1
|
Chen X, Shi W, Li S, Li H, Han J, Guo DY, Chen L, Pan Q. In situ synthesis of luminescent dsDNA-Cu NCs stained with a dsDNA-lighted fluorophore for rapid and stable detection of histamine in food. Int J Biol Macromol 2024; 277:134479. [PMID: 39102918 DOI: 10.1016/j.ijbiomac.2024.134479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Poisonous histamine is accumulated in stale meat and fermented foods. The rapid and stable detection of histamine is essential for food safety. Herein, a ratiometric fluorometric method for histamine detection was designed through in situ preparing double-stranded DNA‑copper nanoclusters (dsDNA-Cu NCs) stained with 4',6-diamidino-2-phenylindole (DAPI). dsDNA-Cu NCs with red emission were rapidly synthesized via mixing Cu2+, ascorbate and dsDNA at room temperature for 5 min. When DAPI was added during preparation, DAPI coordinated with the Cu element accompanied by the quenched red emission of dsDNA-Cu NCs, and DAPI bound to dsDNA together with the enhanced blue emission of DAPI. Upon adding DAPI and histamine simultaneously, the coordination of histamine with the Cu element further decreased the red emission of dsDNA-Cu NCs, and drove the movement of DAPI from the Cu element to dsDNA along with the enhanced blue emission of DAPI. Significantly, ratiometric fluorescence was insensitive to variations in instrument and environment, causing stable measurement. Meanwhile, in situ synthesis integrated probe preparation with analyte detection, reducing time consumption. Additionally, this method quantified histamine in the concentration range of 7-50 μM with a detection limit of 3.6 μM. It was applied to determining histamine in food with satisfactory accuracy and precision.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Wenhui Shi
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Shiyu Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Jingxuan Han
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen 361000, PR China.
| | - Linan Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
2
|
Wu NN, Chen LG, Wang HB. A Sensitive Fluorescence Sensor for Tetracycline Determination Based on Adenine Thymine-Rich Single-Stranded DNA-Templated Copper Nanoclusters. APPLIED SPECTROSCOPY 2023; 77:1206-1213. [PMID: 37545405 DOI: 10.1177/00037028231192124] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A sensitive fluorescent sensor has been developed for the determination of tetracycline (TC) using adenine thymine (AT)-rich single-stranded DNA (ssDNA) templated copper nanoclusters (CuNCs) as a fluorescent probe. Fluorescent ssDNA-CuNCs were synthesized by employing AT-rich ssDNA as templates and ascorbic acid as reducing agents through a facile one-step method. The as-prepared ssDNA-CuNCs exhibited strong fluorescence with a large Stokes shift (240 nm) and stable fluorescence emission. In the presence of TC, the fluorescent intensity of ssDNA-CuNCs was obviously decreased through the inner filter effect, due to the spectral overlapping between ssDNA-CuNCs and TC. Under the optimal conditions, the strategy exhibited sensitive detection of TC with a linear range from 2 nM to 30 μM and with a limit of detection of 0.5 nM. Furthermore, the sensor was successfully applied for the detection of TC in milk samples. Therefore, it provided a simple, rapid, and label-free fluorescent method for TC detection.
Collapse
Affiliation(s)
- Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
3
|
Rao NP, M VC, Kumar MS, S V, Mukherjee B, N K, Dutta G, Das AK. A fast survey on recent developments in designing colorimetric and fluorescent sensors for the selective detection of essential amino acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2546-2577. [PMID: 37219528 DOI: 10.1039/d3ay00155e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Owing to the biological significance of various amino acids, developing accurate and cost-effective sensing techniques for the selective detection of amino acids has recently attracted growing interest. This review discusses the recent advancements of chemosensors in the selective detection of only essential amino acids out of a total of twenty amino acids, which have been applied in chemosensing research, and the mechanism of their action. The focus is directed towards the detection of the most important essential amino acids, like leucine, threonine, lysine, histidine, tryptophan and methionine, since isoleucine and valine are yet to be explored in regard to chemosensing. According to their chemical and fluorescence properties, different sensing techniques, such as the reaction-based approach, DNA-based sensors, nanoparticle formation, coordination ligand binding, host-guest chemistry, the fluorescence indicator displacement (FID) approach, electrochemical sensors, carbon dot-based sensors, MOF-based sensors and metal-based techniques, have been described.
