1
|
Alosaimi EH. Recent Developments in Colorimetric and Fluorimetric Chemosensors for the Detection of Mn 2+ Ions: A Review (2010-2024). Crit Rev Anal Chem 2025:1-21. [PMID: 39969414 DOI: 10.1080/10408347.2025.2460091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Manganese is an essential metal ion involved in various biological and environmental processes, but its excess can lead to toxicity, particularly affecting the nervous system. Therefore, developing selective and sensitive detection methods for Mn2+ ions is of paramount importance. Colorimetric and fluorimetric chemosensors have emerged as promising tools for the detection of Mn2+ due to their simplicity, cost-effectiveness, and real-time monitoring capabilities. This review discusses recent advances in the colorimetric and fluorimetric chemosensors that exhibit distinct color or fluorescence changes upon interaction with Mn2+ ions. The review explores different organic and nanomaterials, focusing on their mechanisms of sensing, sensitivity, selectivity, and practical applications in environmental monitoring, healthcare, and food safety. The article also provides insights into future research directions aimed at overcoming these challenges, improving chemosensor performance, and expanding the applicability of colorimetric and fluorimetric chemosensors for Mn2+ detection in diverse real-world scenarios.
Collapse
Affiliation(s)
- Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
2
|
Zannotti M, Piras S, Rita Magnaghi L, Biesuz R, Giovannetti R. Silver nanoparticles from orange peel extract: Colorimetric detection of Pb 2+ and Cd 2+ ions with a chemometric approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124881. [PMID: 39067363 DOI: 10.1016/j.saa.2024.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Green silver nanoparticles (AgNPs@OPE) were obtained by using orange (citrus sinensis) peel water extract (OPE) that acts as a reducing and capping agent. This procedure permits the valorisation of waste as orange peel, and lowers the environmental impact of the process, with respect to the conventional synthetic procedure. The OPE extract reduced Ag(I) to Ag(0) in alkaline conditions, and stabilised the produced nanoparticles as a capping agent. The AgNPs@OPE were deeply characterized by UV-Vis spectroscopy, FT-IR, SEM analysis and DLS analysis and successively used as colorimetric sensors for different metals in aqueous solution. The colourimetric assay showed that AgNPs@OPE were able to detect Pb2+ and Cd2+, as demonstrated by the splits of surface plasmon resonance (SPR) band accompanied by the formation of a second new band; these spectral modification resulted in a colour change, from pristine nanoparticles' yellow to brown, due to the aggregation process. For the quantification of each of the two target cations, a calibration was performed by using the univariate linear regression, within the linearity ranges, exploiting the absorbance ratio between the main SPR band and the new band relative to the aggregate formation. Then a multivariate approach was followed to perform both Cd2+ and Pb2+ quantification by means of Partial Least Square regression (PLS) and target cations distinction by Linear Discriminant Analysis (LDA) applied on Principal Components Analysis (PCA) outputs, in both cases using the entire UV-Vis spectra (350-800 nm) as input data. Finally, the ability to quantify and distinguish between Cd2+ and Pb2+ was tested in tap water samples spiked with the two cations in order to confirm the application of the AgNPs@OPE as selective sensor in real samples.
