1
|
Chavarria D, Georges KA, O’Grady BJ, Hassan KK, Lippmann ES. Modular cone-and-plate device for mechanofluidic assays in Transwell inserts. Front Bioeng Biotechnol 2025; 13:1494553. [PMID: 39931136 PMCID: PMC11807968 DOI: 10.3389/fbioe.2025.1494553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
In this work, we present a cost effective and open-source modular cone-and-plate (MoCAP) device that incorporates shear stress in the popular Transwell® insert system. This system acts as a lid that incorporates flow into 24-well Transwell® inserts while preserving the ability to conduct molecular profiling assays. Moreover, the MoCAP device can be rapidly reconfigured to test multiple shear stress profiles within a single device. To demonstrate the utility of the MoCAP, we conducted select assays on several different brain microvascular endothelial cell (BMEC) lines that comprise models of the blood-brain barrier (BBB), since shear stress can play an important role in BBB function. Our results characterize how shear stress modulates passive barrier function and GLUT1 expression across the different BMEC lines. Overall, we anticipate this low cost mechanofluidic device will be useful to the mechanobiology community.
Collapse
Affiliation(s)
- Daniel Chavarria
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Kissamy A. Georges
- Department of Bioengineering, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Brian J. O’Grady
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | - Khalid K. Hassan
- School for Science and Math at Vanderbilt, Vanderbilt University, Nashville, TN, United States
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Huang SY, Yu TS, Lin JH, Liu WH, Chung CA, Cheng YC. Stable laminar shear stress induces G1 cell cycle arrest and autophagy in urothelial carcinoma by a torque sensor-coupled cone-and-plate device. Eur J Cell Biol 2024; 103:151451. [PMID: 39217678 DOI: 10.1016/j.ejcb.2024.151451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The microenvironments of urinary systems play crucial roles in the development and metastasis of cancers due to their generation of complex temporal and spatial fluidic profiles. Because of their versatility in creating desired biomimetic flow, cone-and-plate bioreactors offer great potential for bladder cancer research. In this study, we construct a biocompatible cone-and-plate device coupled with a torque sensor, enabling the application and real-time monitoring of stable shear stress up to 50 dyne/cm². Under a stable shear stress stimulation at 12 dyne/cm2, bladder cancer cell BFTC-905 is arrested at the G1 phase with decreased cell proliferation after 24-hour treatment. This effect is associated with increased cyclin-dependent kinase inhibitors p21 and p27, inhibiting cyclin D1/CDK4 complex with dephosphorylation of serine 608 on the retinoblastoma protein. Consequently, an increase in cyclin D3 and decreases in cyclin A2 and cyclin E2 are observed. Moreover, we demonstrate that the shear stress stimulation upregulates the expression of autophagy-related proteins Beclin-1, LC3B-I and LC3B-II, while caspase cleavages are not activated under the same condition. The design of this system and its application shed new light on flow-induced phenomena in the study of urothelial carcinomas.
Collapse
Affiliation(s)
- Sheng-Yuan Huang
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, New Taipei City, Taiwan
| | - Tien-Ssu Yu
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan; Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Wei-Hung Liu
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Chih-Ang Chung
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan.
| | - Yu-Che Cheng
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, New Taipei City, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
3
|
Liang L, Song X, Zhao H, Lim CT. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng 2024; 8:021506. [PMID: 38841688 PMCID: PMC11151435 DOI: 10.1063/5.0195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.
