1
|
He JF, Yang WW, Quan WX, Yang YC, Zhang Z, Luo QY. Application of rare earth elements in dual-modality molecular probes. RSC Adv 2024; 14:38480-38490. [PMID: 39640527 PMCID: PMC11618533 DOI: 10.1039/d4ra04987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The unique 4f subshell electronic structure of rare earth elements endows them with exceptional properties in electrical, magnetic, and optical domains. These properties include prolonged fluorescence lifetimes, large Stokes shifts, distinctive spectral bands, and strong resistance to photobleaching, making them ideal for the synthesis of molecular probes. Each imaging technique possesses unique advantages and specific applicabilities but also inherent limitations due to its operational principles. Dual-modality molecular probes effectively address these limitations, particularly in applications involving high-resolution Magnetic Resonance Imaging (MRI) such as MRI/OI, MRI/PET, MRI/CT, and MRI/US. This review summarizes the applications, advantages, challenges, and current research status of rare earth elements in these four dual imaging modalities, providing a theoretical basis for the future development and application of rare earth elements in the field of dual-modality molecular probes.
Collapse
Affiliation(s)
- Jie-Fang He
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
| | - Wen-Wen Yang
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Wen-Xuan Quan
- Provincial Key Laboratory of Mountainous Ecological Environment, Guizhou Normal University Guiyang 550025 China
| | - Yue-Chun Yang
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhengwei Zhang
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Qing-Ying Luo
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| |
Collapse
|
2
|
Neilio JM, Ginat DT. Emerging Head and Neck Tumor Targeting Contrast Agents for the Purpose of CT, MRI, and Multimodal Diagnostic Imaging: A Molecular Review. Diagnostics (Basel) 2024; 14:1666. [PMID: 39125542 PMCID: PMC11311342 DOI: 10.3390/diagnostics14151666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The diagnosis and treatment of head and neck tumors present significant challenges due to their infiltrative nature and diagnostic hindrances such as the blood-brain barrier. The intricate anatomy of the head and neck region also complicates the clear identification of tumor boundaries and assessment of tumor characteristics. AIM This review aims to explore the efficacy of molecular imaging techniques that employ targeted contrast agents in head and neck cancer imaging. Head and neck cancer imaging benefits significantly from the combined advantages of CT and MRI. CT excels in providing swift, high-contrast images, enabling the accurate localization of tumors, while MRI offers superior soft tissue resolution, contributing to the detailed evaluation of tumor morphology in this region of the body. Many of these novel contrast agents have integration of dual-modal, triple-modal, or even dual-tissue targeting imaging, which have expanded the horizons of molecular imaging. Emerging contrast agents for the purpose of MRI and CT also include the widely used standards in imaging such as gadolinium and iodine-based agents, respectively, but with peptide, polypeptide, or polymeric functionalizations. Relevance for patients. For patients, the development and use of these targeted contrast agents have potentially significant implications. They benefit from the enhanced accuracy of tumor detection and characterization, which are critical for effective treatment planning. Additionally, these agents offer improved imaging contrast with the added benefit of reduced toxicity and bioaccumulation. The summarization of preclinical nanoparticle research in this review serves as a valuable resource for scientists and students working towards advancing tumor diagnosis and treatment with targeted contrast agents.
Collapse
Affiliation(s)
- Jonathan M. Neilio
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Liu N, Homann C, Morfin S, Kesanakurti MS, Calvert ND, Shuhendler AJ, Al T, Hemmer E. Core-multi-shell design: unlocking multimodal capabilities in lanthanide-based nanoparticles as upconverting, T2-weighted MRI and CT probes. NANOSCALE 2023. [PMID: 37982139 DOI: 10.1039/d3nr05380f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Multimodal bioimaging probes merging optical imaging, magnetic resonance imaging (MRI), and X-ray computed tomography (CT) capabilities have attracted considerable attention due to their potential biomedical applications. Lanthanide-based nanoparticles are promising candidates for multimodal imaging because of their optical, magnetic and X-ray attenuation properties. We prepared a set of hexagonal-phase (β)-NaGdF4:Yb,Er/NaGdF4/NaDyF4 core/shell/shell nanoparticles (Dy-CSS NPs) and demonstrated their optical/T2-weighted MRI/CT multimodal capabilities. A known drawback of multimodal probes that merge the upconverting Er3+/Yb3+ ion pair with magnetic Dy3+ ions for T2-weighted MRI is the loss of upconversion (UC) emission due to Dy3+ poisoning. Particular attention was paid to controlled nanoparticle architectures with tuned inner shell thicknesses separating Dy3+ and Er3+/Yb3+ to shed light on the distance-dependent loss of UC due to Yb3+ → Dy3+ energy transfer. Based on the Er3+ UC spectra and the excited state lifetime of Yb3+, a 4 nm thick NaGdF4 inner shell did not only restore but enhanced the UC emission. We further investigated the effect of the outer NaDyF4 shell thickness on the particles' magnetic and CT performance. MRI T2 relaxivity measurements in vitro at a magnetic field of 7 T performed on citrate-capped Dy-CSS NPs revealed that NPs with the thickest outer shell thickness (4 nm) exhibited the highest r2 value, with a superior T2 contrast effect compared to commercial iron oxide and other Dy-based T2 contrast agents. In addition, the citrate-capped Dy-CSS NPs were demonstrated suitable for CT in in vitro imaging phantoms at X-ray energies of 110 keV, rendering them interesting alternatives to clinically used iodine-based agents that operate at lower energies.