Collapse
Affiliation(s)
- Marco Zannotti
- School of Science and Technology, ChIP Research Center, Chemistry Division, University of Camerino, 62032 Camerino, Italy
| | - Sara Piras
- School of Science and Technology, ChIP Research Center, Chemistry Division, University of Camerino, 62032 Camerino, Italy
| | - Lisa Rita Magnaghi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Raffaela Biesuz
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Rita Giovannetti
- School of Science and Technology, ChIP Research Center, Chemistry Division, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
3
|
Kumar A, Prabha M, Tiwari P, Malviya T, Singh V. Xanthan gum-capped Chromia Nanoparticles (XG-CrNPs): A promising nanoprobe for the detection of heavy metal ions. Int J Biol Macromol 2024; 266:131192. [PMID: 38574641 DOI: 10.1016/j.ijbiomac.2024.131192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The present study reports on the selective and sensitive detection of metals using xanthan gum-capped chromia nanoparticles (XG-CrNPs). The nanoparticles were synthesized by the chemical reduction method using sodium borohydride and xanthan gum as the reducing and capping agents, respectively. The synthesis of XG-CrNPs was confirmed by the appearance of the two absorption peaks at 272 nm and 371 nm in the UV-visible region. The nanoparticles have been extensively characterized by FTIR, TEM-EDX, XRD, and TGA analyses. The well-dispersed XG-CrNPs exhibited a quasi-spherical structure with an average particle size of 3 nm. A significantly low amount (2 μg/L) of XG-CrNPs was used for selective and sensitive detection of heavy metal ions. It showed excellent metal detecting properties by quenching its band gap signal which was extraordinarily conspicuous for Co(II), Hg(II), and Cd(II) in comparison to other metal ions like Ag(I), Ba(II), Mg(II), Mn(II), Ni(II), and Zn(II). The limit of detection of Co(II), Cd(II), and Hg(II) with this nanoprobe was found to be 2.167 μM, 1.065 μM, and 0.601 μM respectively. The nanoparticles manifested higher shelf-life and can be reused up to three consecutive cycles where most of its activity was conserved even after being used. Thus, it may find use in metal sensor devices for the detection of hazardous metals.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Mani Prabha
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Puneet Tiwari
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Tulika Malviya
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Vandana Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
4
|
Wang Z, Tian H, Liu J, Wang J, Lu Q, Xie L. Cd(II) adsorption on earth-abundant serpentine in aqueous environment: Role of interfacial ion specificity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121845. [PMID: 37209895 DOI: 10.1016/j.envpol.2023.121845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Adsorption of heavy metal ions (e.g., Cd(II)) on clay minerals significantly affects their transport and fate in natural and engineered waterbodies. To date, the role of interfacial ion specificity in the adsorption of Cd(II) on earth-abundant serpentine remains elusive. In this work, the adsorption of Cd(II) on serpentine at typical environment conditions (pH 4.5-5.0), particularly under the complex influence of common environmental anions (e.g., NO3-, SO42-) and cations (e.g., K+, Ca2+, Fe3+, Al3+) was systemically investigated. It was found that the adsorption of Cd(II) on serpentine surface due to the inner-sphere complexation could be negligibly affected by the anion type, yet the cations specifically modulated the Cd(II) adsorption. The presence of mono- and divalent cations moderately enhanced the Cd(II) adsorption by weakening the electrostatic double layer (EDL) repulsion between Cd(II) and Mg-O plane of serpentine, while trivalent cations significantly suppressed the adsorption of Cd(II) due to the competitive adsorption. Based on the spectroscopy analysis, Fe3+ and Al3+ were found to robustly bind the surface active sites of serpentine, thereby preventing the inner-sphere adsorption of Cd(II). The density functional theory (DFT) calculation indicated that Fe(III) and Al(III) exhibited the larger adsorption energy (Ead = -146.1 and -516.1 kcal mol-1, respectively) and stronger electron transfer capacity with serpentine compared to Cd(II) (Ead = -118.1 kcal mol-1), thus resulting in the formation of more stable Fe(III)-O and Al(III)-O inner-sphere complexes. This study provides valuable insights into the influence of interfacial ion specificity on the Cd(II) adsorption in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Zhoujie Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | - Huadong Tian
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | - Jing Liu
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing, 100191, PR China
| | - Jingyi Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, PR China
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, AB, Canada
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
5
|
Sun Z, Qing M, Fan YZ, Yan H, Li NB, Luo HQ. Quadruple analyte responsive platform: Point-of-care testing and multi-coding logic computation based on metal ions recognition and selective response. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129331. [PMID: 35709623 DOI: 10.1016/j.jhazmat.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