Collapse
Affiliation(s)
- Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiao Song
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
4
|
Chavarria D, Abbaspour A, Celestino N, Shah N, Sankar S, Baker AB. A high throughput blood-brain barrier model incorporating shear stress with improved predictive power for drug discovery. BIOMICROFLUIDICS 2023; 17:044105. [PMID: 37614679 PMCID: PMC10444201 DOI: 10.1063/5.0150887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
The blood-brain barrier is a key structure regulating the health of the brain and access of drugs and pathogens to neural tissue. Shear stress is a key regulator of the blood-brain barrier; however, the commonly used multi-well vitro models of the blood-brain barrier do not incorporate shear stress. In this work, we designed and validated a high-throughput system for simulating the blood-brain barrier that incorporates physiological flow and incorporates an optimized cellular model of the blood-brain barrier. This system can perform assays of blood-brain barrier function with shear stress, with 48 independent assays simultaneously. Using the high throughput assay, we conducted drug screening assays to explore the effects of compounds for opening or closing blood-brain barrier. Our studies revealed that assays with shear stress were more predictive and were able to identify compounds known to modify the blood-brain barrier function while static assays were not. Overall, we demonstrate an optimized, high throughput assay for simulating the blood-brain barrier that incorporates shear stress and is practical for use in drug screening and other high throughput studies of toxicology.
Collapse
Affiliation(s)
- Daniel Chavarria
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ali Abbaspour
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Natalie Celestino
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Nehali Shah
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | | | - Aaron B. Baker
- Author to whom correspondence should be addressed:. Tel.:+512-232-7114
| |
Collapse
|
5
|
Choi B, Choi JW, Jin H, Sim HR, Park JH, Park TE, Kang JH. Condensed ECM-based nanofilms on highly permeable PET membranes for robust cell-to-cell communications with improved optical clarity. Biofabrication 2021; 13. [PMID: 34479224 DOI: 10.1088/1758-5090/ac23ad] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
The properties of a semipermeable porous membrane, including pore size, pore density, and thickness, play a crucial role in creating a tissue interface in a microphysiological system (MPS) because it dictates multicellular interactions between different compartments. The small pore-sized membrane has been preferentially used in an MPS for stable cell adhesion and the formation of tissue barriers on the membrane. However, it limited the applicability of the MPS because of the hindered cell transmigration via sparse through-holes and the optical translucence caused by light scattering through pores. Thus, there remain unmet challenges to construct a compartmentalized MPS without those drawbacks. Here we report a submicrometer-thickness (∼500 nm) fibrous extracellular matrix (ECM) film selectively condensed on a large pore-sized track-etched (TE) membrane (10µm-pores) in an MPS device, which enables the generation of functional tissue barriers simultaneously achieving optical transparency, intercellular interactions, and transmigration of cells across the membrane. The condensed ECM fibers uniformly covering the surface and 10µm-pores of the TE membrane permitted sufficient surface areas where a monolayer of the human induced pluripotent stem cell-derived brain endothelial cells is formed in the MPS device. The functional maturation of the blood-brain barrier (BBB) was proficiently achieved due to astrocytic endfeet sheathing the brain endothelial cells through 10µm pores of the condensed-ECM-coated TE (cECMTE) membrane. We also demonstrated the extravasation of human metastatic breast tumor cells through the human BBB on the cECMTE membrane. Thus, the cECMTE membrane integrated with an MPS can be used as a versatile platform for studying various intercellular communications and migration, mimicking the physiological barriers of an organ compartment.
Collapse
Affiliation(s)
- Brian Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyungwon Jin
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hye-Rim Sim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jung-Hoon Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Spencer A, Sligar AD, Chavarria D, Lee J, Choksi D, Patil NP, Lee H, Veith AP, Riley WJ, Desai S, Abbaspour A, Singeetham R, Baker AB. Biomechanical regulation of breast cancer metastasis and progression. Sci Rep 2021; 11:9838. [PMID: 33972619 PMCID: PMC8110548 DOI: 10.1038/s41598-021-89288-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 01/20/2023] Open
Abstract
Physical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.