Collapse
Affiliation(s)
- Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Christian Homann
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Samuel Morfin
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Meghana S Kesanakurti
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| | - Nicholas D Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Tom Al
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Cui S, Wang B, Zhai C, Wei S, Zhang H, Sun G. A double rare earth doped CD nanoplatform for nanocatalytic/starving-like synergistic therapy with GSH-depletion and enhanced reactive oxygen species generation. J Mater Chem B 2023; 11:7986-7997. [PMID: 37523206 DOI: 10.1039/d3tb00959a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cancer has been one of the principal diseases threatening human health in the world. Traditional chemotherapy, radiotherapy and surgery in clinical applications have some disadvantages, such as inefficiency, low specificity, and serious side effects. Therefore, some emerging synergistic therapies have been developed for more accurate diagnosis and more efficient treatment of cancer. Herein, novel Ce-Gd@CDs-GOx nanozymes were obtained by combining magnetic resonance/fluorescence (MR/FL) imaging and nanocatalytic/starving-like synergistic therapy for tumor tissue imaging and efficient cancer treatment. The as-prepared Ce-Gd@CDs-GOx nanozymes with a diameter of 25.0 ± 0.8 nm exhibited favorable physiological stability, negligible toxicity, bright fluorescence and strong T1-weighted MR imaging (MRI) performance (10.97 mM-1 s-1). Moreover, the nanozymes could not only cut off the nutrient supply of tumor cells, but also generate ROS to synergistically enhance antitumor efficacy. The coexistence of Ce3+/Ce4+ in Ce-Gd@CDs-GOx endowed them with attractive capacity for alleviating hypoxia and enhancing GSH consumption to induce the apoptosis of tumor cells. Furthermore, most of the 4T1 cells treated with Ce-Gd@CDs-GOx nanozymes were damaged in the CCK-8 and Calcein-AM/PI staining assays, indicating the excellent efficiency of intracellular synergistic therapy. In summary, this study offered a promising strategy to design a nanoplatform for MR/FL imaging-guided nanocatalytic and starvation-like synergistic therapy of cancer.
Collapse
Affiliation(s)
- Shufeng Cui
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Bin Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Changyu Zhai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Shi X, Gao K, Zhang G, Zhang W, Yang X, Gao R. Signal Amplification Pretargeted PET/Fluorescence Imaging Based on Human Serum Albumin-Encapsulated GdF 3 Nanoparticles for Diagnosis of Ovarian Cancer. ACS Biomater Sci Eng 2022; 8:4956-4964. [PMID: 36218278 DOI: 10.1021/acsbiomaterials.2c00374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Different modal imaging techniques could be complementary in tumor diagnosis. Human serum albumin (HSA)-encapsulated GdF3 nanoparticles were developed as T1 magnetic resonance imaging (MRI) contrast agents. However, no significant T1 enhancement in the tumor site of the SKOV3 human ovarian cancer xenograft tumor model was observed within 3 h after injection of tetrazine-modified GdF3@HSA NPs through small-animal MRI. After intravenous injection of 18F (or Cy7)-labeled Reppe anhydride, pretargeted positron emission tomography (PET) (near-infrared (NIR) fluorescence) imaging was used to reveal the pharmacokinetics of GdF3@HSA NPs in the SKOV3 xenograft mouse model to locate the tumor. The probe based on Reppe anhydride achieved rapid ligation with tetrazine-modified GdF3@HSA nanoparticles (NPs), which accumulated in tumor through Reppe anhydride/tetrazine bioorthogonal chemistry. This pretargeting strategy enabled excellent tumor visualization and quantification at an early period after nanoparticle injection (3 h p.i.), while the MRI images with significant T1 enhancement could be obtained until 24 h after injection of Gd-based contrast agents only. In vivo pretargeted multimodal imaging based on the tetrazine/Reppe anhydride system using HSA-encapsulated GdF3 nanoparticles would be beneficial for amplification of the imaging signal in the disease site and enhancing diagnostic efficiency.
Collapse
Affiliation(s)
- Xudong Shi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing100021, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing100021, China
| | - Guoxin Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing100021, China
| | - Wenlong Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing100021, China
| | - Xingjiu Yang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing100021, China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, No. 5 Panjiayuan Nanli, Chaoyang District, Beijing100021, China
| |
Collapse
|
6
|
Kang MS, Lee H, Jeong SJ, Eom TJ, Kim J, Han DW. State of the Art in Carbon Nanomaterials for Photoacoustic Imaging. Biomedicines 2022; 10:biomedicines10061374. [PMID: 35740396 PMCID: PMC9219987 DOI: 10.3390/biomedicines10061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Photoacoustic imaging using energy conversion from light to ultrasound waves has been developed as a powerful tool to investigate in vivo phenomena due to their complex characteristics. In photoacoustic imaging, endogenous chromophores such as oxygenated hemoglobin, deoxygenated hemoglobin, melanin, and lipid provide useful biomedical information at the molecular level. However, these intrinsic absorbers show strong absorbance only in visible or infrared optical windows and have limited light transmission, making them difficult to apply for clinical translation. Therefore, the development of novel exogenous contrast agents capable of increasing imaging depth while ensuring strong light absorption is required. We report here the application of carbon nanomaterials that exhibit unique physical, mechanical, and electrochemical properties as imaging probes in photoacoustic imaging. Classified into specific structures, carbon nanomaterials are synthesized with different substances according to the imaging purposes to modulate the absorption spectra and highly enhance photoacoustic signals. In addition, functional drugs can be loaded into the carbon nanomaterials composite, and effective in vivo monitoring and photothermal therapy can be performed with cell-specific targeting. Diverse applied cases suggest the high potential of carbon nanomaterial-based photoacoustic imaging in in vivo monitoring for clinical research.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Seung Jo Jeong
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
| | - Tae Joong Eom
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: (T.J.E.); (J.K.); (D.-W.H.)
