1
|
Hafez-Ghoran S, Salar U. Saturation transfer difference (STD)-NMR spectroscopy in drug discovery: A comprehensive review on identified potential hits based on natural and synthetic scaffolds against therapeutic drug targets. Bioorg Med Chem 2025; 125:118212. [PMID: 40318543 DOI: 10.1016/j.bmc.2025.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Among the various multiple nuclear magnetic resonance (NMR) approaches available, saturation transfer difference (STD) NMR spectroscopy has proven to be highly effective in identifying potential binders (ligands). Researchers increasingly recognize the integration of STD-NMR data with ligand-receptor docking studies as a reliable approach for elucidating binding modes at an atomic level. Beyond drug discovery, STD-NMR provides significant contributions to fundamental biological interactions. This review compiles natural and synthetic molecules identified as potential binders through STD-NMR spectroscopy for specific targets associated with chronic diseases, including cancers, neurological disorders, infectious diseases, and others. In cancer research, STD-NMR has helped identify ligands targeting B-cell lymphoma 2, fucosyltransferase 2, ubiquitin ligase, RNA-binding protein HuR, microtubules, cadherins, and urease. Similarly, various synthetic and natural scaffolds have been identified as modulators of enzymes and proteins implicated in neurological disorders, such as acetylcholinesterase, butyrylcholinesterase, amyloid beta, and α1A- and α1B-adrenoceptors. This review also highlights potential identified hits for validated and emerging drug targets in infectious and other diseases.
Collapse
Affiliation(s)
- Salar Hafez-Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, United States.
| | - Uzma Salar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Li W, Rang Y, Liu H, Liu C. Update on new trends and progress of natural active ingredients in the intervention of Alzheimer's disease, based on understanding of traditional Chinese and Western relevant theories: A review. Phytother Res 2023; 37:3744-3764. [PMID: 37380605 DOI: 10.1002/ptr.7908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurological disorders causing death in the elderly worldwide. As a neurodegenerative disease that is difficult to prevent and cure, the pathogenesis of AD is complex and there is no effective cure. A variety of natural products derived from plants have been reported to have promising anti-AD activities, including flavonoids, terpenes, phenolic acids and alkaloids, which can effectively relieve the symptoms of AD in a variety of ways. This paper mainly reviews the pharmacological activity and mechanisms of natural products against AD. Although the clinical efficacy of these plants still needs to be determined by further high-quality studies, it may also provide a basis for future researchers to study anti-AD in depth.
Collapse
Affiliation(s)
- Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou, China
| |
Collapse
|
3
|
Lin Z, Cheng X, Zheng H. Umbelliferon: a review of its pharmacology, toxicity and pharmacokinetics. Inflammopharmacology 2023:10.1007/s10787-023-01256-3. [PMID: 37308634 DOI: 10.1007/s10787-023-01256-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
Coumarin, a plant secondary metabolite, has various pharmacological activities, including antioxidant stress and anti-inflammatory effects. Umbelliferone, a common coumarin compound found in almost all higher plants, has been extensively studied for its pharmacological effects in different disease models and doses with complex action mechanisms. This review aims to summarize these studies and provide useful information to relevant scholars. The pharmacological studies demonstrate that umbelliferone has diverse effects such as anti-diabetes, anti-cancer, anti-infection, anti-rheumatoid arthritis, neuroprotection, and improvement of liver, kidney, and myocardial tissue damage. The action mechanisms of umbelliferone include inhibition of oxidative stress, inflammation, and apoptosis, improvement of insulin resistance, myocardial hypertrophy, and tissue fibrosis, in addition to regulation of blood glucose and lipid metabolism. Among the action mechanisms, the inhibition of oxidative stress and inflammation is the most critical. In short, these pharmacological studies disclose that umbelliferone is expected to treat many diseases, and more research should be conducted.
Collapse
Affiliation(s)
- Zhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Xi Cheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China
| | - Hui Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
4
|
Current trends in natural products for the treatment and management of dementia: Computational to clinical studies. Neurosci Biobehav Rev 2023; 147:105106. [PMID: 36828163 DOI: 10.1016/j.neubiorev.2023.105106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
The number of preclinical and clinical studies evaluating natural products-based management of dementia has gradually increased, with an exponential rise in 2020 and 2021. Keeping this in mind, we examined current trends from 2016 to 2021 in order to assess the growth potential of natural products in the treatment of dementia. Publicly available literature was collected from various databases like PubMed and Google Scholar. Oxidative stress-related targets, NF-κB pathway, anti-tau aggregation, anti-AChE, and A-β aggregation were found to be common targets and pathways. A retrospective analysis of 33 antidementia natural compounds identified 125 sustainable resources distributed among 65 families, 39 orders, and 7 classes. We found that families such as Berberidaceae, Zingiberaceae, and Fabaceae, as well as orders such as Lamiales, Sapindales, and Myrtales, appear to be important and should be researched further for antidementia compounds. Moreover, some natural products, such as quercetin, curcumin, icariside II, berberine, and resveratrol, have a wide range of applications. Clinical studies and patents support the importance of dietary supplements and natural products, which we will also discuss. Finally, we conclude with the broad scope, future challenges, and opportunities for field researchers.