Collapse
Affiliation(s)
- Adrianne Spencer
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Daniel Chavarria
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Jason Lee
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Darshil Choksi
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Nikita P Patil
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - HooWon Lee
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Austin P Veith
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - William J Riley
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Shubh Desai
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Ali Abbaspour
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Rohan Singeetham
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
7
|
Puleri DF, Balogh P, Randles A. Computational models of cancer cell transport through the microcirculation. Biomech Model Mechanobiol 2021; 20:1209-1230. [PMID: 33765196 DOI: 10.1007/s10237-021-01452-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
The transport of cancerous cells through the microcirculation during metastatic spread encompasses several interdependent steps that are not fully understood. Computational models which resolve the cellular-scale dynamics of complex microcirculatory flows offer considerable potential to yield needed insights into the spread of cancer as a result of the level of detail that can be captured. In recent years, in silico methods have been developed that can accurately and efficiently model the circulatory flows of cancer and other biological cells. These computational methods are capable of resolving detailed fluid flow fields which transport cells through tortuous physiological geometries, as well as the deformation and interactions between cells, cell-to-endothelium interactions, and tumor cell aggregates, all of which play important roles in metastatic spread. Such models can provide a powerful complement to experimental works, and a promising approach to recapitulating the endogenous setting while maintaining control over parameters such as shear rate, cell deformability, and the strength of adhesive binding to better understand tumor cell transport. In this review, we present an overview of computational models that have been developed for modeling cancer cells in the microcirculation, including insights they have provided into cell transport phenomena.
Collapse
Affiliation(s)
- Daniel F Puleri
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Peter Balogh
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Priyadarshani J, Roy T, Das S, Chakraborty S. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology. ACS Biomater Sci Eng 2021; 7:1263-1277. [PMID: 33555875 DOI: 10.1021/acsbiomaterials.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several disease conditions, such as cancer metastasis and atherosclerosis, are deeply connected with the complex biophysical phenomena taking place in the complicated architecture of the tiny blood vessels in human circulatory systems. Traditionally, these diseases have been probed by devising various animal models, which are otherwise constrained by ethical considerations as well as limited predictive capabilities. Development of an engineered network-on-a-chip, which replicates not only the functional aspects of the blood-carrying microvessels of human bodies, but also its geometrical complexity and hierarchical microstructure, is therefore central to the evaluation of organ-assist devices and disease models for therapeutic assessment. Overcoming the constraints of reported resource-intensive fabrication techniques, here, we report a facile, simple yet niche combination of surface engineering and microfabrication strategy to devise a highly ordered hierarchical microtubular network embedded within a polydimethylsiloxane (PDMS) slab for dynamic cell culture on a chip, with a vision of addressing the exclusive aspects of the vascular transport processes under medically relevant paradigms. The design consists of hierarchical complexity ranging from capillaries (∼80 μm) to large arteries (∼390 μm) and a simultaneous tuning of the interfacial material chemistry. The fluid flow behavior is characterized numerically within the hierarchical network, and a confluent endothelial layer is realized on the inner wall of microfluidic device. We further explore the efficacy of the device as a vascular deposition assay of circulatory tumor cells (MG-63 osteosarcoma cells) present in whole blood. The proposed paradigm of mimicking an in vitro vascular network in a low-cost paradigm holds further potential for probing cellular dynamics as well as offering critical insights into various vascular transport processes.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Trina Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
9
|
Cheng X, Cheng K. Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Rev 2021; 40:71-88. [PMID: 33156478 PMCID: PMC7897269 DOI: 10.1007/s10555-020-09942-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Metastasis is a multistep process that accounts for the majority of cancer-related death. By the end of metastasize dissemination, circulating tumor cells (CTC) need to extravasate the blood vessels at metastatic sites to form new colonization. Although cancer cell extravasation is a crucial step in cancer metastasis, it has not been successfully targeted by current anti-metastasis strategies due to the lack of a thorough understanding of the molecular mechanisms that regulate this process. This review focuses on recent progress in cancer extravasation visualization techniques, including the development of both in vitro and in vivo cancer extravasation models, that shed light on the underlying mechanisms. Specifically, multiple cancer extravasation stages, such as the adhesion to the endothelium and transendothelial migration, are successfully probed using these technologies. Moreover, the roles of different cell adhesive molecules, chemokines, and growth factors, as well as the mechanical factors in these stages are well illustrated. Deeper understandings of cancer extravasation mechanisms offer us new opportunities to escalate the discovery of anti-extravasation drugs and therapies and improve the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA.