| |
Collapse
|
7
|
Zhang T, Deng M, Zhang L, Liu Z, Liu Y, Song S, Gong T, Yuan Q. Facile Synthesis of Holmium-Based Nanoparticles as a CT and MRI Dual-Modal Imaging for Cancer Diagnosis. Front Oncol 2021; 11:741383. [PMID: 34513716 PMCID: PMC8427799 DOI: 10.3389/fonc.2021.741383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
The rapid development of medical imaging has boosted the abilities of modern medicine. As single modality imaging limits complex cancer diagnostics, dual-modal imaging has come into the spotlight in clinical settings. The rare earth element Holmium (Ho) has intrinsic paramagnetism and great X-ray attenuation due to its high atomic number. These features endow Ho with good potential to be a nanoprobe in combined x-ray computed tomography (CT) and T2-weighted magnetic resonance imaging (MRI). Herein, we present a facile strategy for preparing HoF3 nanoparticles (HoF3 NPs) with modification by PEG 4000. The functional PEG-HoF3 NPs have good water solubility, low cytotoxicity, and biocompatibility as a dual-modal contrast agent. Currently, there is limited systematic and intensive investigation of Ho-based nanomaterials for dual-modal imaging. Our PEG-HoF3 NPs provide a new direction to realize in vitro and vivo CT/MRI imaging, as well as validation of Ho-based nanomaterials will verify their potential for biomedical applications.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Mo Deng
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Lei Zhang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, China
| | - Zerun Liu
- Department of Clinical Pharmacy, Jilin University School of Pharmaceutical Science, Changchun, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Tingting Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Okubo K, Takeda R, Murayama S, Umezawa M, Kamimura M, Osada K, Aoki I, Soga K. Size-controlled bimodal in vivo nanoprobes as near-infrared phosphors and positive contrast agents for magnetic resonance imaging. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:160-172. [PMID: 33762891 PMCID: PMC7952065 DOI: 10.1080/14686996.2021.1887712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Rare-earth-doped nanoparticles (NPs), such as NaGdF4 nanocrystals doped with light-emitting rare earth ions, are promising bimodal probes that allow the integration of over 1000 nm near-infrared (OTN-NIR; NIR-II/III) fluorescence imaging and magnetic resonance imaging (MRI) of live bodies. A precise control of the particle size is the key factor for achieving a high signal-to-noise ratio in both NIR fluorescence and MR images and for regulating their function in the body. In this study, size-controlled NaGdF4:Yb3+, Er3+ NPs prepared by stepwise crystal growth were used for in vivo bimodal imaging. Hexagonal NaGdF4:Yb3+,Er3+ NPs coated with poly(ethylene glycol)-poly(acrylic acid) block copolymer, with hydrodynamic diameters of 15 and 45 nm, were prepared and evaluated as bimodal NPs for OTN-NIR fluorescence imaging and MRI. Their longitudinal (T 1) and transverse (T 2) relaxation rates at the static magnetic field strength of 1.0 T, as well as their cytotoxicity towards NIH3T3 cell lines, were evaluated and compared to study the effect of size. Using these particles, blood vessel visualization was achieved by MRI, with the highest relaxometric ratio (r 1/r 2) of 0.79 reported to date for NaGdF4-based nanoprobes (r 1 = 19.78 mM-1 s-1), and by OTN-NIR fluorescence imaging. The results clearly demonstrate the potential of the size-controlled PEG-modified NaGdF4:Yb3+,Er3+ NPs as powerful 'positive' T 1-weight contrast MRI agents and OTN-NIR fluorophores.
Collapse
Affiliation(s)
- Kyohei Okubo
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryuta Takeda
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shuhei Murayama
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masakazu Umezawa
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masao Kamimura
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kensuke Osada
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Ichio Aoki
- Group of Quantum-state Controlled MRI, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
9
|
Damasco JA, Ohulchanskyy TY, Mahajan S, Chen G, Singh A, Kutscher HL, Huang H, Turowski SG, Spernyak JA, Singh AK, Lovell JF, Seshadri M, Prasad PN. Excretable, ultrasmall hexagonal NaGdF 4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnol 2021; 12:4. [PMID: 33603920 PMCID: PMC7864820 DOI: 10.1186/s12645-021-00075-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/10/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In this study, we report on the synthesis, imaging, and radiosensitizing properties of ultrasmall β-NaGdF4:Yb50% nanoparticles as a multifunctional theranostic platform. The synthesized nanoparticles act as potent bimodal contrast agents with superior imaging properties compared to existing agents used for magnetic resonance imaging (MRI) and computed tomography (CT). Clonogenic assays demonstrated that these nanoparticles can act as effective radiosensitizers, provided that the nanoparticles are taken up intracellularly. RESULTS Our ultrasmall β-NaGdF4:Yb50% nanoparticles demonstrate improvement in T1-weighted contrast over the standard clinical MR imaging agent Gd-DTPA and similar CT signal enhancement capabilities as commercial agent iohexol. A 2 Gy dose of X-ray induced ~ 20% decrease in colony survival when C6 rat glial cells were incubated with non-targeted nanoparticles (NaGdF4:Yb50%), whereas the same X-ray dose resulted in a ~ 60% decrease in colony survival with targeted nanoparticles conjugated to folic acid (NaGdF4:Yb50%-FA). Intravenous administration of nanoparticles resulted in clearance through urine and feces within a short duration, based on the ex vivo analysis of Gd3+ ions via ICP-MS. CONCLUSION These biocompatible and in vivo clearable ultrasmall NaGdF4:Yb50% are promising candidates for further evaluation in image-guided radiotherapy applications.
Collapse
Affiliation(s)
- Jossana A. Damasco
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Tymish Y. Ohulchanskyy
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- College of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, People’s Republic of China
| | - Supriya Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University At Buffalo, The State University of New York, Buffalo, NY 14203 USA
| | - Guanying Chen
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 15001 People’s Republic of China
| | - Ajay Singh
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Hilliard L. Kutscher
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
- Department of Anesthesiology, University At Buffalo, The State University of New York, Buffalo, NY 14214 USA
| | - Haoyuan Huang
- Department of Biomedical Engineering, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Steven G. Turowski
- Translational Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Joseph A. Spernyak
- Translational Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Mukund Seshadri
- Translational Imaging Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
- Department of Oral Oncology/Dentistry and Maxillofacial Prosthetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Paras N. Prasad
- Department of Chemistry and Institute for Lasers, Photonics and Biophotonics, University At Buffalo, The State University of New York, Buffalo, NY 14260 USA
| |
Collapse
|
10
|
Yang J, Shan P, Zhao Q, Zhang S, Li L, Yang X, Yu X, Lu Z, Wang Z, Zhang X. A design strategy of ultrasmall Gd 2O 3 nanoparticles for T1 MRI with high performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj00508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proposing a design strategy of Gd3+ based nanoparticles for high performance magnetic resonance imaging.
Collapse
Affiliation(s)
- Jianfeng Yang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Pengyuan Shan
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Qingling Zhao
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Shuquan Zhang
- Department of Orthopedics
- Tianjin Nankai Hospital
- Nankai
- Tianjin
- China
| | - Lanlan Li
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Xiaojing Yang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Xiaofei Yu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Zunming Lu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Ziwu Wang
- Department of Physics
- Tianjin University
- Tianjin
- China
| | - Xinghua Zhang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| |
Collapse
|
11
|
Li X, Sun Y, Ma L, Liu G, Wang Z. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020; 25:E5072. [PMID: 33139643 PMCID: PMC7662352 DOI: 10.3390/molecules25215072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The advancements of magnetic resonance imaging contrast agents (MRCAs) are continuously driven by the critical needs for early detection and diagnosis of diseases, especially for cancer, because MRCAs improve diagnostic accuracy significantly. Although hydrophilic gadolinium (III) (Gd3+) complex-based MRCAs have achieved great success in clinical practice, the Gd3+-complexes have several inherent drawbacks including Gd3+ leakage and short blood circulation time, resulting in the potential long-term toxicity and narrow imaging time window, respectively. Nanotechnology offers the possibility for the development of nontoxic MRCAs with an enhanced sensitivity and advanced functionalities, such as magnetic resonance imaging (MRI)-guided synergistic therapy. Herein, we provide an overview of recent successes in the development of renal clearable MRCAs, especially nanodots (NDs, also known as ultrasmall nanoparticles (NPs)) by unique advantages such as high relaxivity, long blood circulation time, good biosafety, and multiple functionalities. It is hoped that this review can provide relatively comprehensive information on the construction of novel MRCAs with promising clinical translation.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China;
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (Y.S.); (L.M.)