Collapse
Affiliation(s)
- Nidhi P Rao
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Vaishnavi C M
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Malavika S Kumar
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Vishnu S
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Bimalendu Mukherjee
- Nano-Biosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Karthik N
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| | - Gorachand Dutta
- Nano-Biosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Avijit Kumar Das
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore 560029, Karnataka, India.
| |
Collapse
|
4
|
Thanasekaran P, Huang JH, Jhou CR, Tsao HC, Mendiratta S, Su CH, Liu CP, Liu YH, Huang JH, Lu KL. A neutral mononuclear rhenium(I) complex with a rare in situ-generated triazolyl ligand for the luminescence "turn-on" detection of histidine. Dalton Trans 2023; 52:703-709. [PMID: 36546584 DOI: 10.1039/d2dt03705j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A rare in situ-generated mononuclear rhenium complex [Re(bpt)(CO)3(NH3)] (1, bpt = 3,5-bis(2-pyridyl)-1,2,4-triazolate) can be used as a "turn-on" luminescent probe for selectively sensing L-histidine against other amino acids. Compound 1 was prepared by reacting Re2(CO)10, 2-cyanopyridine and hydrazine with an in situ formed bpt ligand through cyclization via C-N and N-N couplings with its single-side chelating mode arrayed with respect to the Re center. Compound 1 was highly stable and showed a green light MLCT emission in DMF solution at 507 nm upon excitation at 360 nm. Interestingly, the emission from 1 could be quenched by the addition of metal ions such as Ni2+ and Cu2+ but the emission efficiently recovered with the introduction of histidine. However, histidine could only be selectively detected when a combination of compound 1 and Ni2+ was used. Therefore, the luminescence response of the Ni2+-modified compound 1 could be utilized as a "turn-on" probe for the selective detection of histidine. This work provides a simple method for developing new sensing platforms of a discrete metal complex based on rare in situ generation.
Collapse
Affiliation(s)
- Pounraj Thanasekaran
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Department of Chemistry, Pondicherry University, Puducherry 605 014, India
| | - Jui-Hsiang Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cing-Rou Jhou
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Hsiang-Chun Tsao
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | | | - Cing-Huei Su
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Yen-Hsiang Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Jui-Hsien Huang
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan.
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan. .,Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
5
|
Baghal Behyar M, Hasanzadeh M, Seidi F, Shadjou N. Sensing of Amino Acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Zhan S, Jiang J, Zeng Z, Wang Y, Cui H. DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Wang HB, Mao AL, Tao BB, Zhang HD, Xiao ZL, Liu YM. L-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters. Mikrochim Acta 2021; 188:198. [PMID: 34041600 DOI: 10.1007/s00604-021-04853-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
An interesting phenomenon is described that the fluorescence signal of poly(adenine) (A) DNA-templated gold nanoclusters (AuNCs) is greatly improved in the presence of L-histidine by means of L-histidine-DNA interaction. The modified nanoclusters display strong fluorescence emission with excitation/emission maxima at 290/475 nm. The fluorescence quantum yield (QY) is improved from 1.9 to 6.5%. Fluorescence enhancement is mainly ascribed to the L-histidine-DNA interaction leading to conformational changes of the poly(A) DNA template, which offer a better microenvironment to protect AuNCs. The assay enables L-histidine to be determined with good sensitivity and a linear response that covers the 1 to 50 nM L-histidine concentration range with a 0.3 nM limit of detection. The proposed method has been applied to the determination of imidazole-containing drugs in pharmaceutical samples. A turn-on fluorescent method has been designed for the sensitive detection of L-histidine as well as imidazole-containing drugs on the basis of the L-histidine-DNA interaction.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Zhong-Liang Xiao
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| |
Collapse
|
8
|
N K R, Gorthi SS. dsDNA-templated fluorescent copper nanoparticles for the detection of lipopolysaccharides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:186-191. [PMID: 33325462 DOI: 10.1039/d0ay01906b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The introduction of lipopolysaccharides (LPS) or endotoxins that originate from Gram-negative bacteria into the human blood stream induces a severe immune response that can lead to septic shock, and even death. Hence, the accurate detection of LPS is of great importance in the medical and pharmaceutical sectors. This paper proposes a novel label-free fluorescence assay for the detection of LPS utilizing aptamers and the interference synthesis of dsDNA-templated copper nanoparticles. The assay can be performed at room temperature and does not require expensive reagents. The proposed assay has a limit of detection of 0.95 ng ml-1 of LPS, and the fluorescence emission from the copper nanoparticles was found to vary linearly with the concentration of LPS over a wide range (1 to 105 ng ml-1) with R2 = 0.9877.