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
10
|
Dos Santos Á, Fili N, Pearson DS, Hari-Gupta Y, Toseland CP. High-throughput mechanobiology: Force modulation of ensemble biochemical and cell-based assays. Biophys J 2021; 120:631-641. [PMID: 33453266 PMCID: PMC7896026 DOI: 10.1016/j.bpj.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022] Open
Abstract
Mechanobiology is focused on how the physical forces and mechanical properties of proteins, cells, and tissues contribute to physiology and disease. Although the response of proteins and cells to mechanical stimuli is critical for function, the tools to probe these activities are typically restricted to single-molecule manipulations. Here, we have developed a novel microplate reader assay to encompass mechanical measurements with ensemble biochemical and cellular assays, using a microplate lid modified with magnets. This configuration enables multiple static magnetic tweezers to function simultaneously across the microplate, thereby greatly increasing throughput. We demonstrate the broad applicability and versatility through in vitro and in cellulo approaches. Overall, our methodology allows, for the first time (to our knowledge), ensemble biochemical and cell-based assays to be performed under force in high-throughput format. This approach substantially increases the availability of mechanobiology measurements.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Fili
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - David S Pearson
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Christopher P Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
11
|
Xu X, Jiang Z, Wang J, Ren Y, Wu A. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. Electrophoresis 2020; 41:933-951. [PMID: 32144938 DOI: 10.1002/elps.201900402] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/02/2023]
Abstract
The prognosis of malignant tumors is challenged by insufficient means to effectively detect tumors at early stage. Liquid biopsy using circulating tumor cells (CTCs) as biomarkers demonstrates a promising solution to tackle the challenge, because CTCs play a critical role in cancer metastatic process via intravasation, circulation, extravasation, and formation of secondary tumor. However, the effectiveness of the solution is compromised by rarity, heterogeneity, and vulnerability associated with CTCs. Among a plethora of novel approaches for CTC isolation and enrichment, microfluidics leads to isolation and detection of CTCs in a cost-effective and operation-friendly way. Development of microfluidics also makes it feasible to model the cancer metastasis in vitro using a microfluidic system to mimick the in vivo microenvironment, thereby enabling analysis and monitor of tumor metastasis. This paper aims to review the latest advances for exploring the dual-roles microfluidics has played in early cancer diagnosis via CTC isolation and investigating the role of CTCs in cancer metastasis; the merits and drawbacks for dominating microfluidics-based CTC isolation methods are discussed; biomimicking cancer metastasis using microfluidics are presented with example applications on modelling of tumor microenvironment, tumor cell dissemination, tumor migration, and tumor angiogenesis. The future perspectives and challenges are discussed.