While it is recognized that instrumentation techniques can provide precise and sensitive solutions to heavy metal ion monitoring, it remains challenging to transform laboratory testing into a convenient, on-site, and quantitative sensing platform for point-of-care testing (POCT) in a resource-constrained setting. To address these limitations, an affordable and user-friendly colorimetric POCT sensing system is proposed here for selectively monitoring four metal ions (Fe3+, Co2+, Pb2+, and Cd2+) based on the sulfur quantum dots (S dots). Quadruple distinct visual signals (green, brown, precipitation, and bright yellow) are presented on the fabricated paper-based analytical devices (PADs) when mixing S dots and metal ions. The high-quality photographs of the PADs are captured by a scanner, while a smartphone App converts visual signals to HSV values. The quantitative analysis relies on the digital colorimetric reading, and the limits of detection are 0.59, 0.47, 0.82, and 0.53 μM for Fe3+, Co2+, Cd2+, and Pb2+, respectively. This metal ions-responsive platform is engineered as a smart strategy for multiple logic operations (YES, NOT, AND, INHIBIT, and NOR) by integrating multi-responsive blocks into the S dots with encoded patterns, which improves the computing capability. Accordingly, this strategy demonstrates its potential for on-site environmental testing and sophisticated molecular computation.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Qing
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Zhu Fan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hang Yan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
RasulKhan B, Ponnaiah SK, Balasubramanian J, Periakaruppan P. Novel Carbon Quantum Dotted Reduced Graphene Oxide Nanosheets for Nano-molar Range Cadmium Quantification. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Hyder A, Buledi JA, Nawaz M, Rajpar DB, Shah ZUH, Orooji Y, Yola ML, Karimi-Maleh H, Lin H, Solangi AR. Identification of heavy metal ions from aqueous environment through gold, Silver and Copper Nanoparticles: An excellent colorimetric approach. ENVIRONMENTAL RESEARCH 2022; 205:112475. [PMID: 34863692 DOI: 10.1016/j.envres.2021.112475] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has become a severe threat to human health and the environment for many years. Their extensive release can severely damage the environment and promote the generation of many harmful diseases of public health concerns. These toxic heavy metals can cause many health problems such as brain damage, kidney failure, immune system disorder, muscle weakness, paralysis of the limbs, cardio complaint, nervous system. For many years, researchers focus on developing specific reliable analytical methods for the determination of heavy metal ions and preventing their acute toxicity to a significant extent. The modern researchers intended to utilize efficient and discerning materials, e.g. nanomaterials, especially the metal nanoparticles to detect heavy metal ions from different real sources rapidly. The metal nanoparticles have been broadly utilized as a sensing material for the colorimetric detection of toxic metal ions. The metal nanoparticles such as Gold (Au), Silver (Ag), and Copper (Cu) exhibited localized plasmon surface resonance (LPSR) properties which adds an outstanding contribution to the colorimetric sensing field. Though, the stability of metal nanoparticles was major issue to be exploited colorimetric sensing of heavy emtal ions, but from last decade different capping and stabilizing agents such as amino acids, vitmains, acids and ploymers were used to functionalize the metal surface of metal nanoparticles. These capping agents prevent the agglomeration of nanoparticles and make them more active for prolong period of time. This review covers a comprehensive work carried out for colorimetric detection of heavy metals based on metal nanoparticles from the year 2014 to onwards.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Muhammad Nawaz
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Dhani B Rajpar
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, Iran.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| |
Collapse
|
8
|
Mondal S, Dey S. Strategy to Design a Flexible and Macromolecular Sensor to Bind Cd 2+ Ions: A Complete Photophysical Analysis and Bio-Imaging Study. ACS OMEGA 2021; 6:27936-27945. [PMID: 34722993 PMCID: PMC8552341 DOI: 10.1021/acsomega.1c03793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A novel triazole-bridged coumarin-benzimidazole-conjugated fluorescence sensor (4) has been developed for selective detection of Cd2+ over other competitive metal ions. The sensor exhibited quick "turn-on" responses upon interaction with a very low level of Cd2+ (14 nM). The photophysical changes in the complexation of Cd2+ with sensor 4 have been explained through the excited-state intramolecular proton transfer mechanism. The involvement of benzimidazole and triazole moieties in Cd2+ binding was confirmed by different spectroscopic techniques such as UV-vis, Fourier transform infrared, nuclear magnetic resonance, and ESI mass. The diameter of the circular shape of the sensor decreased upon complexation with Cd2+, which was confirmed by field-emission scanning electron microscopy. Furthermore, the quantum chemical (density functional theory) calculation supported the mechanism of interactions and the mode of binding of 4 toward Cd2+. The sensor was more effective for finding Cd2+ in two living cells, C6 (rat glial cell) and Hep G2 (human liver cell).