| |
Collapse
|
12
|
Yan Y, Ding L, Liu L, Abualrejal MMA, Chen H, Wang Z. Renal-clearable hyaluronic acid functionalized NaGdF 4 nanodots with enhanced tumor accumulation. RSC Adv 2020; 10:13872-13878. [PMID: 35492986 PMCID: PMC9051644 DOI: 10.1039/c9ra08974h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Integration of high tumor-targeting capacity, controlling in vivo transport and low normal tissue retention into one engineered nanoparticle is a critical issue for future clinically translatable anti-cancer nanomedicines. Herein, hyaluronic acid functionalized 3.8 nm NaGdF4 nanodots (named NaGdF4 ND@HAs) have been prepared through conjugation of tryptone capped NaGdF4 nanodots (NaGdF4 ND@tryptone) with hyaluronic acid (HA, a naturally occurring glycosaminoglycan), which can recognize the overexpressed CD44 on cancer cell membranes. The as-prepared NaGdF4 ND@HAs have good paramagnetic properties (longitudinal relaxivity (r 1) = 7.57 × 10-3 M S-1) and low cytotoxicity. The in vivo experimental results demonstrate that the NaGdF4 ND@HAs can not only efficiently accumulate in mouse-bearing MDA-MB-231 tumors (ca. 5.3% injection dosage (ID) g-1 at 2 h post-injection), but also have an excellent renal clearance efficiency (ca. 75% injection dosage (ID) at 24 h post-injection). The as-prepared NaGdF4 ND@HAs have good paramagnetic properties with enhanced tumor-targeting capacity, which provides a useful strategy for the preparation of renal clearable magnetic resonance imaging (MRI) contrast agents for tumors.
Collapse
Affiliation(s)
- Yining Yan
- Department of Radiology, China-Japan Union Hospital of Jilin University Xiantai Street Changchun 130033 P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Lei Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University Xiantai Street Changchun 130033 P. R. China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University Xiantai Street Changchun 130033 P. R. China
| | - Murad M A Abualrejal
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei Anhui 230026 P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei Anhui 230026 P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
13
|
Yin HQ, Cao PP, Wang XY, Li YH, Yin XB. Computed Tomography Imaging-Guided Tandem Catalysis-Enhanced Photodynamic Therapy with Gold Nanoparticle Functional Covalent Organic Polymers. ACS APPLIED BIO MATERIALS 2020; 3:2534-2542. [DOI: 10.1021/acsabm.0c00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hua-Qing Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Pei-Pei Cao
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Xin-Yao Wang
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu-Hao Li
- Tianjin Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Shan X, Chen Q, Yin X, Jiang C, Li T, Wei S, Zhang X, Sun G, Liu J, Lu L. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2020; 8:426-437. [DOI: 10.1039/c9tb02254f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A polypyrrole-based theranostic agent containing double rare-earth elements was constructed and demonstrated promising application for T1/T2-weighted MRI/CT tri-modal imaging guided photothermal cancer therapy.
Collapse
|
15
|
Biegger P, Ladd ME, Komljenovic D. Multifunctional Magnetic Resonance Imaging Probes. Recent Results Cancer Res 2020; 216:189-226. [PMID: 32594388 DOI: 10.1007/978-3-030-42618-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging is characterized by high spatial resolution and unsurpassed soft tissue discrimination. Development and characterization of both intrinsic and extrinsic magnetic resonance (MR) imaging probes in the last decade has further strengthened the pivotal role MR imaging holds in the assessment of cancer in preclinical and translational settings. Sophisticated chemical modifications of a variety of nanoparticulate probes hold the potential to deliver valuable multifunctional tools applicable in diagnostics and/or treatment in human oncology. MR imaging suffers from a lack of sensitivity achievable by, e.g., nuclear medicine imaging methods. Advantages of including additional functionality/functionalities in a probe suitable for MR imaging are thus numerous, comprising the addition of fundamentally different imaging information (diagnostics), drug delivery (therapy), or the combination of both (theranostics). In recent years, we have witnessed a plethora of preclinical multimodal or multifunctional imaging probes being published mainly as proof-of-principle studies, yet only a handful are readily applicable in clinical settings. This chapter summarizes recent innovations in the development of multifunctional MR imaging probes and discusses the suitability of these probes for clinical transfer.
Collapse
Affiliation(s)
- Philipp Biegger
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Dorde Komljenovic
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Nie J, Li Y, Han G, Qiu J. In vivo clearable inorganic nanophotonic materials: designs, materials and applications. NANOSCALE 2019; 11:12742-12754. [PMID: 31265038 DOI: 10.1039/c9nr02083g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inorganic nanophotonic materials (INPMs) are considered to be promising diagnosis and therapeutic agents for in vivo applications, such as bio-imaging, photoacoustic imaging and photothermal therapy. However, some concerns remain regarding these materials, such as undesirable long-term in vivo accumulation and associated toxicity. The inability to be degraded or cleared has decreased their likelihood to be used for potential clinical translations. To this end, new strategies have recently emerged to develop systematically clearable INPMs. Thus, this review provides an overview of these strategies used to expedite the clearance of INPMs, as well as the relevant design and functionalized modifications which are available to engineer the above materials. Along with their important applications in the fields of in vivo diagnoses and therapies, the challenges and outlook for in vivo clearable INPMs are also discussed. This attempt to explore in vivo clearable INPMs to inhibit their accumulation toxicity may represent the solution to a ubiquitous physiological issue, thus paving a new avenue for the development of novel optical nanomaterials for biophotonic applications.