Collapse
Affiliation(s)
- Radhika N K
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India.
| | - Sai Siva Gorthi
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India.
| |
Collapse
|
9
|
Wang HB, Mao AL, Tao BB, Zhang HD, Liu YM. Fabrication of multiple molecular logic gates made of fluorescent DNA-templated Au nanoclusters. NEW J CHEM 2021. [DOI: 10.1039/d0nj06192a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A universal platform of label-free multiple molecular logic gates have been constructed by taking the advantage of DNA-AuNCs.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
10
|
Lu J, Liang S, Tan L, Hu K, Zhao S, Tian J. Sensitive detection of microRNA using a label-free copper nanoparticle system with polymerase-based signal amplification. Anal Bioanal Chem 2020; 412:7179-7185. [PMID: 32785774 DOI: 10.1007/s00216-020-02850-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
The abnormal expression of microRNAs (miRNAs) has been reported in many diseases, so it is of great interest to develop simple and accurate methods for the detection and analysis of miRNA expression. We have developed a novel biosensor to detect miRNAs. This method is based on a polymeric double-stranded DNA (dsDNA) copper nanoparticle (CuNP) template that is synthesised by a polymerase. When Cu2+ and ascorbic acid are added to the system, the dsDNA template (which is rich in A-T bases) promotes the formation of CuNPs, resulting in high fluorescence intensity. This system provides sensitive analysis of miRNA expression with a limit of detection down to 17.8 pmol/L, due to significant changes in the fluorescence signal of the system before and after the addition of the target. The linear range between F0-F and concentration of miR-122 is 80.0 pmol/L to 4.50 nmol/L, and the recovery rate in spiked HepG2 cell lysates is 93.33-102.53%. This method expands the applications of fluorescent DNA-CuNPs in the field of biosensor analysis, and can be used to detect and analyse any miRNA marker by changing the target recognition sequence. Graphical abstract A label-free dsDNA-CuNP-based and enzyme-assisted signal amplification method for microRNA is constructed.
Collapse
Affiliation(s)
- Jiangnan Lu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guanxi, Guilin, 541004, China
| | - Shuping Liang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guanxi, Guilin, 541004, China
| | - Li Tan
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guanxi, Guilin, 541004, China
| | - Kun Hu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guanxi, Guilin, 541004, China
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guanxi, Guilin, 541004, China
| | - Jianniao Tian
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guanxi, Guilin, 541004, China.
| |
Collapse
|
11
|
Nambannor Kunnath R, Venukumar A, Gorthi SS. Handheld fluorometer for in-situ melamine detection via interference synthesis of dsDNA-templated copper nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118304. [PMID: 32251893 DOI: 10.1016/j.saa.2020.118304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Fluorescent copper nanoparticles templated by dsDNA have gained significant research interest as they are inexpensive and easy to synthesize, and have found applications in the detection of a wide range of analytes. The presence of the analyte in the reaction mixture interferes with the synthesis of the copper nanoparticles and the subsequent drop in fluorescence can be correlated to the concentration of the analyte present in the solution. Analyte detection using copper nanoparticle-based assays is amenable for in-situ applications as the test does not require expensive reagents and can be performed at room temperature. However, expensive and sophisticated detection systems are required for the detection of copper nanoparticles due to the low fluorescence emission signal from these nanoparticles. This restricts the use of the technology to centralized labs. Utilizing a recently developed chemical technique for fluorescence enhancement, this paper presents the first report of a handheld fluorometer capable of detecting DNA-templated copper nanoparticles. The fluorometer is portable and constructed with low-cost, off-the-shelf components like a UV-LED and a PIN photodiode. The performance of the developed system is demonstrated through the detection of melamine in milk samples via the interference synthesis of copper nanoparticles. Melamine is an adulterant used in dairy products that is harmful to human health if present in levels above 1 ppm. The developed system is capable of detecting up to 0.1 ppm of melamine in milk samples with a linear relationship observed between the detector output and concentration of melamine in the range from 0.1 ppm to 100 ppm (R2 = 0.9979).
