CCT treatment. Besides, IMO rats represented declined OPN and OCN, as well as increased TRAP, CTX-I, and pro-inflammatory factors, whereas those in the treatment groups were ameliorated regarding these indexes, with 2 mg/kg CCT showing better effect. CONCLUSION PERK activator CCT020312 can be served as a new therapeutic option for the protection against bone loss in the OVX rat model associated with inflammation probably by manipulating inflammatory factors.
Collapse
Affiliation(s)
- Bao-Ming Tang
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhao-Wei Li
- Department of Orthopedics, Affiliated Hospital of Qinghai University, Xining, China
| | - Zhuo-Ya Wang
- Department of Geriatrics, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
15
|
Structural elucidation of N-glycans and bioactivity of sialoglycoprotein from crucian carp eggs structure and bioactivity of crucian egg SGP. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Abstract
PURPOSE OF REVIEW Summarize the in vivo evidences on the association between nutrition and osteoporosis fracture healing. RECENT FINDINGS Osteoporotic fractures constitute a considerable public health burden. The healing capacity of fractures is influenced by local factors related to the fracture and by general factors (e.g., age, sex, osteoporosis, muscular mass, smoking, alcohol, drugs, and diet). The systematic review was conducted according to PRISMA statement. From the literature search on PubMed and Web of Science, from January 2016 to October 2019, twelve studies were selected and resulted highly variable in samples, exposure, methods, outcomes, and outcome assessment. Eleven studies were conducted on laboratory animals. Only one study aimed to investigate the impact of nutritional status on fracture healing in osteoporotic patients. In this review, the role of calcium/vitamin D supplementation remained controversial, while sialoglycoprotein supplementation, phytoestrogen-rich herb extract, flavonoids, and phosphorylated peptides showed a positive effect on osteoporotic fracture healing.
Collapse
Affiliation(s)
- Manuela Chiavarini
- Department of Experimental Medicine, Section of Public Heath, University of Perugia, Perugia, Italy
| | - Giulia Naldini
- School of Specialization in Hygiene and Preventive Medicine, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
17
|
Zhan Q, Tian Y, Han L, Wang K, Wang J, Xue C. The opposite effects of Antarctic krill oil and arachidonic acid-rich oil on bone resorption in ovariectomized mice. Food Funct 2020; 11:7048-7060. [DOI: 10.1039/d0fo00884b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The opposite effects and mechanism of AKO and AAO in the regulation of bone resorption in postmenopausal osteoporosis were systematically investigated to support the recommendations on fatty acid types in dietary oils for people with osteoporosis.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- College of Food Science and Engineering
| | - Yingying Tian
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
- Marine Biomedical Research Institute of Qingdao
| | - Lihua Han
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Kai Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Jingfeng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- China
| |
Collapse
|
18
|
Hei Z, Zhao M, Tian Y, Chang H, Shen X, Xia G, Wang J. Isolation and Characterization of a Novel Sialoglycopeptide Promoting Osteogenesis from Gadus morhua Eggs. Molecules 2019; 25:molecules25010156. [PMID: 31906039 PMCID: PMC6983019 DOI: 10.3390/molecules25010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Gadus morhua eggs contain several nutrients, including polyunsaturated fatty acids, lecithin and glycoproteins. A novel sialoglycopeptide from the eggs of G. morhua (Gm-SGPP) was extracted with 90% phenol and purified by Q Sepharose Fast Flow (QFF) ion exchange chromatography, followed by S-300 gel filtration chromatography. Gm-SGPP contained 63.7% carbohydrate, 16.2% protein and 18.6% N-acetylneuraminic acid. High-performance size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that Gm-SGPP is a 7000-Da pure sialoglycopeptide. β-elimination reaction suggested that Gm-SGPP contained N-glycan units. Amino acid N-terminal sequence analysis indicated the presence of Ala-Ser-Asn-Gly-Thr-Gln-Ala-Pro amino acid sequence. Moreover, N-glycan was connected at the third Asn location of the peptide chain through GlcNAc. Gm-SGPP was composed of D-mannose, D-glucuronic acid and D-galactose. Fourier transform-infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance spectroscopy (1H-NMR) and methylation analysis were performed to reveal the structure profile of Gm-SGPP. In vitro results showed that the proliferation activity of MC3T3-E1 cells was significantly promoted by Gm-SGPP. In vivo data revealed that Gm-SGPP increased the calcium and phosphorus content of tibias and promoted longitudinal bone growth in adolescent rats.
Collapse
Affiliation(s)
- Zhiliang Hei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Hong Chang
- Hainan Institute for Food Control, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Correspondence: (G.X.); (J.W.); Tel.: +86-0898-6619-6803 (G.X.); +86-0532-8203-1948 (J.W.); Fax: +86-0532-8203-2468 (G.X.); +86-0898-6619-6803 (J.W.)