Collapse
Affiliation(s)
- Jianmin Nie
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yang Li
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
17
|
Li Y, Li F, Huang Y, Wu H, Wang J, Yang J, Xiao Q, Lin H. Fe 3+-codoped ultra-small NaGdF 4:Nd 3+ nanophosphors: enhanced near-infrared luminescence, reduced particle size and bioimaging applications. RSC Adv 2019; 9:18070-18075. [PMID: 35520582 PMCID: PMC9064632 DOI: 10.1039/c9ra00798a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/07/2019] [Indexed: 12/21/2022] Open
Abstract
Small-sized lanthanide-doped nanoparticles (NPs) exhibiting superior near-infrared (NIR) luminescence properties are highly desired for bioimaging applications. Herein, Fe3+ ions are codoped in NaGdF4:Nd3+ nanocrystals via a simple coprecipitation method, which can simultaneously reduce the particle size and enhance the downconverting NIR luminescence of the NPs. The NIR luminescence intensity reaches the maximum for the obtained sub-5 nm NPs when the doping concentration of Fe3+ is tuned to 20 mol%, which is ∼1.7 times higher than that of the pristine 8.7 nm NPs without Fe3+ doping. After being modified with targeting molecules, the ultra-small NaGdF4:Nd3+,Fe3+ NPs were successfully applied as luminescent probes for targeted NIR imaging of tumors in biological tissues. Moreover, they also show great potential as a high contrast agent for T2-weighted MRI imaging. Small-sized lanthanide-doped nanoparticles (NPs) exhibiting superior near-infrared (NIR) luminescence properties are highly desired for bioimaging applications.![]()
Collapse
Affiliation(s)
- Yabing Li
- School of Nano Technology and Nano Bionics, University of Science and Technology of China Hefei Anhui 230026 China.,i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Fujin Li
- i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Yanan Huang
- i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Haiyan Wu
- School of Nano Technology and Nano Bionics, University of Science and Technology of China Hefei Anhui 230026 China.,i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Jian Wang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China Hefei Anhui 230026 China.,i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Jin Yang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China Hefei Anhui 230026 China.,i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Qingbo Xiao
- i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hongzhen Lin
- School of Nano Technology and Nano Bionics, University of Science and Technology of China Hefei Anhui 230026 China.,i -Lab, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| |
Collapse
|
18
|
Pellico J, Ellis CM, Davis JJ. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1845637. [PMID: 31191182 PMCID: PMC6525923 DOI: 10.1155/2019/1845637] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality that is routinely used in clinics, providing anatomical information with micron resolution, soft tissue contrast, and deep penetration. Exogenous contrast agents increase image contrast by shortening longitudinal (T 1) and transversal (T 2) relaxation times. Most of the T 1 agents used in clinical MRI are based on paramagnetic lanthanide complexes (largely Gd-based). In moving to translatable formats of reduced toxicity, greater chemical stability, longer circulation times, higher contrast, more controlled functionalisation and additional imaging modalities, considerable effort has been applied to the development of nanoparticles bearing paramagnetic ions. This review summarises the most relevant examples in the synthesis and biomedical applications of paramagnetic nanoparticles as contrast agents for MRI and multimodal imaging. It includes the most recent developments in the field of production of agents with high relaxivities, which are key for effective contrast enhancement, exemplified through clinically relevant examples.
Collapse
Affiliation(s)
- Juan Pellico
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Connor M. Ellis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
19
|
Facile Synthesis of Biocompatible Fe3O4-Based Nanoparticles for pH-Responsive Dual-Model Magnetic Resonance Imaging-Guided Tumour Eradication by Photothermal Therapy. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61158-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Agbo P, Müller A, Arnedo-Sanchez L, Ercius P, Minor AM, Abergel RJ. Amplified luminescence in organo-curium nanocrystal hybrids. NANOSCALE 2019; 11:7609-7612. [PMID: 30969284 DOI: 10.1039/c9nr01360a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the first report of ligand-sensitized, actinide luminescence in a lanthanide nanoparticle host. Amplified luminescence of 248Cm3+ doped in a NaGdF4 lattice is achieved through optical pumping of a surface-localized metal chelator, 3,4,3-LI(1,2-HOPO), capable of sensitizing Cm3+ excited states. The data suggest the possibility of using such materials in theranostic applications, with a ligand-sensitized actinide or radio-lanthanide serving the dual roles of a nuclear decay source for radiotherapeutics, and as a luminescent center or energy transfer conduit to another emissive metal ion, for biological imaging.
Collapse
Affiliation(s)
- Peter Agbo
- Chemical Sciences Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Fan W, Tang W, Lau J, Shen Z, Xie J, Shi J, Chen X. Breaking the Depth Dependence by Nanotechnology-Enhanced X-Ray-Excited Deep Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806381. [PMID: 30698854 DOI: 10.1002/adma.201806381] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Indexed: 05/12/2023]
Abstract
The advancements in nanotechnology have created multifunctional nanomaterials aimed at enhancing diagnostic accuracy and treatment efficacy for cancer. However, the ability to target deep-seated tumors remains one of the most critical challenges for certain nanomedicine applications. To this end, X-ray-excited theranostic techniques provide a means of overcoming the limits of light penetration and tissue attenuation. Herein, a comprehensive overview of the recent advances in nanotechnology-enhanced X-ray-excited imaging and therapeutic methodologies is presented, with an emphasis on the design of multifunctional nanomaterials for contrast-enhanced computed tomography (CT) imaging, X-ray-excited optical luminescence (XEOL) imaging, and X-ray-excited multimodal synchronous/synergistic therapy. The latter is based on the concurrent use of radiotherapy with chemotherapy, gas therapy, photodynamic therapy, or immunotherapy. Moreover, the featured biomedical applications of X-ray-excited deep theranostics are discussed to highlight the advantages of X-ray in high-sensitivity detection and efficient elimination of malignant tumors. Finally, key issues and technical challenges associated with this deep theranostic technology are identified, with the intention of advancing its translation into the clinic.