Collapse
Affiliation(s)
- Xiawei Xu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China.,Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Yong Ren
- Research Group for Fluids and Thermal Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China.,Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R. China
| |
Collapse
|
12
|
Lin Z, Luo G, Du W, Kong T, Liu C, Liu Z. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903899. [PMID: 31747120 DOI: 10.1002/smll.201903899] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Indexed: 05/03/2023]
Abstract
Cancer remains the leading cause of death worldwide despite the enormous efforts that are made in the development of cancer biology and anticancer therapeutic treatment. Furthermore, recent studies in oncology have focused on the complex cancer metastatic process as metastatic disease contributes to more than 90% of tumor-related death. In the metastatic process, isolation and analysis of circulating tumor cells (CTCs) play a vital role in diagnosis and prognosis of cancer patients at an early stage. To obtain relevant information on cancer metastasis and progression from CTCs, reliable approaches are required for CTC detection and isolation. Additionally, experimental platforms mimicking the tumor microenvironment in vitro give a better understanding of the metastatic microenvironment and antimetastatic drugs' screening. With the advancement of microfabrication and rapid prototyping, microfluidic techniques are now increasingly being exploited to study cancer metastasis as they allow precise control of fluids in small volume and rapid sample processing at relatively low cost and with high sensitivity. Recent advancements in microfluidic platforms utilized in various methods for CTCs' isolation and tumor models recapitulating the metastatic microenvironment (tumor-on-a-chip) are comprehensively reviewed. Future perspectives on microfluidics for cancer metastasis are proposed.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guanyi Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Weixiang Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
13
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
14
|
Veith A, Conway D, Mei L, Eskin SG, McIntire LV, Baker AB. Effects of Mechanical Forces on Cells and Tissues. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Nikshoar MS, Khosravi S, Jahangiri M, Zandi A, Miripour ZS, Bonakdar S, Abdolahad M. Distinguishment of populated metastatic cancer cells from primary ones based on their invasion to endothelial barrier by biosensor arrays fabricated on nanoroughened poly(methyl methacrylate). Biosens Bioelectron 2018; 118:51-57. [DOI: 10.1016/j.bios.2018.07.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
|
16
|
Owens CE, Hart AJ. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. LAB ON A CHIP 2018; 18:890-901. [PMID: 29372201 DOI: 10.1039/c7lc00951h] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Wider use and adaptation of microfluidics is hindered by the infrastructure, knowledge, and time required to build prototype systems, especially when multiple fluid operations and measurements are required. As a result, 3D printing of microfluidics is attracting interest, yet cannot readily achieve the feature size, smoothness, and optical transparency needed for many standard microfluidic systems. Herein we present a new approach to the design and construction of high-precision modular microfluidics, using standard injection-molded blocks that are modified using micromilling and assembled via elastically averaged contacts. Desktop micromilling achieves channel dimensions as small as 50 μm depth and 150 μm width and adhesive films seal channels to allow internal fluid pressure of >400 kPa. Elastically averaged connections between bricks result in a mechanical locating repeatability of ∼1 μm, enabling fluid to pass between bricks via an O-ring seal with >99.9% reliability. We demonstrated and tested block-based systems for generating droplets at rates above 9000 min-1 and COV <3%, and integrated optical sensors. We also show how blocks can be used to build easily reconfigurable interfaces with glass microfluidic devices and imaging hardware. Microfluidic bricks fabricated by FDM and SLA 3D printing cannot achieve the dimensional quality of molded bricks, yet 3D printing allows customized bricks to be integrated with standard LEGOs. Our approach enables a wide variety of modular microfluidic units to be built using a widely available, cost-effective platform, encouraging use in both research and education.
Collapse
Affiliation(s)
- Crystal E Owens
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
17
|
Benyettou F, Alhashimi M, O'Connor M, Pasricha R, Brandel J, Traboulsi H, Mazher J, Olsen JC, Trabolsi A. Sequential Delivery of Doxorubicin and Zoledronic Acid to Breast Cancer Cells by CB[7]-Modified Iron Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40006-40016. [PMID: 29035507 DOI: 10.1021/acsami.7b11423] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Drug-loaded magnetic nanoparticles were synthesized and used for the sequential delivery of the antiresorptive agent zoledronic acid (Zol) and the cytotoxic drug doxorubicin (Dox) to breast cancer cells (MCF-7). Zol was attached to bare iron oxide nanoparticles (IONPs) via phosphonate coordination to form Z-NPs. The unbound imidazole of Zol was then used to complex the organic macrocycle CB[7] to obtain CZ-NPs. Dox was complexed to the CZ-NPs to form the fully loaded particles (DCZ-NPs), which were stable in solution at 37 °C and physiological pH (7.4). Fluorescence spectroscopy established that Dox is released in solution from DCZ-NPs suddenly (i) when the particles are subjected to magnetically induced heating to 42 °C at low pH (5.0) and (ii) in the presence of glutathione (GSH). Mass spectrometry indicated that Zol is released slowly in solution at low pH after Dox release. Magnetic measurements with a magnetic reader revealed that DCZ-NPs are internalized preferentially by MCF-7 cells versus nonmalignant cells (HEK293). Zol and Dox acted synergistically when delivered by the particles. DCZ-NPs caused a decrease in the viability of MCF-7 cells that was greater than the net decrease caused when the drugs were added to the cells individually at concentrations equivalent to those delivered by the particles. MCF-7 cells were treated with DCZ-NPs and subjected to an alternating magnetic field (AMF) which, with the nanoparticles present, raised the temperature of the cells and triggered the intracellular release of Dox, as indicated by fluorescence activated cell sorting (FACS). The cytotoxic effects of the DCZ-NPs on MCF-7 cells were enhanced 10-fold by AMF-induced heating. DCZ-NPs were also able to completely inhibit MCF-7 cell adhesion and invasion in vitro, indicating the potential of the particles to act as antimetastatic agents. Together these results demonstrate that DCZ-NPs warrant development as a system for combined chemo- and thermo-therapeutic treatment of cancer.