Collapse
Affiliation(s)
- Surajit Mondal
- Department of Chemistry, Indian
Institute of Technology (ISM), Dhanbad 826004, India
| | - Swapan Dey
- Department of Chemistry, Indian
Institute of Technology (ISM), Dhanbad 826004, India
| |
Collapse
|
9
|
Amirjani A, Rahbarimehr E. Recent advances in functionalization of plasmonic nanostructures for optical sensing. Mikrochim Acta 2021; 188:57. [PMID: 33506310 DOI: 10.1007/s00604-021-04714-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
This review summarizes the progress that has been made in the use of nanostructured SPR-based chemical sensors and biosensors. Following an introduction into the field, a first large section covers principles of nanomaterial-based SPR sensing, mainly on methods using noble metal nanoparticles (spheres, cubes, triangular plates, etc.). The next section covers methods for functionalization of plasmonic nanostructures, with subsections on functionalization using (a) amino acids and proteins; (b) oligonucleotides, (c) organic polymers, and (d) organic compounds. Several tables are presented that give an overview on the wealth of methods and materials published. A concluding section summarizes the current status, addresses current challenges, and gives an outlook on potential future trends. This review is not intended to be a comprehensive compilation of the literature in the field but rather is a systematic overview of the state of the art in surface chemistry of plasmonic nanostructures. The ability of various ligands and receptors for functionalization of nanoparticles as well as their sensing capability is discussed.
Collapse
Affiliation(s)
- Amirmostafa Amirjani
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran.
| | - Erfan Rahbarimehr
- Department of Chemistry, Université de Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
10
|
Dayanidhi K, Sheik Eusuff N. Distinctive detection of Fe 2+ and Fe 3+ by biosurfactant capped silver nanoparticles via naked eye colorimetric sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj01342d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Distinctive detection of Fe2+ and Fe3+via naked eye colorimetic sensing.
Collapse
Affiliation(s)
- Kalaivani Dayanidhi
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| | - Noorjahan Sheik Eusuff
- PG & Research Department of Chemistry
- Guru Nanak College (Autonomous)
- Affiliated to University of Madras
- Velachery
- Chennai
| |
Collapse
|
11
|
Colorimetric detection of Cr 6+ ions based on surface plasma resonance using the catalytic etching of gold nano-double cone @ silver nanorods. Anal Chim Acta 2020; 1149:238141. [PMID: 33551058 DOI: 10.1016/j.aca.2020.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022]
Abstract
Hexavalent chromium ion (Cr6+) is highly toxic to human health and environment. Herein, high-performance detection of Cr6+ is of great import. In this study, a rapid and sensitive multicolor colorimetric method for detection of Cr6+ in aqueous solution was established on the basis of Cr6+ etching of gold nano-double cone@silver nanorods (Au NDC@Ag NRs). Au NDC@Ag NRs was synthesized by a modified seed-mediated growth method. The catalytic etching induced by Cr6+ changed the morphology of Au NDC@Ag NRs, leading to the attenuation of surface plasma resonance (SPR) and the redshift of absorption spectra. Meanwhile, Au NDC@Ag NRs exhibits obvious color changes from orange to pink, to purple, and finally becomes colorless with the increasing concentrations of Cr6+. With such a design, naked-eye detection of Cr6+ was realized with high sensitivity. The proposed multicolor sensing method showed a good linearity between the redshift change of absorption peak (△λ) and the concentrations of Cr6+ in the range from 2.5 to 40 μM. The limit of detection (LOD) was calculated as 1.69 μM in aqueous solution. In addition, successful detection of Cr6+ in tap water and Yangtze River water, indicating the real applications of Au NDC@Ag NRs probe in monitoring Cr6+ in environment.