Collapse
Affiliation(s)
- Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Lu W, Liao Y, Jiang C, Wang R, Shan X, Chen Q, Sun G, Liu J. Polydopamine-coated NaGdF4:Dy for T1/T2-weighted MRI/CT multimodal imaging-guided photothermal therapy. NEW J CHEM 2019. [DOI: 10.1039/c9nj00561g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T1/T2-weighted MRI/CT imaging-guided PTT agent NaGdF4:Dy@PPF was prepared and demonstrated its promising application for early diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Wei Lu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Yuxuan Liao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Chunzhu Jiang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Ruoming Wang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Xueru Shan
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Qian Chen
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Guoying Sun
- Jilin Province Key Laboratory of Carbon Fiber Development and Application
- School of Chemistry and Life Science
- Changchun University of Technology
- Changchun 130012
- P. R. China
| | - Jianhua Liu
- Department of Radiology
- Second Hospital of Jilin University
- Changchun
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| |
Collapse
|
23
|
Liu M, Shi Z, Wang X, Zhang Y, Mo X, Jiang R, Liu Z, Fan L, Ma CG, Shi F. Simultaneous enhancement of red upconversion luminescence and CT contrast of NaGdF 4:Yb,Er nanoparticles via Lu 3+ doping. NANOSCALE 2018; 10:20279-20288. [PMID: 30371720 DOI: 10.1039/c8nr06968a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To date, lanthanide-doped upconversion nanoparticles (UCNPs) have been widely reported as a promising CT contrast agent because they have high atomic numbers and big X-ray attenuation coefficient values. However, it is still a challenge to fabricate a simple multimodal imaging probe with improved image quality for early cancer diagnosis in clinical medicine. Herein, ultra-small, uniform and monodisperse β-NaGdF4:Yb,Er,X% Lu (X = 0, 1, 2.5, 4, 6, 7.5) UCNPs were prepared through a solvothermal method with high-level modulation of both the phase and morphology. Meanwhile, a remarkably enhanced red upconversion luminescence (UCL) in the β-NaGdF4:Yb,Er,X% Lu NPs was successfully realized via Lu3+ doping. It is found that as the content of Lu3+ increases from 0 to 7.5 mol%, the UCL intensity of the red emission first increases and then decreases, with the optimum doping content of Lu3+ ions of 2.5 mol%. The red UCL enhancement is ascribed to the change of the Yb-Er interionic distance controlling the Yb-Er energy transfer rate and the distortion of the local environment of Er3+ ions influencing the 4f-4f transition rates of Er3+ ions, which has been further confirmed by the experimental check of the crystallographic phase and by photoluminescence spectroscopy employing Eu3+ as the structural probe, respectively. More importantly, after being modified with the HS-PEG2000-NH2 ligand, the NH2-PEGylated-NaGdF4:Yb,Er,X% Lu NPs exhibited low cytotoxicity, high biocompatibility, and remarkably enhanced contrast performance in in vitro UCL and in vivo CT imaging. On the basis of our findings, the as-obtained functionalized UCNPs could be considered as a promising versatile dual-mode imaging probe for bioimaging, tumor diagnosis, and cancer therapy.
Collapse
Affiliation(s)
- Miao Liu
- Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
ZHANG TQ, HAN XL, HE YY, HE XJ, WANG JQ, YUAN QH, LIU JH. Facile Synthesis of PEGylated Tungsten-based Nanoprobes for Gastric Computed Tomography Imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61116-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Wang Q, Xiao A, Liu Y, Zou Q, Zhou Q, Wang H, Yang X, Zheng C, Yang Y, Zhu Y. One-step preparation of nano-in-micro poly(vinyl alcohol) embolic microspheres and used for dual-modal T 1/T 2-weighted magnetic resonance imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2551-2561. [PMID: 30153472 DOI: 10.1016/j.nano.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
It is crucial to develop dual or multi-modal self-imaging embolic microspheres to evaluate the effects of transcatheter arterial embolization therapy of tumor. However, the preparation of such hybrid microspheres always involved in multiple steps or complicated conditions. Here, poly(vinyl alcohol) (PVA) hybrid microspheres with dual-modal T1/T2-weighted magnetic resonance imaging (MRI) have been prepared based on microfluidic technique in one step. Gd2O3 and Fe3O4 nanoparticles with a size of ~5 nm act as T1- and T2-weighted MRI contrast agents, respectively, which are simultaneously in-situ synthesized in the PVA matrix via the reaction of metal ions and alkali with PVA chains as a soft template. Meanwhile, these metallic-oxide nanoparticles act as cross-linker to gelatinize the PVA droplets to obtain nano-in-micro PVA microspheres in one step. This procedure is simple, economic and feasible. The obtained nano-in-micro PVA microspheres show good magnetothermal effect, enhanced T1- and T2-weighted MRI and embolization effect.
Collapse
Affiliation(s)
- Qin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yajiang Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Kim J, Kwon JH, Jang J, Lee H, Kim S, Hahn YK, Kim SK, Lee KH, Lee S, Pyo H, Song CS, Lee J. Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosens Bioelectron 2018; 112:209-215. [DOI: 10.1016/j.bios.2018.04.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
|
27
|
Shen JW, Wang Z, Wei X, Liu J, Wei Y. Facile ex situ NaF size/morphology tuning strategy for highly monodisperse sub-5 nm β-NaGdF4:Yb/Er. CrystEngComm 2018. [DOI: 10.1039/c7ce02141k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile ex situ NaF size/morphology tuning strategy for NaF release rate regulation was presented and successfully used to achieve time-saving controlled solvothermal synthesis of highly monodisperse/crystalline sub-5 nm β-NaGdF4:Yb/Er at a high growth temperature of 300 °C.