Collapse
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Marwa Alhashimi
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Matthew O'Connor
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jeremy Brandel
- Equipe Reconnaissance et Procédés de Séparation Moléculaire, Université de Strasbourg , 67037 Strasbourg, France
| | - Hassan Traboulsi
- Chemistry Department, College of Sciences, King Faisal University-Al Ahsa , Hofuf 31982, Kingdom of Saudi Arabia
| | - Javed Mazher
- Physics Department, College of Sciences, King Faisal University-Al Ahsa , Hofuf 31982, Kingdom of Saudi Arabia
| | - John-Carl Olsen
- Department of Chemistry, University of Rochester RC 27021 , Rochester, New York 14607-0216, United States
| | - Ali Trabolsi
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Henderson K, Sligar AD, Le VP, Lee J, Baker AB. Biomechanical Regulation of Mesenchymal Stem Cells for Cardiovascular Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28945009 DOI: 10.1002/adhm.201700556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/22/2017] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are an appealing potential therapy for vascular diseases; however, many challenges remain in their clinical translation. While the use of biochemical, pharmacological, and substrate-mediated treatments to condition MSCs has been subjected to intense investigation, there has been far less exploration of using these treatments in combination with applied mechanical force for conditioning MSCs toward vascular phenotypes. This review summarizes the current understanding of the use of applied mechanical forces to differentiate MSCs into vascular cells and enhance their therapeutic potential for cardiovascular disease. First recent work on the use of material-based mechanical cues for differentiation of MSCs into vascular and cardiovascular phenotypes is examined. Then a summary of the studies using mechanical stretch or shear stress in combination with biochemical treatments to enhance vascular phenotypes in MSCs is presented.
Collapse
Affiliation(s)
- Kayla Henderson
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Andrew D. Sligar
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Victoria P. Le
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Jason Lee
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
| | - Aaron B. Baker
- Department of Biomedical Engineering; University of Texas at Austin; Austin 78712 TX USA
- Institute for Cellular and Molecular Biology; University of Texas at Austin; Austin 78712 TX USA
- The Institute for Computational Engineering and Sciences; University of Texas at Austin; Austin 78712 TX USA
- Institute for Biomaterials; Drug Delivery and Regenerative Medicine; University of Texas at Austin; Austin 78712 TX USA
| |
Collapse
|
19
|
Barata D, Spennati G, Correia C, Ribeiro N, Harink B, van Blitterswijk C, Habibovic P, van Rijt S. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology. Biomed Microdevices 2017; 19:81. [PMID: 28884359 PMCID: PMC5589786 DOI: 10.1007/s10544-017-0222-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microfluidics, the science of engineering fluid streams at the micrometer scale, offers unique tools for creating and controlling gradients of soluble compounds. Gradient generation can be used to recreate complex physiological microenvironments, but is also useful for screening purposes. For example, in a single experiment, adherent cells can be exposed to a range of concentrations of the compound of interest, enabling high-content analysis of cell behaviour and enhancing throughput. In this study, we present the development of a microfluidic screening platform where, by means of diffusion, gradients of soluble compounds can be generated and sustained. This platform enables the culture of adherent cells under shear stress-free conditions, and their exposure to a soluble compound in a concentration gradient-wise manner. The platform consists of five serial cell culture chambers, all coupled to two lateral fluid supply channels that are used for gradient generation through a source-sink mechanism. Furthermore, an additional inlet and outlet are used for cell seeding inside the chambers. Finite element modeling was used for the optimization of the design of the platform and for validation of the dynamics of gradient generation. Then, as a proof-of-concept, human osteosarcoma MG-63 cells were cultured inside the platform and exposed to a gradient of Cytochalasin D, an actin polymerization inhibitor. This set-up allowed us to analyze cell morphological changes over time, including cell area and eccentricity measurements, as a function of Cytochalasin D concentration by using fluorescence image-based cytometry.