Collapse
Affiliation(s)
| | - Aravind Venukumar
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India
| | - Sai Siva Gorthi
- Department of Instrumentation and Applied Physics, Indian Institute of Science Bangalore, India.
| |
Collapse
|
12
|
AS1411-Templated Fluorescent Cu Nanomaterial’s Synthesis and Its Application to Detecting Melamine. J CHEM-NY 2020. [DOI: 10.1155/2020/4067578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herein, we report a novel approach to AS1411-templated formation of fluorescent copper nanomaterials and their application to melamine detection. Fluorescent copper nanomaterials were formed at room temperature by using AS1411 as a template and ascorbic acid as reductant. However, the fluorescence intensity decreased obviously in the presence of melamine. Under the optimized conditions, the quenching fluorescence intensities of copper nanomaterials showed a good linear relationship with the concentration of melamine in the range of 50 μmol/L–120 μmol/L, and the correlation coefficient was 0.9823. In addition, the method was successfully applied in the detection of melamine in milk samples. This method was cost-effective and convenient without any labels or complicated operations. Thus, this work successfully develops the capping AS1411 scaffolds of copper nanomaterials detection of melamine.
Collapse
|
13
|
Song H, Ma C, Liu P, You C, Lin J, Zhu Z. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R. Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 2019; 137:96-109. [PMID: 31085403 DOI: 10.1016/j.bios.2019.05.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 02/01/2023]
Abstract
During the last decades, by virtue of their unique physicochemical properties and potential application in microelectronics, biosensing and biomedicine, metal nanomaterials (MNs) have attracted great research interest and been highly developed. Deoxyribonucleic acid (DNA) is a particularly interesting ligand for templating bottom-up nanopreparation, by virtue of its excellent properties including nanosized geometry structure, programmable and artificial synthesis, DNA-metal ion interaction and powerful molecular recognition. DNA-templated copper nanoparticles (DNA-CuNPs) has been developed in recent years. Because of its advantages including simple and rapid preparation, high efficiency, MegaStokes shifting and low biological toxicity, DNA-CuNPs has been highly exploited for biochemical sensing from 2010, especially as a label-free detection manner, holding advantages in multiple analytical technologies including fluorescence, electrochemistry, surface plasmon resonance, inductively coupled plasma mass spectrometry and surface enhanced Raman spectroscopy. This review comprehensively tracks the preparation of DNA-CuNPs and its application in biosensing, and highlights the potential development and challenges regarding this field, aiming to promote the advance of this fertile research area.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| | - Ailing Bai
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shuohui Xing
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
15
|
|
16
|
N. K. R, Gorthi SS. Enhancement of the fluorescence properties of double stranded DNA templated copper nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1034-1042. [DOI: 10.1016/j.msec.2019.01.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/26/2018] [Accepted: 01/10/2019] [Indexed: 11/17/2022]
|
17
|
Cao Q, Li J, Wang E. Recent advances in the synthesis and application of copper nanomaterials based on various DNA scaffolds. Biosens Bioelectron 2019; 132:333-342. [PMID: 30897540 DOI: 10.1016/j.bios.2019.01.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/29/2022]
Abstract
Fluorescent copper nanomaterials (CuNMs), including copper nanoparticles (CuNPs) and copper nanoclusters (CuNCs), become more and more popular with the abundant raw materials and low cost. A wide range of applications has been explored due to their fascinating properties such as low toxicity, remarkable water solubility, facile synthesis, large Stokes shifts, and good biocompatibility. As a kind of genetic material, DNA exhibits its molecular recognition function and diversity. The marriage between CuNMs and DNA endows DNA-templated CuNMs (DNA-CuNMs) with unique properties such as fluorescence, electrochemiluminescence and catalytic features. In this review, we summarize the synthesis and recent applications of DNA-CuNMs. Fluorescent CuNMs can be grown on various DNA scaffolds with special sequence design. T base plays an important role in the formation of CuNMs on DNA templates. These fluorescent DNA-CuNMs hold great prospect in logic gate construction, staining and biosensing of DNAs and RNAs, ions, proteins and enzymes, small molecules and so on.