Collapse
|
12
|
Peng S, Lv J, Liu G, Fan C, Pu S. A photochromic diarylethene-functionalized fluorescent probe for Cd2+ and Zn2+ detections. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Abbasabadi MK, Shirkhanloo H. Speciation of cadmium in human blood samples based on Fe3O4-supported naphthalene-1-thiol- functionalized graphene oxide nanocomposite by ultrasound-assisted dispersive magnetic micro solid phase extraction. J Pharm Biomed Anal 2020; 189:113455. [DOI: 10.1016/j.jpba.2020.113455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
|
14
|
The Performance of Various SWCNT Loading into CuO–PMMA Nanocomposites Towards the Detection of Mn2+ Ions. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01591-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Abstract
This review provides an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants. The topic is really hot considering the implications for human health and environment due to water pollutants. In fact, the pollutants present in the water disturb the spontaneity of life-related mechanisms, such as the synthesis of cellular constituents and the transport of nutrients into cells, and this causes long / short-term diseases. For this reason, research continuously tends to develop always innovative, selective and efficient processes / technologies to remove pollutants from water. In this paper we will report on the silver nanoparticles synthesis, paying attention to the stabilizers and mostly used ligands, to the characterizations, to the properties and applications as colorimetric sensors for water pollutants. As water pollutants our attention will be focused on several heavy metals ions, such as Hg(II), Ni(II),Cu(II), Fe(III), Mn(II), Cr(III/V) Co(II) Cd(II), Pb(II), due to their dangerous effects on human health. In addition, several systems based on silver nanoparticles employed as pesticides colorimetric sensors in water will be also discussed. All of this with the aim to provide to readers a guide about recent advanced silver nanomaterials, used as colorimetric sensors in water.
Collapse
|
16
|
Zhou ZQ, Liao YP, Yang J, Huang S, Xiao Q, Yang LY, Liu Y. Rapid ratiometric detection of Cd 2+ based on the formation of ZnSe/CdS quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117795. [PMID: 31753647 DOI: 10.1016/j.saa.2019.117795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Developing simple and sensitive non-aggregation strategy for detecting Cd2+ is necessary for improving the selectivity and sensitivity of probe. Here, we establish a simple, rapid and ratiometric strategy for the recognition of Cd2+ based on the formation of core-shell ZnSe/CdS structure using ZnSe quantum dots (QDs). The transformation from binary ZnSe QDs to core-shell ZnSe/CdS QDs both change the elemental composition and structure of ZnSe QDs, leading to the changes in band gap of ZnSe QDs, which could be observed in the UV-vis spectra. In the detection process, ZnSe QDs only possess absorption peak at 343 nm, the formation of ZnSe/CdS after the addition of Cd2+ leads to the appearance of the new peak at 397 nm, while other heavy metal ions could not cause the appearance of new absorption peak. Therefore, this strategy shows good selectivity for Cd2+ detection. Based on this strategy, the limit of detection (LOD) for Cd2+ is 11 nM by UV-vis spectroscopy with a desirable relation of linearity (R2 = 0.999) between A397/A343 and Cd2+ contents, which is superior to the LOD of most reported nanomaterials. The response time for Cd2+ detection is as short as 60 s, which is suitable for rapid detection. This ratiometric probe has also been applied to the detection of Cd2+ in tap water samples, the recovery of Cd2+ was between 94.9% and 105.6% for tap water samples, indicating the high accuracy of our ratiometric assay. Our strategy not only provided a new method for detecting Cd2+, but also put forward an implication that the band energy changes of QDs caused by heavy metal ions can be applied in the selective and sensitive detection of heavy metal ions.