Collapse
Affiliation(s)
- David Barata
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Giulia Spennati
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Cristina Correia
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Nelson Ribeiro
- Instituto de Engenharia Mecânica, Laboratório Associado de Energia, Transportes e Aeronáutica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Björn Harink
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Portillo-Lara R, Annabi N. Microengineered cancer-on-a-chip platforms to study the metastatic microenvironment. LAB ON A CHIP 2016; 16:4063-4081. [PMID: 27605305 DOI: 10.1039/c6lc00718j] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
More than 90% of cancer-related deaths can be attributed to the occurrence of metastatic diseases. Recent studies have highlighted the importance of the multicellular, biochemical and biophysical stimuli from the tumor microenvironment during carcinogenesis, treatment failure, and metastasis. Therefore, there is a need for experimental platforms that are able to recapitulate the complex pathophysiological features of the metastatic microenvironment. Recent advancements in biomaterials, microfluidics, and tissue engineering have led to the development of living multicellular microculture systems, which are maintained in controllable microenvironments and function with organ level complexity. The applications of these "on-chip" technologies for detection, separation, characterization and three dimensional (3D) propagation of cancer cells have been extensively reviewed in previous works. In this contribution, we focus on integrative microengineered platforms that allow the study of multiple aspects of the metastatic microenvironment, including the physicochemical cues from the tumor associated stroma, the heterocellular interactions that drive trans-endothelial migration and angiogenesis, the environmental stresses that metastatic cancer cells encounter during migration, and the physicochemical gradients that direct cell motility and invasion. We discuss the application of these systems as in vitro assays to elucidate fundamental mechanisms of cancer metastasis, as well as their use as human relevant platforms for drug screening in biomimetic microenvironments. We then conclude with our commentaries on current progress and future perspectives of microengineered systems for fundamental and translational cancer research.
Collapse
Affiliation(s)
- R Portillo-Lara
- Department of Chemical Engineering, Northeastern University, 451 Snell Engineering Building, 360 Huntington Ave, Boston, MA 02115, USA. and Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | - N Annabi
- Department of Chemical Engineering, Northeastern University, 451 Snell Engineering Building, 360 Huntington Ave, Boston, MA 02115, USA. and Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
21
|
Tumor deconstruction as a tool for advanced drug screening and repositioning. Pharmacol Res 2016; 111:815-819. [DOI: 10.1016/j.phrs.2016.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022]
|
22
|
Spencer A, Baker AB. High Throughput Label Free Measurement of Cancer Cell Adhesion Kinetics Under Hemodynamic Flow. Sci Rep 2016; 6:19854. [PMID: 26816215 PMCID: PMC4728493 DOI: 10.1038/srep19854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/18/2015] [Indexed: 01/09/2023] Open
Abstract
The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis.
Collapse
Affiliation(s)
- Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, University of Texas, Austin, TX USA
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, University of Texas, Austin, TX USA.,Institute for Cellular and Molecular Biology, University of Texas, Austin, TX USA.,Institute for Computational Engineering and Sciences (ICES), University of Texas, Austin, TX USA
| |
Collapse
|