Collapse
Affiliation(s)
- Qiao Cao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
18
|
Xiong Y, Gao B, Wu K, Wu Y, Chai Y, Huang X, Xiong Y. Fluorescence immunoassay based on the enzyme cleaving ss-DNA to regulate the synthesis of histone-ds-poly(AT) templated copper nanoparticles. NANOSCALE 2018; 10:19890-19897. [PMID: 30345445 DOI: 10.1039/c8nr06175k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, for the first time we report a novel competitive fluorescence immunoassay for the ultrasensitive detection of aflatoxin B1 (AFB1) using histone-ds-poly(AT) templated copper nanoparticles (His-pAT CuNPs) as the fluorescent indicator. In this immunoassay, glucose oxidase (Gox) was used as the carrier of the competing antigen to catalyze the formation of hydrogen peroxide (H2O2) from glucose. H2O2 was converted to a hydroxyl radical using Fenton's reagent, which further regulated the fluorescence signals of His-pAT CuNPs. Owing to the ultrahigh sensitivity of the ss-DNA to the hydroxyl radical, the proposed fluorescence immunoassay exhibited a favorable dynamic linear detection of AFB1 ranging from 0.46 pg mL-1 to 400 pg mL-1 with an good half maximal inhibitory concentration and limit of detection of 6.13 and 0.15 pg mL-1, respectively. The intra- and inter-assay showed that the average recoveries for AFB1 spiked corn samples ranged from 96.87% to 100.73% and 96.67% to 114.92%, respectively. The reliability of this method was further confirmed by adopting ultra-performance liquid chromatography coupled with the fluorescence detector method. In summary, this work offers a novel screening strategy with high sensitivity and robustness for the quantitative detection of mycotoxins or other pollutants for food safety and clinical diagnosis.
Collapse
Affiliation(s)
- Ying Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ning J, Liu L, Luo X, Wang M, Liu D, Hou R, Chen D, Wang J. Abnormal Anionic Porphyrin Sensing Effect for HER2 Gene Related DNA Detection via Impedance Difference between MWCNTs and Single-Stranded DNA or Double-Stranded DNA. Molecules 2018; 23:molecules23102688. [PMID: 30340409 PMCID: PMC6222431 DOI: 10.3390/molecules23102688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 01/25/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a key tumor marker for several common and deadly cancers. It is of great importance to develop efficient detection methods for its over-expression. In this work, an electrochemical impedance spectroscopy (EIS) method adjustable by anionic porphyrin for HER2 gene detection has been proposed, based on the impedance difference between multi-walled carbon nanotubes (MWCNTs) and DNA. The interesting finding herein is that with the addition of anionic porphyrin, i.e., meso-tetra(4-sulfophenyl)-porphyrin (TSPP), the impedance value obtained at a glass carbon electrode (GCE) modified with MWCNTs and a single stranded DNA (ssDNA), the probe DNA that might be assembled tightly onto MWCNTs through π-π stacking interaction, gets a slight decrease; however, the impedance value from a GCE modified with MWCNTs and a double stranded DNA (dsDNA), the hybrid of the probe DNA with a target DNA, which might be assembled loosely onto MWCNTs for the screening effect of phosphate backbones in dsDNA, gets an obvious decrease. The reason may be that on the one hand, being rich in negative sulfonate groups, TSPP will try to push DNA far away from CNTs surface due to its strong electrostatic repulsion towards DNA; on the other hand, rich in planar phenyl or pyrrole rings, TSPP will compete with DNA for the surface of CNTs since it can also be assembled onto CNTs through conjugative interactions. In this way, the “loosely assembled” dsDNA will be repelled by this anionic porphyrin and released off CNTs surface much more than the “tightly assembled” ssDNA, leading to a bigger difference in the impedance value between dsDNA and ssDNA. Thus, through the amplification effect of TSPP on the impedance difference, the perfectly matched target DNA could be easily determined by EIS without any label. Under the optimized experimental conditions, this electrochemical sensor shows an excellent linear response to target DNA in a concentration range of 2.0 × 10−11–2.0 × 10−6 M with a limit of detection (LOD) of 6.34 × 10−11 M (S/N = 3). This abnormally sensitive electrochemical sensing performance resulting from anionic porphyrin for DNA sequences specific to HER2 gene will offer considerable promise for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Jingheng Ning
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Long Liu
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Xin Luo
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Min Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Donglin Liu
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Rong Hou
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Donger Chen
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| | - Jianhui Wang
- School of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410110, China.