Collapse
Affiliation(s)
- Zhi-Qiang Zhou
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China; Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yuan-Ping Liao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Jing Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China
| | - Li-Yun Yang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China.
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, PR China; Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
17
|
Sahu S, Sharma S, Ghosh KK. Novel formation of Au/Ag bimetallic nanoparticles from a mixture of monometallic nanoparticles and their application for the rapid detection of lead in onion samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj02994g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Characterization of gold, silver and gold/silver bimetallic nanoparticles for colorimetric detection of lead in onion samples.
Collapse
Affiliation(s)
- Sushama Sahu
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur 492010
- India
| | - Srishti Sharma
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur 492010
- India
| | - Kallol K. Ghosh
- School of Studies in Chemistry
- Pt. Ravishankar Shukla University
- Raipur 492010
- India
| |
Collapse
|
18
|
Burratti L, Ciotta E, Bolli E, Kaciulis S, Casalboni M, De Matteis F, Garzón-Manjón A, Scheu C, Pizzoferrato R, Prosposito P. Fluorescence enhancement induced by the interaction of silver nanoclusters with lead ions in water. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123634] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Abukhadra MR, Bakry BM, Adlii A, Yakout SM, El-Zaidy ME. Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn 2+, Cd 2+, Pb 2+, and Cr 6+) from water. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:296-308. [PMID: 31009894 DOI: 10.1016/j.jhazmat.2019.04.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 05/18/2023]
Abstract
Kaolinite nanotubes (KNTs) were synthesized from kaolinite by ultrasonic scrolling and characterized using X-ray diffractometer, scanning and transmission electron microscopes; and FTIR-FT Raman spectrometer. The synthetic KNTs appear as multi-walled scrolls of 12 nm average pore diameter and 50-600 nm particle length; and exhibit surface area of 105 m2/g. KNTs were used as adsorbents for Zn2+, Cd2+, Pb2+, and Cr6+ with uptake capacities of 103 mg/g, 116 mg/g, 89 mg/g, and 91 mg/g, respectively. The equilibration time of Cd2+ and Pb2+ adsorption is 360 min and for Cr6+ and Zn2+ area 120 min and 240 min, respectively. KNTs adsorption systems can be described mainly by Lagergren-second order and Freundlich models (R2> 0.95) as kinetic and isotherm models. This reflected multilayer adsorption forms with chemical sharing or ion exchange processes. KNTs exhibits high reusability and used for five cycles in the removal of the studied metals (100 mg/L). The removal percentages declined by 20.5%, 15.12%, 22.8% and 23.16% with repeating the reused cycles from cycle 1 to cycle 5 for Zn2+, Cd2+, Pb2+, and Cr6+, respectively. KNTs were applied successfully in realistic purification of tap water, groundwater, and sewage water from the inspected metals.
Collapse
Affiliation(s)
| | - Belal Mohamed Bakry
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62514, Beni-Suef City, Egypt
| | - Alyaa Adlii
- Department of Chemistry, Faculty of Education, Beni-Suef University, 62514, Beni-Suef City, Egypt
| | - Sobhy M Yakout
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed E El-Zaidy
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
20
|
Desai ML, Basu H, Singhal RK, Saha S, Kailasa SK. Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Painuli R, Raghav S, Kumar D. Selective Interactions of Al(III) with Plasmonic AgNPs by Colorimetric, Kinetic, and Thermodynamic Studies. ACS OMEGA 2019; 4:3635-3645. [PMID: 31459576 PMCID: PMC6648440 DOI: 10.1021/acsomega.8b01945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 06/10/2023]
Abstract
In this paper, we report a simple, novel, and highly selective plasmonic nanoparticles (NPs)-based colorimetric nanoprobe for the detection of Al(III) ions in aqueous solution. 5-Hydroxy indole-2-carboxylic acid (5H-I2CA) was utilized as a reducing as well as capping agent for the preparation of silver nanoparticles (5H-I2CA@AgNPs). The interaction between Al(III) and AgNPs was determined by UV-vis absorption spectroscopy, high-resolution transmission electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, and dynamic light scattering techniques. The absorption values (A 452-410) of the 5H-I2CA@AgNPs solution exhibited a linear correlation with Al(III) ion concentrations within the linear range of 0.1-50 nM. An outstanding selectivity toward Al(III) was demonstrated by the proposed nanoprobe in the presence of interfering cations. Kinetics was used to study the selectivity of nanoprobe, which indicated second-order kinetics, and the rate constant was very high. The activation energies of Al(III) were found to be the lowest compared to those of other interfering ions. The results of kinetics and thermodynamic study of Al(III) were compared to those of four other competing ions. The thermodynamic data reveal that the interaction best suited for Al(III) ion compared to other metal ions (Al(III) > Co(II) > Hg(II) > Cr(III) ≅ Cr(VI)). The lower detection limit of the proposed nanoprobe for Al(III) is 1 nM. The present method also holds practical applicability for real water samples.
