1
|
He Y, Wang H, Yan Y, Jiang X, Zou H, Zhang Z. Facile synthesis of nitrogen-doped carbon dots for ultrasensitive detection of anticancer drug gefitinib based on IFE. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123942. [PMID: 38277783 DOI: 10.1016/j.saa.2024.123942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Gefitinib, a highly significant antitumor drug, is now commonly employed in clinical settings as a first-line treatment for patients with advanced or metastatic non-small cell lung cancer, colon cancer, and breast cancer. Herein, a convenient, rapid, and accurate fluorescence method based on nitrogen-doped carbon dots (NCDs) was designed for ultrasensitive detection of gefitinib. The NCDs were easily synthesized through one-pot hydrothermal process using p-phenylenediamine and D-glutamic acid as the precursors. The sensing strategy relied on the fluorescence of NCDs at 345 nm, which was selectively reduced by gefitinib based on the inner filter effect (IFE). With a broad linear range of 0.025-30 μg/mL and a low limit of detection of 5.5 ng/mL, the probe was successfully applied to the detection of gefitinib in human serum samples, demonstrating strong practicality, affordability, and high accuracy. The proposed sensor is simple in design, fast in detection and cost-effective, and exhibits promising application in drug real-time analysis.
Collapse
Affiliation(s)
- Yuxin He
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hanting Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yuting Yan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xinhui Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Hecun Zou
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Zhengwei Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Tammina SK, Rhim JW. Carboxymethylcellulose/agar-based functional film incorporated with nitrogen-doped polyethylene glycol-derived carbon dots for active packaging applications. CHEMOSPHERE 2023; 313:137627. [PMID: 36572362 DOI: 10.1016/j.chemosphere.2022.137627] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The present investigation demonstrates the role of nitrogen doping on polyethylene glycol (PEG)-derived carbon dots on optical, antibacterial, and antioxidant activity. CDs' average size and surface charge were determined using transmission electron microscopy (TEM) and a zeta sizer with 2.14 ± 0.6 nm and -20 mV, respectively. Though CDs without N-doping (PCD) did not show any significant antioxidant and antimicrobial activities, the CDs doped with nitrogen (NPCD) showed potent antioxidant (25% and 100% DPPH and ABTS radical scavenging activity) and significant antimicrobial activity against Gram-positive (1.8 cm inhibition zone) and Gram-negative (1.4 cm) bacteria. Both carbon dots were loaded into the carboxymethyl cellulose (CMC)/agar-based film with different concentrations (4 and 8%) and showed a significant increase in the physicochemical properties, and UV-blocking property was increased from 53.7 to 79.9% without sacrificing the transparency. The NPCD-loaded film also showed high antioxidant (DPPH 12.7% and ABTS 67%) and potent antibacterial activity. In particular, the CMC/agar film loaded with 8% NPCD destroyed Escherichia coli and Listeria monocytogenes completely after 6 h of incubation.
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Yang S, Li Y, Chen L, Wang H, Shang L, He P, Dong H, Wang G, Ding G. Fabrication of Carbon-Based Quantum Dots via a "Bottom-Up" Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205957. [PMID: 36610043 DOI: 10.1002/smll.202205957] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.