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (G.X.); (J.W.); Tel.: +86-0898-6619-6803 (G.X.); +86-0532-8203-1948 (J.W.); Fax: +86-0532-8203-2468 (G.X.); +86-0898-6619-6803 (J.W.)
| |
Collapse
|
19
|
Han L, Mao X, Wang K, Li Y, Zhao M, Wang J, Xue C. Phosphorylated peptides from Antarctic krill (Euphausia superba) ameliorated osteoporosis by activation of osteogenesis-related MAPKs and PI3K/AKT/GSK-3β pathways in dexamethasone-treated mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
20
|
Wang K, Han L, Wang N, Wang Y, Wang J. Sialoglycoprotein from Gadous morhua eggs improve high bone turnover activity via down-regulating BMP-2/Smads and Wnt/β-catenin signal pathways. Food Sci Biotechnol 2018; 27:1455-1465. [PMID: 30319856 DOI: 10.1007/s10068-018-0379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022] Open
Abstract
Abstract The effect of sialoglycoprotein isolated from Gadous morhua eggs (Gm-SGP) on ovariectomized (OVX) induced osteoporosis, which is characterized by high bone turnover activity was investigated. Results revealed that Gm-SGP significantly increased bone mineral density, enhanced bone biomechanical properties and repaired the microstructure of the trabecular bone. Also, the treatment with Gm-SGP remarkably decreased biochemical marker contents or activities, such as serum BALP, PICP, BMP-2, TrACP, Cath-K, urine Ca and P, leading to the reduction in bone turnover. The elevation in the rate of bone formative process contributed in the increase of bone turnover. Both BMP-2/Smads and Wnt/β-catenin signaling pathways played an important role in osteogenesis. Gm-SGP suppressed the key factors expression in these two pathways such as BMP-2, Smad1, Smad4, Lrp-5b, Runx2, Osx, ALP, Col1, OCN and β-catenin. These findings might provide some theoretical basis for the application of Gm-SGP as a potential anti-osteoporotic drug or as functional food. Graphical Abstract
Collapse
Affiliation(s)
- Kai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Lihua Han
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Na Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Yiming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 Shandong Province China
| |
Collapse
|
21
|
Wang F, Han L, Wang X, Li Y, Zhu Y, Wang J, Xue C. Sialoglycoprotein isolated from eggs of Carassius auratus promotes fracture healing in osteoporotic mice. J Food Drug Anal 2018; 26:716-724. [PMID: 29567242 PMCID: PMC9322214 DOI: 10.1016/j.jfda.2017.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023] Open
Abstract
In this study, open tibial fracture surgery was performed on mice with ovariectomy induced osteoporosis to investigate the effect of a treatment with sialoglycoprotein isolated from Carassius auratus eggs (Ca-SGP) on fracture healing. Dynamic histological analysis showed that Ca-SGP promoted the generation of cartilage callus on day 5 post-surgery, then facilitated the transformation of the cartilage callus to bony callus on days 11 and 24 post-surgery, and enhanced the remodeling of bony callus on 35 day post-surgery. Moreover, Ca-SGP significantly decreased the secretion of TNF-α and IL-1β in serum on day 5 post-surgery, thus inhibiting the negative spread of the inflammatory reaction. On day 11 post-surgery, Ca-SGP clearly decreased the serum level and the mRNA expression of Aggrecan but also increased the secretion and the expression of VEGF and MMP13, thus promoting the degradation of the cartilage matrix and vascular invasion. On day 24 post-surgery, Ca-SGP remarkably increased the mRNA expression of osteogenesis markers Col1a and OCN, and increased callus BV/TV and Tb.N, this facilitating the formation of woven bone. On day 35 post-surgery, Ca-SGP enhanced the transformation of woven bone into lamellar bone and improved the callus biomechanical property. In conclusion, Ca-SGP promoted fracture healing in osteoporotic mice by accelerating endochondral ossification.
Collapse
|
22
|
Zhan Q, Gui X, Wang F, Yu P, Zhao M, Wang J, Xue C. Sialoglycoprotein isolated from the eggs of Gadus morhua enhances fracture healing in osteoporotic mice. Food Funct 2017; 8:1094-1104. [PMID: 28164198 DOI: 10.1039/c6fo01346e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteoporosis is a common disease in the elderly, which is related to fracture healing delay. In this study, the effects of treatment with sialoglycoprotein isolated from the eggs of Gadus morhua (Gm-SGP) on tibial fracture healing in ovariectomized (OVX) osteoporotic female C57BL/6J mice for 56 days post-fracture were investigated. The result showed that Gm-SGP treatment significantly increased serum angiogenic factors and bone formation markers on day 5 and 11 post-fracture when compared with the OVX group. In addition, histological results in the Gm-SGP group showed a stronger endochondral ossification, a stronger bony consolidation and a stronger bony callus remodeling capability on day 11, 24 and 35 post-fracture, respectively, in comparison with the OVX group. Meanwhile, micro-computerized tomography revealed that the Gm-SGP group had stronger bony callus remodeling capability as evidenced by higher BV/TV and Tb.N but lower Tb.Sp and shorter lengths of callus maximum cross section than the OVX group on day 24 post-fracture. Besides, the tibial callus bending stiffness was significantly enhanced in the Gm-SGP group as compared with the OVX group on day 56 post-fracture. Moreover, gene expression suggested that Gm-SGP promoted vascular invasion and endochondral ossification on day 11 post-fracture as well as bone formation on day 11 and 24 post-fracture via up-regulating the expression of angiogenesis factors (including VEGF, PDGF and Ang1), entochondrostosis factors (including Col2a1, Aggrecan, Col10a1 and MMP-13) and osteogenesis markers (including Col1a1, BMP-2 and OCN). This research suggests that Gm-SGP significantly improve fracture healing which is delayed by OVX-induced osteoporosis. The present study may contribute to providing important implications for the utilization of Gm-SGP from fish eggs as a functional food to enhance fracture healing.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Xiong Gui
- School of Basic Medicine, Faculty of Medicine, Guangxi University of Science and Technology, Liuzhou, China
| | - Fei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Peng Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Meihui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|