| |
Collapse
|
20
|
Liu R, Wang C, Hu J, Su Y, Lv Y. DNA-templated copper nanoparticles: Versatile platform for label-free bioassays. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Zhan H, Cervenka J, Prawer S, Garrett DJ. Molecular detection by liquid gated Hall effect measurements of graphene. NANOSCALE 2018; 10:930-935. [PMID: 29265123 DOI: 10.1039/c7nr06330j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conventional electrical biosensing techniques include Cyclic Voltammetry (CV, amperometric) and ion-sensitive field effect transistors (ISFETs, potentiometric). However, CV is not able to detect electrochemically inactive molecules where there is no redox reaction in solution, and the resistance change in pristine ISFETs in response to low concentration solutions is not observable. Here, we show a very sensitive label-free biosensing method using Hall effect measurements on unfunctionalized graphene devices where the gate electrode is immersed in the solution containing the analyte of interest. This liquid gated Hall effect measurement (LGHM) technique is independent of redox reactions, and it enables the extraction of additional information regarding electrical properties from graphene as compared with ISFETs, which can be used to improve the sensitivity. We demonstrate that LGHM has a higher sensitivity than conventional biosensing methods for l-histidine in the pM range. The detection mechanism is proposed to be based on the interaction between the ions and graphene. The ions could induce asymmetry in electron-hole mobility and inhomogeneity in graphene, and they may also respond to the Hall effect measurement. Moreover, the calculation of capacitance values shows that the electrical double layer capacitance is dominant at relatively high gate voltages in our system, and this is useful for applications including biosensing, energy storage, and neural stimulation.
Collapse
Affiliation(s)
- Hualin Zhan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | |
Collapse
|
22
|
Chen M, Yeasmin Khusbu F, Ma C, Wu K, Zhao H, Chen H, Wang K. A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c8nj02774a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A label-free fluorescence assay has been developed for the detection of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | | | - Changbei Ma
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kefeng Wu
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Han Zhao
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Hanchun Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410081
- China
| |
Collapse
|
23
|
Momeni S, Ahmadi R, Safavi A, Nabipour I. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions. Talanta 2017; 175:514-521. [DOI: 10.1016/j.talanta.2017.07.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023]
|
24
|
Wang Z, Chen B, Rogach AL. Synthesis, optical properties and applications of light-emitting copper nanoclusters. NANOSCALE HORIZONS 2017; 2:135-146. [PMID: 32260657 DOI: 10.1039/c7nh00013h] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metal nanoclusters (NCs) containing a few to a few hundreds of atoms bridge the gap between nanoparticles and molecular compounds. The last decade evidenced impressive developments of noble metal NCs such as Au and Ag. Copper is an earth abundant, inexpensive metal from the same group of the periodic table, which is increasingly coming into focus for NC research. This review specifically addresses wet chemical synthesis methods, optical properties and some emerging applications of Cu NCs. As surface protecting templates/ligands play an important role in the stability and properties of Cu NCs, we classified the synthetic methods by the nature of the capping agents. The optical properties of Cu NCs are discussed from the point of view of the effects of the metal core, surface ligands and environment (solvents and aggregation) on the emission of the clusters. Applications of luminescent Cu NCs in biological imaging and light emitting devices are considered.
Collapse
Affiliation(s)
- Zhenguang Wang
- Department of Physics and Materials Science and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | | | | |
Collapse
|
25
|
Guo Y, Cao F, Lei X, Mang L, Cheng S, Song J. Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. NANOSCALE 2016; 8:4852-63. [PMID: 26879547 DOI: 10.1039/c6nr00145a] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fluorescent copper nanoparticles (F-CuNPs) have received great attention due to their attractive features, such as water solubility, wide availability, ease of functionalization and good biocompatibility, and considerable efforts have been devoted to the preparation and applications of F-CuNPs. This review article comprises three main parts. In the first part, we briefly present the fluorescence properties of F-CuNPs. Then we cover the fabrication strategies of various F-CuNPs functionalized by different ligands. In the third part, we focus on the applications of F-CuNPs for sensing metal ions, including Hg(2+), Pb(2+), Cu(2+), Fe(3+) and other metal ions. Lastly, we further discuss the opportunities and challenges of F-CuNPs in the synthetic strategies and applications for sensing metal ions.
Collapse
Affiliation(s)
- Yongming Guo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Fengpu Cao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xiaoling Lei
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Lianghong Mang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Shengjuan Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Jintong Song
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
26
|
Wang HB, Chen Y, Li Y, Zhang HD, Cao JT. A rapid, sensitive and label-free sensor for Hg(ii) ion detection based on blocking of cysteine-quenching of fluorescent poly(thymine)-templated copper nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra18906c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rapid fluorescence sensor was developed for Hg2+ detection based on blocking of cysteine-quenching of poly T templated Cu NPs.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Ying Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yang Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| |
Collapse
|