Collapse
Affiliation(s)
- Siwei Yang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongqiang Li
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Wang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuyang Shang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Guqiao Ding
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Chen P, Peng H, Zhang Z, Zhang Z, Chen Y, Chen J, Zhu X, Peng J. Facile preparation of highly thermosensitive N-doped carbon dots and their detection of temperature and 6-mercaotopurine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
6
|
The N,S co-doped carbon dots with excellent luminescent properties from green tea leaf residue and its sensing of gefitinib. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104588] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Tammina SK, Yang D, Li X, Koppala S, Yang Y. High photoluminescent nitrogen and zinc doped carbon dots for sensing Fe 3+ ions and temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117141. [PMID: 31247390 DOI: 10.1016/j.saa.2019.117141] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/26/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
High photoluminescent quantum yield carbon nanomaterials doped with heteroatoms are of profound attention in various fields like bio-imaging, chemical sensors and electronics. Among all heteroatoms, zinc is one of the low toxic significant elements and also involves in various electron-transfer processes. These properties are added advantages to utilize zinc as a dopant in CDs synthesis. In this investigation, our group reports a one-step microwave digestion method to synthesize nitrogen and Zinc doped carbon dots (N, Zn-CDs). The optical properties of N, Zn-CDs were investigated using UV-Vis and fluorescence spectrophotometry and also the N, Zn-CDs structural features were studied with other characterization tools like XPS, TEM, EDX, FTIR and XRD. N, Zn-CDs inherent the appreciable photoluminescent quantum yields about 63.28%. And the synthesized N, Zn-CDs utilized for detection of Fe3+ and temperature. The observed results are promising and exhibited the detection limit of 0.027 μM. Also, the proposed sensing system was successfully adopted for the detection of Fe3+ in the river and circulating water samples for the practical applications and satisfactory results are observed. The current synthesis methodology and sensing potential might open up a new prospect to develop potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Sai Kumar Tammina
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Xiao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Sivasankar Koppala
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yaling Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
8
|
Tammina SK, Yang D, Koppala S, Cheng C, Yang Y. Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection of dopamine and temperature. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:61-70. [DOI: 10.1016/j.jphotobiol.2019.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 11/25/2022]
|
9
|
Zhao C, Jiao Y, Gao Z, Yang Y, Li H. N, S co-doped carbon dots for temperature probe and the detection of tetracycline based on the inner filter effect. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.08.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Preparation of multifunctional PEG-graft-Halloysite Nanotubes for Controlled Drug Release, Tumor Cell Targeting, and Bio-imaging. Colloids Surf B Biointerfaces 2018; 170:322-329. [DOI: 10.1016/j.colsurfb.2018.06.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 11/20/2022]
|
11
|
Zhang Z, Pei K, Yang Q, Dong J, Yan Z, Chen J. A nanosensor made of sulfur–nitrogen co-doped carbon dots for “off–on” sensing of hypochlorous acid and Zn(ii) and its bioimaging properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj03159b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we present a facile one-step solvothermal strategy for the fabrication of sulfur–nitrogen co-doped carbon dots (SNCDs) using p-phenylenediamine and cysteamine hydrochloride as the precursors.
Collapse
Affiliation(s)
- Zhengwei Zhang
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering
- Shanxi University of Chinese Medicine
- Jinzhong 030619
- China
| | - Qiulian Yang
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jiayu Dong
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhengyu Yan
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianqiu Chen
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
12
|
Chen Y, Yang Q, Xu P, Sun L, Sun D, Zhuo K. One-Step Synthesis of Acidophilic Highly-Photoluminescent Carbon Dots Modified by Ionic Liquid from Polyethylene Glycol. ACS OMEGA 2017; 2:5251-5259. [PMID: 31457796 PMCID: PMC6641901 DOI: 10.1021/acsomega.7b01014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/21/2017] [Indexed: 05/30/2023]
Abstract
Acidophilic highly-photoluminescent ionic liquid (IL)-modified carbon dots (CDs) were fabricated directly from polyethylene glycol-2000 (PEG2000N) by a simple one-step hydrothermal method in a system containing an IL (1-butyl-3-methylimidazolium bromide [C4mim]Br) and hydrochloric acid (HCl). In this process, PEG2000N works as the carbon source, [C4mim]Br as the modifier, and HCl as the accelerator. CDs with low photoluminescence (PL) intensity and quantum yields (QYs) were generated in the system without H+, but CDs with high PL intensity and QYs could be prepared after H+ was introduced. Moreover, with the increase of H+ concentration, the QYs of the prepared CDs increase subsequently, and the highest QY reaches up to 43%. The formation mechanism was explored, and the results showed that H+ changes the surface groups of the CDs generated without H+ into those that exist on the CDs generated with H+, which further improves the PL performance of the CDs. Different from most CDs reported in the literature, the as-prepared CDs can still exhibit high PL intensity even under strong acidic condition.
Collapse
Affiliation(s)
- Yujuan Chen
- Collaborative Innovation Center of
Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory
of Green Chemical Media and Reactions, Ministry of Education, School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| | - Qian Yang
- Collaborative Innovation Center of
Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory
of Green Chemical Media and Reactions, Ministry of Education, School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| | - Panpan Xu
- Collaborative Innovation Center of
Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory
of Green Chemical Media and Reactions, Ministry of Education, School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| | - Li Sun
- Collaborative Innovation Center of
Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory
of Green Chemical Media and Reactions, Ministry of Education, School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| | - Dong Sun
- Collaborative Innovation Center of
Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory
of Green Chemical Media and Reactions, Ministry of Education, School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of
Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory
of Green Chemical Media and Reactions, Ministry of Education, School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|