Collapse
|
5
|
Muzulu J, Basu A. Detection of ligand binding to glycopolymers using saturation transfer difference NMR. Phys Chem Chem Phys 2021; 23:21934-21940. [PMID: 34568885 DOI: 10.1039/d1cp03410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the use of saturation transfer difference (STD) NMR spectroscopy to observe the interaction of various phenylboronic acids (PBAs) with synthetic glycopolymers presenting galactose and glucose. After optimizing experimental parameters to maximize spin diffusion within the glycopolymers, STD NMR experiments were successfully used to detect binding of PBAs to the polymers. Amplification factor build-up curves in conjunction with differential epitope mapping experiments were used to generate an epitope map for the bound boronic acids. STD NMR was also used to detect the interaction between indole and a galactosylated glycopolymer, providing an indole-based view of this CH-π interaction, a common binding motif in carbohydrate recognition.
Collapse
Affiliation(s)
- Janet Muzulu
- Department of Chemistry, Brown University, Providence RI, 02912, USA.
| | - Amit Basu
- Department of Chemistry, Brown University, Providence RI, 02912, USA.
| |
Collapse
|
6
|
Costa PC, Barsottini MR, Vieira ML, Pires BA, Evangelista JS, Zeri AC, Nascimento AF, Silva JS, Carazzolle MF, Pereira GA, Sforça ML, Miranda PC, Rocco SA. N-Phenylbenzamide derivatives as alternative oxidase inhibitors: Synthesis, molecular properties, 1H-STD NMR, and QSAR. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Dahiya V, Anand BG, Kar K, Pal S. Analyzing organophosphate pesticide-serum albumin binding interaction: a combined STD NMR and molecular docking study. J Biomol Struct Dyn 2020; 39:1865-1878. [PMID: 32189579 DOI: 10.1080/07391102.2020.1745280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Vitro analysis of the interaction of organophosphate pesticides (OP) with bovine serum albumin (BSA) is crucial to understand their potential effects at the molecular level. In this context, we have employed Saturation Transfer Difference (STD) NMR experiments in conjunction with molecular docking studies to unravel the binding interaction of the OP chlorpyrifos (CPF), diazinon (DZN) and parathion (PA) in solution. The relative STD (%) suggested the detailed epitope mapping of these OP with BSA while the concentration-dependent STD NMR studies were performed to obtain the complex dissociation constant (KD) of the OP-BSA complexes; KD=1.81 × 10-4 M, 1.30 × 10-3 M and 1.11 × 10-3 M for CPF, DZN and PA were extracted respectively. Similar binding modes were identified for all the three OP using STD site-marker experiment. ITC experiments were performed as a complementary method that revealed a high binding affinity of OP-BSA complexes through non-covalent interaction. Molecular docking confirmed the possible interacting chemical groups of OP-BSA complexes. These significant results furnish valuable information about the toxicity risk of OP to proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vandana Dahiya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jheepasani, India
| | - Bibin G Anand
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, India
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samanwita Pal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jheepasani, India
| |
Collapse
|
8
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
9
|
Kock FVC, Costa AR, de Oliveira KM, Batista AA, Ferreira AG, Venâncio T. A Supramolecular Interaction of a Ruthenium Complex With Calf-Thymus DNA: A Ligand Binding Approach by NMR Spectroscopy. Front Chem 2019; 7:762. [PMID: 31781544 PMCID: PMC6857657 DOI: 10.3389/fchem.2019.00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Lawsone itself exhibits interesting biological activities, and its complexation with a metal center can improve the potency. In this context a cytotoxic Ru-complex, [Ru(law)(dppb)(bipy)] (law = lawsone, dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine), named as CBLAU, was prepared as reported. In this work, NMR binding-target studies were performed to bring to light the most accessible interaction sites of this Ru-complex toward Calf-Thymus DNA (CT-DNA, used as a model), in a similar approach used for other metallic complexes with anti-cancer activity, such as cisplatin and carboplatin. Advanced and robust NMR binding-target studies, among them Saturation Transfer Difference (STD)-NMR and longitudinal relaxometry (T1), were explored. The 1H and 31P -NMR data indicate that the structure of Ru-complex remains preserved in the presence of CT-DNA, and some linewidth broadening is also observed for all the signals, pointing out some interaction. Looking at the binding efficiency, the T1 values are highly influenced by the formation of the CBLAU-DNA adduct, decreasing from 11.4 s (without DNA) to 1.4 s (with DNA), where the difference is bigger for the lawsone protons. Besides, the STD-NMR titration experiments revealed a stronger interaction (KD = 5.9 mM) for CBLAU-DNA in comparison to non-complexed lawsone-DNA (KD = 34.0 mM). The epitope map, obtained by STD-NMR, shows that aromatic protons from the complexed lawsone exhibits higher saturation transfer, in comparison to other Ru-ligands (DPPB and bipy), suggesting the supramolecular contact with CT-DNA takes place by the lawsone face of the Ru-complex, possibly by a spatial π-π stacking involving π-bonds on nucleic acids segments of the DNA chain and the naphthoquinone group.