Collapse
Affiliation(s)
- Ritu Painuli
- Department
of Chemistry, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Sapna Raghav
- Department
of Chemistry, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Dinesh Kumar
- Department
of Chemistry, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
- School
of Chemical Sciences, Central University
of Gujarat, Gandhinagar 382030, Gujarat, India
| |
Collapse
|
22
|
Li X, Zhang S, Dang Y, Liu Z, Zhang Z, Shan D, Zhang X, Wang T, Lu X. Ultratrace Naked-Eye Colorimetric Ratio Assay of Chromium(III) Ion in Aqueous Solution via Stimuli-Responsive Morphological Transformation of Silver Nanoflakes. Anal Chem 2019; 91:4031-4038. [DOI: 10.1021/acs.analchem.8b05472] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuemei Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xuehong Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Tiansheng Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, People’s Republic of China
| |
Collapse
|
23
|
Singh K, Kukkar D, Singh R, Kukkar P, Kim KH. Exceptionally stable green-synthesized gold nanoparticles for highly sensitive and selective colorimetric detection of trace metal ions and volatile aromatic compounds. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Abukhadra MR, Dardir FM, Shaban M, Ahmed EA, Soliman MF. Superior removal of Co 2+, Cu 2+ and Zn 2+ contaminants from water utilizing spongy Ni/Fe carbonate-fluorapatite; preparation, application and mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:358-368. [PMID: 29631091 DOI: 10.1016/j.ecoenv.2018.03.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Spongy Ni/Fe carbonate - fluorapatite was synthesized from natural phosphorite enriched with iron impurities. The morphological, chemical and structural features of the product were estimated using several techniques as XRD, SEM, EDX, and FT-IR. It exhibits spongy structure of nano and micro-pores. The average crystallite size is about 8.27 nm. The suitability of the product for considerable decontamination of Zn2+, Co2+, and Cu2+, ions from water was studied based on several reacting parameters. The equilibrium was attained after 240 min for Zn2+ and Co2+ ions while the adsorption equilibrium of Cu2+ reached after 120 min. The adsorption data for the selected metals was represented well by a pseudo-second-order model which revealed chemisorption uptake. The equilibrium studies were appraised based on traditional models and two advanced models were designed according to the statistical physical theories. The adsorption results highly fitted with Langmuir model followed rather than the other models. This indicated a monolayer adsorption for the metal ions by spongy Ni/Fe carbonate - fluorapatite. The estimated qmax values are 149.25 mg/g, 106.4 mg/g and 147.5 mg/g for the uptake of Zn2+, Co2+, and Cu2+, respectively. Based on monolayer models of one energy and two energies, the number of receptor adsorption sites, number of adsorbed metal ions per active site, the average number of sites which occupied by ions, mono layer adsorption quantity and the adsorption quantity after total saturation were calculated for the first time for such materials.