Collapse
Affiliation(s)
- Ji-Wei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Zhiqing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Xiaoxuan Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710069
- China
| |
Collapse
|
28
|
Zhang H, Wu Y, Wang J, Tang Z, Ren Y, Ni D, Gao H, Song R, Jin T, Li Q, Bu W, Yao Z. In Vivo MR Imaging of Glioma Recruitment of Adoptive T-Cells Labeled with NaGdF 4 -TAT Nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702951. [PMID: 29168917 DOI: 10.1002/smll.201702951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Adoptive T lymphocyte immunotherapy is one of the most promising methods to treat residual lesions after glioma surgery. However, the fate of the adoptively transferred T-cells in vivo is unclear, hampering the understanding of this emerging therapy. Thus, it is highly desirable to develop noninvasive and quantitative in vivo tracking of these T-cells to glioma for better identification of the migratory fate and to provide objective evaluation of outcomes of adoptive T-cell immunotherapy targeting glioma. In this work, ultrasmall T1 MR-based nanoprobes, NaGdF4 -TAT, as molecular probes with high longitudinal relaxivity (8.93 mm-1 s-1 ) are designed. By means of HIV-1 transactivator (TAT) peptides, nearly 95% of the adoptive T-cells are labeled with the NaGdF4 -TAT nanoprobes without any measurable side effects on the labeled T-cells, which is remarkably superior to that of the control fluorescein isothiocyanate-NaGdF4 concerning labeling efficacy. Labeled adoptive T-cell clusters can be sensitively tracked in an orthotopic GL261-glioma model 24 h after intravenous infusion of 107 labeled T-cells by T1 -weighted MR imaging. Both in vitro and in vivo experiments show that the NaGdF4 -TAT nanoprobes labeling of T-cells may be a promising method to track adoptive T-cells to improve our understanding of the pathophysiology in adoptive immunotherapy for gliomas.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Gao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ruixue Song
- Shanghai Key laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Teng Jin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Qiao Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Key laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
29
|
Chen H, Li X, Liu F, Zhang H, Wang Z. Renal Clearable Peptide Functionalized NaGdF 4 Nanodots for High-Efficiency Tracking Orthotopic Colorectal Tumor in Mouse. Mol Pharm 2017; 14:3134-3141. [PMID: 28727430 DOI: 10.1021/acs.molpharmaceut.7b00361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effective delivery of bioimaging probes to a selected cancerous tissue has extensive significance for biological studies and clinical investigations. Herein, the peptide functionalized NaGdF4 nanodots (termed as, pPeptide-NaGdF4 nanodots) have been prepared for highly efficient magnetic resonance imaging (MRI) of tumor by formation of Gd-phosphonate coordinate bonds among hydrophobic NaGdF4 nanodots (4.2 nm in diameter) with mixed phosphorylated peptide ligands including a tumor targeting phosphopeptide and a cell penetrating phosphopeptide. The tumor targeting pPeptide-NaGdF4 nanodots have paramagnetic property with ultrasmall hydrodynamic diameter (HD, c.a., 7.3 nm) which greatly improves their MRI contrast ability of tumor and facilitates renal clearance. In detail, the capability of the pPeptide-NaGdF4 nanodots as high efficient contrast agent for in vivo MRI is evaluated successfully through tracking small drug induced orthotopic colorectal tumor (c.a., 195 mm3 in volume) in mouse.
Collapse
Affiliation(s)
- Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xiaodong Li
- Department of Radiology, The First Hospital of Jilin University , Changchun 130021, P. R. China
| | - Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University , Changchun 130021, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| |
Collapse
|
30
|
Wang T, Yang M, Huang J, Zhao Y, Wang H, Leng S, Chen J, Sun G, Liu J. NIR-to-NIR UCL/T 1-weighted MR/CT multimodal imaging by NaYbF 4:Tm@NaGdF 4:Yb-PVP upconversion nanoparticles. Sci Bull (Beijing) 2017; 62:903-912. [PMID: 36659460 DOI: 10.1016/j.scib.2017.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/15/2017] [Accepted: 04/26/2017] [Indexed: 01/21/2023]
Abstract
Multimodal imaging nanoprobes are urgently sought because they can integrate different imaging function into individual nanoplatform and provide more comprehensive and accurate information for the diagnosis of early-stage tumor. Lanthanide-based upconversion nanoparticles (UCNPs) are regarded as promising nanoplatforms to fabricate these probes. Herein, we firstly developed the active core-active shell structured NaYbF4:Tm@NaGdF4:Yb-PVP UCNPs with the average diameter of 13.23±0.96nm as multimodal imaging probes. These water-dispersible nanoprobes presented excellent near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence (UCL) performance, which is favorable for optical bioimaging due to deeper tissue penetration and autofluorescence reduction. After coated with the NaGdF4:Yb active shell, the UCL emission intensity at 800nm increased by 7.2times. These nanoprobes exhibited a desirable longitudinal relaxivity (r1=3.58L/(mmols)) and strong X-ray attenuation property (58.84HUL/g). The cytotoxicity assessment, histology analysis and biodistribution study revealed that NaYbF4:Tm@NaGdF4:Yb-PVP UCNPs had relatively low cytotoxicity and negligible organ toxicity. These UCNPs were applied for NIR-to-NIR UCL imaging in vivo. More importantly, the detection of small tumor was successfully achieved under T1-weighted MRI and CT imaging modalities after intravenous injection of these UCNPs. These results revealed that NaYbF4:Tm@NaGdF4:Yb-PVP UCNPs could serve as promising NIR-to-NIR UCL/MRI/CT trimodal imaging probes.
Collapse
Affiliation(s)
- Tao Wang
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Min Yang
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jiahui Huang
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yanzhi Zhao
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Honglei Wang
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Shuang Leng
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jinxing Chen
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guoying Sun
- Chemistry and Life Science School & Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
31
|
Wei Z, Lin X, Wu M, Zhao B, Lin R, Zhang D, Zhang Y, Liu G, Liu X, Liu J. Core-shell NaGdF 4@CaCO 3 nanoparticles for enhanced magnetic resonance/ultrasonic dual-modal imaging via tumor acidic micro-enviroment triggering. Sci Rep 2017; 7:5370. [PMID: 28710468 PMCID: PMC5511195 DOI: 10.1038/s41598-017-05395-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
For cancer diagnosis, a paramount challenge still exists in the exploring of methods that can precisely discriminate tumor tissues from their surrounding healthy tissues with a high target-to-background signal ratio. Here, we report a NaGdF4@CaCO3-PEG core-shell nanoparticle which has the tumor acidic microenvironment enhanced imaging signals of ultrasound and magnetic resonance. Under the acidic conditions, the CaCO3 shell will gradually dissolve which then facilitate the interaction of NaGdF4 with the external aqueous environment to enhance water proton relaxation. Meanwhile, the CO2 bubbles generated by the CaCO3 dissolvement will generate strong elastic echo for US detection. The core-shell structure of NaGdF4@CaCO3-PEG can be observed by TEM, and its composition can be determined by STEM. The acid triggered generation of CO2 bubbles and the enhancement of MRI signal could be demonstrated in vitro, and the excellent dual-modal magnetic resonance/ultrasonic cancer imaging abilities of NaGdF4@CaCO3-PEG could be also proved at the tumor site in vivo. The here described proof-of-concept nanoparticles with pH triggered magnetic resonance/ultrasonic dual-modal imaging enhancement, may serve as a useful guide to develop various molecular imaging strategies for cancer diagnosis in the future.