Collapse
Affiliation(s)
| | - Analu Rocha Costa
- Laboratory of Structure and Reactivity of Inorganic Compounds, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Katia Mara de Oliveira
- Laboratory of Structure and Reactivity of Inorganic Compounds, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Alzir Azevedo Batista
- Laboratory of Structure and Reactivity of Inorganic Compounds, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Antônio Gilberto Ferreira
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Tiago Venâncio
- Laboratory of Nuclear Magnetic Resonance, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
10
|
Methylation of selenocysteine catalysed by thiopurine S-methyltransferase. Biochim Biophys Acta Gen Subj 2018; 1863:182-190. [PMID: 30308221 DOI: 10.1016/j.bbagen.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/25/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Methylation driven by thiopurine S-methylatransferase (TPMT) is crucial for deactivation of cytostatic and immunosuppressant thiopurines. Despite its remarkable integration into clinical practice, the endogenous function of TPMT is unknown. METHODS To address the role of TPMT in methylation of selenium compounds, we established the research on saturation transfer difference (STD) and 77Se NMR spectroscopy, fluorescence measurements, as well as computational molecular docking simulations. RESULTS Using STD NMR spectroscopy and fluorescence measurements of tryptophan residues in TPMT, we determined the binding of selenocysteine (Sec) to human recombinant TPMT. By comparing binding characteristics of Sec in the absence and in the presence of methyl donor, we confirmed S-adenosylmethionine (SAM)-induced conformational changes in TPMT. Molecular docking analysis positioned Sec into the active site of TPMT with orientation relevant for methylation reaction. Se-methylselenocysteine (MeSec), produced in the enzymatic reaction, was detected by 77Se NMR spectroscopy. A direct interaction between Sec and SAM in the active site of rTPMT and the formation of both products, MeSec and S-adenosylhomocysteine, was demonstrated using NMR spectroscopy. CONCLUSIONS The present study provides evidence on in vitro methylation of Sec by rTPMT in a SAM-dependant manner. GENERAL SIGNIFICANCE Our results suggest novel role of TPMT and demonstrate new insights into enzymatic modifications of the 21st amino acid.
Collapse
|
11
|
Tanoli NU, Tanoli SAK, Ferreira AG, Mehmood M, Gul S, Monteiro JL, Vieira LCC, Venâncio T, Correa AG, Ul-Haq Z. Characterization of the interactions between coumarin-derivatives and acetylcholinesterase: Examination by NMR and docking simulations. J Mol Model 2018; 24:207. [PMID: 30008113 DOI: 10.1007/s00894-018-3751-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and a significant threat to the elderly populations, especially in the Western world. The rapid hydrolysis of the principal neurotransmitter into choline and acetate by acetylcholinesterase (AChE) at synapses causes the loss of cognitive response that becomes the real cause of AD. Therefore, inhibition of AChE is the most fundamental therapy among currently available treatments for AD. In this context, we designed and performed molecular recognitions studies of coumarin-based inhibitors towards AChE. STD NMR and Tr-NOESY applications were utilized to evaluate the binding epitope, the dissociation constant (KD) and bound conformations of these inhibitors within this inhibitor-AChE complex. Compound 1, which has a similar inhibition activity to tacrine (a current drug) led in this study as a stronger binder with KD = 30 μM ,even greater than tacrine (KD = 140 μM). Moreover, docking simulations mimic NMR results and provided evidence of synchronizing binding of compound 1 with three sites; the peripheral anionic site, the bottom of the gorge, and the catalytic site. Therefore, we envisioned from our experimental and theoretical results that coumarin-based inhibitors containing a piperidinyl scaffold might be a potential drug candidates for AD in the future.