Collapse
Affiliation(s)
- Mostafa R Abukhadra
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Fatma M Dardir
- Geology Department, Faculty of Science, Assiut University, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ezzat A Ahmed
- Geology Department, Faculty of Science, Assiut University, Egypt
| | | |
Collapse
|
25
|
Basiri S, Mehdinia A, Jabbari A. A sensitive triple colorimetric sensor based on plasmonic response quenching of green synthesized silver nanoparticles for determination of Fe 2+ , hydrogen peroxide, and glucose. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Ma S, He J, Guo M, Sun X, Zheng M, Wang Y. Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Shaban M, Abukhadra MR, Khan AAP, Jibali BM. Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.10.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Guo S, Liu G, Fan C, Pu S. A highly selective fluorescent probe for detection of Cd2+ and HSO3− based on photochromic diarylethene with a triazole-bridged coumarin-quinoline group. RSC Adv 2018; 8:22786-22798. [PMID: 35539720 PMCID: PMC9081447 DOI: 10.1039/c8ra03443e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022] Open
Abstract
A novel photochromic diarylethene containing a quinoline-linked 3-aminocoumarin Schiff base unit (1O) was synthesized and used for the selective detection of Cd2+ and HSO3−. The synthesized probe exhibited a straightforward response for the selective detection of Cd2+. Its fluorescence emission red-shifted ∼126 nm and was enhanced 24.9 fold in the presence of Cd2+. Meanwhile, the fluorescence color of 1O changed from dark cyan to golden yellow. The binding stoichiometry between 1O and Cd2+ was determined to be 1 : 1. A molecular logic circuit with three inputs and one output was successfully constructed with its light and metal-responsive behaviors. In addition, 1O was able to selectively recognize HSO3− with a 135-fold enhanced fluorescence emission and a notable fluorescence color change from dark cyan to bright cyan. The 1H NMR and mass spectrometry analyses suggest that the HSO3− sensing of 1O is based on the hydrolysis of the Schiff base group of 1O. A novel photochromic diarylethene containing a quinoline-linked 3-aminocoumarin Schiff base unit (1O) was synthesized and used for the selective detection of Cd2+ and HSO3−.![]()
Collapse
Affiliation(s)
- Shuli Guo
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- PR China
| |
Collapse
|
29
|
Tian Y, Liu Q, Jiao Y, Jia R, Chen Z. Colorimetric aggregation based cadmium(II) assay by using triangular silver nanoplates functionalized with 1-amino-2-naphthol-4-sulfonate. Mikrochim Acta 2017; 185:6. [DOI: 10.1007/s00604-017-2571-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022]
|
30
|
Yan Z, Zhao Q, Wen M, Hu L, Zhang X, You J. A novel polydentate ligand chromophore for simultaneously colorimetric detection of trace Ag + and Fe3 . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 186:17-22. [PMID: 28600992 DOI: 10.1016/j.saa.2017.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
A novel polydentate ligand chromophore, 3,6-di-(N-ethyl-N-ethoxyl phenylazo) acridine (EEPA), was identified and synthesized. After its structure was characterized by FTIR, 1H NMR, mass spectra and element analyses, it was noted to find that there was a simultaneously colorimetric response to Ag+ and Fe3+ accompanying with different color changes, i.e., from brown to light purple for Ag+ and further to purple-red for Fe3+, respectively. Their different action mechanisms, a 1:2 complex mode for EEPA-Ag+ and 1:1 for EEPA-Fe3+, were investigated and confirmed by means of Job's plot and theoretical calculation. EEPA would be a potential colorimetric chemo-dosimeter for simultaneous detection of Ag+ and Fe3+ with the detection limits of 1.6nmol·L-1 and 69nmol·L-1, respectively.
Collapse
Affiliation(s)
- Zhengquan Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, China.
| | - Qi Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, China
| | - Meijun Wen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, China.
| | - Xuezhong Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, China
| | - Jinmao You
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China; Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
31
|
Drozd M, Pietrzak M, Kalinowska D, Grabowska-Jadach I, Malinowska E. Glucose dithiocarbamate derivatives as capping ligands of water-soluble CdSeS/ZnS quantum dots. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|