Collapse
Affiliation(s)
- Nazish U Tanoli
- Department of Metallurgy and Materials Engneering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Lehtrar Road, Nilore, Islamabad, 45650, Pakistan.
- Laboratory of Nuclear Magnetic Resonance, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, SP, 13565-905, Brazil.
| | - Sheraz A K Tanoli
- Laboratory of Nuclear Magnetic Resonance, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, SP, 13565-905, Brazil.
| | - Antonio G Ferreira
- Laboratory of Nuclear Magnetic Resonance, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Mazhar Mehmood
- Department of Metallurgy and Materials Engneering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Lehtrar Road, Nilore, Islamabad, 45650, Pakistan
| | - Sana Gul
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemicals and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| | - Julia L Monteiro
- Laboratory of Synthesis of Natural Products, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Lucas C C Vieira
- Laboratory of Synthesis of Natural Products, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Tiago Venâncio
- Laboratory of Nuclear Magnetic Resonance, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, São Carlos, SP, 13565-905, Brazil
| | - Arlene G Correa
- Laboratory of Synthesis of Natural Products, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemicals and Biological Sciences, University of Karachi, Karachi, 75210, Pakistan
| |
Collapse
|
12
|
Tai O, Hopson R, Williard PG. Ligand Binding Constants to Lithium Hexamethyldisilazide Determined by Diffusion-Ordered NMR Spectroscopy. J Org Chem 2017; 82:6223-6231. [PMID: 28562035 DOI: 10.1021/acs.joc.7b00800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the direct measurement of ligand-binding constants of organolithium complexes using a 1H NMR/diffusion-ordered NMR spectroscopy (DOSY) titration technique. Lithium hexamethyldisilazide complexes with ethereal and ester donor ligands (THF, diethyl ether, MTBE, THP, tert-butyl acetate) are characterized using 1H NMR and X-ray crystallography. Their aggregation and solvation states are confirmed using diffusion coefficient-formula weight correlation analysis, and the 1H NMR/DOSY titration technique is applied to obtain their binding constants. Our work suggests that steric hindrance of ethereal ligands plays an important role in the aggregation, solvation, and reactivity of these complexes. It is noteworthy that diffusion methodology is utilized to obtain binding constants.
Collapse
Affiliation(s)
- Onkei Tai
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Russell Hopson
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Paul G Williard
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
13
|
Domain-specific interactions between MLN8237 and human serum albumin estimated by STD and WaterLOGSY NMR, ITC, spectroscopic, and docking techniques. Sci Rep 2017; 7:45514. [PMID: 28358124 PMCID: PMC5371984 DOI: 10.1038/srep45514] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Alisertib (MLN8237) is an orally administered inhibitor of Aurora A kinase. This small-molecule inhibitor is under clinical or pre-clinical phase for the treatment of advanced malignancies. The present study provides a detailed characterization of the interaction of MLN8237 with a drug transport protein called human serum albumin (HSA). STD and WaterLOGSY nuclear magnetic resonance (NMR)-binding studies were conducted first to confirm the binding of MLN8237 to HSA. In the ligand orientation assay, the binding sites of MLN8237 were validated through two site-specific spy molecules (warfarin sodium and ibuprofen, which are two known site-selective probes) by using STD and WaterLOGSY NMR competition techniques. These competition experiments demonstrate that both spy molecules do not compete with MLN8237 for the specific binding site. The AutoDock-based blind docking study recognizes the hydrophobic subdomain IB of the protein as the probable binding site for MLN8237. Thermodynamic investigations by isothermal titration calorimetry (ITC) reveal that the non-covalent interaction between MLN8237 and HSA (binding constant was approximately 105 M−1) is driven mainly by favorable entropy and unfavorable enthalpy. In addition, synchronous fluorescence, circular dichroism (CD), and 3D fluorescence spectroscopy suggest that MLN8237 may induce conformational changes in HSA.
Collapse
|
14
|
Takayasu S, Shinozaki K. Hydration of fac-tris(2-phenylpyridinato-C2,N)iridium(III) in dichloromethane solution and in solid state. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Yang H, Huang Y, He J, Li S, Tang B, Li H. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies. Arch Biochem Biophys 2016; 606:81-9. [PMID: 27457418 DOI: 10.1016/j.abb.2016.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
Abstract
In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA.
Collapse
Affiliation(s)
- Hongqin Yang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yanmei Huang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jiawei He
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Shanshan Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Bin Tang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|