Collapse
Affiliation(s)
- Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Xiao Lin
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Ruhui Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Yun Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
| |
Collapse
|
32
|
Dong L, Zhang P, Lei P, Song S, Xu X, Du K, Feng J, Zhang H. PEGylated GdF 3:Fe Nanoparticles as Multimodal T 1/T 2-Weighted MRI and X-ray CT Imaging Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20426-20434. [PMID: 28557419 DOI: 10.1021/acsami.7b04438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Contrast agents for multimodal imaging are in high demand for cancer diagnosis. To date, integration of T1/T2-weighted magnetic resonance imaging (MRI) and X-ray computed tomography (CT) imaging capabilities in one system to obtain an accurate diagnosis still remains challenging. In this work, biocompatible PEGylated GdF3:Fe nanoparticles (PEG-GdF3:Fe NPs) were reasonable designed and synthesized as multifunctional contrast agents for efficient T1/T2-weighted MRI and X-ray CT multimodal imaging. Owing to the enhanced permeability and retention effect in vivo, strong T1 contrast, evident T2 contrast, and X-ray CT signals in a tumor lesion can be observed after intravenous injection of PEG-GdF3:Fe NPs. Therefore, PEG-GdF3:Fe NPs could be used as potential multimodal contrast agents for cancer diagnosis.
Collapse
Affiliation(s)
- Lile Dong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China , Hefei 230026, China
| | - Peng Zhang
- Department of Radiology, The Second Hospital of Jilin University , Changchun 130041, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | - Xia Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Science and Technology of China , Hefei 230026, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
33
|
Feng Y, Chen H, Ma L, Shao B, Zhao S, Wang Z, You H. Surfactant-Free Aqueous Synthesis of Novel Ba 2GdF 7:Yb 3+, Er 3+@PEG Upconversion Nanoparticles for in Vivo Trimodality Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15096-15102. [PMID: 28409916 DOI: 10.1021/acsami.7b03411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we developed the surfactant-free aqueous synthesis of novel polyethylene glycol (PEG) coated Ba2GdF7:Yb3+, Er3+ upconversion nanoparticles (named as, Ba2GdF7:Yb3+, Er3+@PEG UCNPs) for in vivo multimodality imaging including upconversion luminescence (UCL), X-ray computed tomography (CT), and T1-weighted magnetic resonance (MR). The as-prepared Ba2GdF7:Yb3+, Er3+@PEG UCNPs not only present bright UCL and reasonably high CT/MR enhancements but also exhibit excellent colloidal stability, inappreciable cytotoxicity, and negligible organ toxicity. In particular, the Ba2GdF7:Yb3+, Er3+@PEG UCNPs emit red UCL with high intensity in the tumor site after intravenous injection via the tail vein of a nude mouse. The Ba2GdF7:Yb3+, Er3+@PEG UCNPs as contrast agents exhibit high-performance for in vivo trimodality (UCL/CT/MR) imaging of a tumor during HepG2 tumor-bearing nude mouse experiments.
Collapse
Affiliation(s)
- Yang Feng
- University of Science and Technology of China , Hefei 230026, P. R. China
| | - Hongda Chen
- University of Science and Technology of China , Hefei 230026, P. R. China
| | | | | | - Shuang Zhao
- University of Science and Technology of China , Hefei 230026, P. R. China
| | | | | |
Collapse
|
34
|
Cao Y, Xu L, Kuang Y, Xiong D, Pei R. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J Mater Chem B 2017; 5:3431-3461. [PMID: 32264282 DOI: 10.1039/c7tb00382j] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gadolinium-based nanoscale magnetic resonance imaging (MRI) contrast agents (CAs) have gained significant momentum as a promising nanoplatform for detecting tumor tissue in medical diagnosis, due to their favorable capability of enhancing the longitudinal relaxivity (r1) of individual gadolinium ions, delivering to the region of interest a large number of gadolinium ions, and incorporating different functionalities. This mini-review highlights the latest developments and applications, and simultaneously gives some perspectives for their future development.
Collapse
Affiliation(s)
- Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | | | | | | | | |
Collapse
|
35
|
Wang YM, Liu W, Yin XB. Multifunctional mixed-metal nanoscale coordination polymers for triple-modality imaging-guided photodynamic therapy. Chem Sci 2017. [PMID: 28626558 PMCID: PMC5465558 DOI: 10.1039/c6sc05616d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multifunctional mixed-metal nanoscale coordination polymers (NCPs) are robustly prepared with a Ru complex, Gd3+, and Yb3+. The NCPs were used as fluorescence, magnetic resonance, and X-ray computed tomography triple-modality imaging and imaging-guided photodynamic therapy.
The one-step self-assembly preparation of multifunctional gadolinium (Gd)–ytterbium (Yb) mixed-metal nanoscale coordination polymers (NCPs) with Ru[4,4′-(COOH)2bpy]32+ (LRu, bpy = bipyridyl) as a ligand is reported. The Gd/Yb ratio in the NCPs is easily tuned by their ratio in the precursors while the self-limiting growth is realized with the high coordination valence and rigid steric structure of the precursors. The inherent properties of the precursors, including the magnetic resonance (MR) response of Gd3+, the X-ray attenuation properties of Yb3+, and the red fluorescence and the singlet-oxygen generation of LRu, are well retained in the mixed-metal NCPs. In vivo fluorescence-MR-X-ray computed tomography (CT), triple-modality imaging and photodynamic therapy (PDT) are achieved using the mixed-metal NCPs as a probe. The triple-modality imaging integrates the high sensitivity of red fluorescence imaging, the deep penetration of MR imaging, and the 3D spatial resolution of CT imaging, thus providing comprehensive and complementary imaging information and facilitating the efficient imaging-guided PDT. For the first time, triple-modality imaging and a PDT agent were prepared with an easy and robust procedure, a tunable mixed-metal ratio, a high yield, and endogenous signal units.
Collapse
Affiliation(s)
- Yong-Mei Wang
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin , 300071 , China .
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin , 300071 , China .
| | - Xue-Bo Yin
- State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , College of Chemistry , Nankai University , Tianjin , 300071 , China . .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin , 300071 , China
| |
Collapse
|
36
|
Liu J, Chen G, Hao S, Yang C. Sub-6 nm monodisperse hexagonal core/shell NaGdF 4 nanocrystals with enhanced upconversion photoluminescence. NANOSCALE 2017; 9:91-98. [PMID: 27929179 DOI: 10.1039/c6nr08675f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to fabricate lanthanide-doped upconversion nanocrystals (UCNCs) with tailored size and emission profile has fuelled their uses in a broad spectrum of biological applications. Yet, limited success has been met in the preparation of sub-6 nm UCNCs with efficient upconversion photoluminescence (UCPL), which enable high contrast optical bioimaging with minimized adverse biological effects entailed by size-induced rapid clearance from the body. Here, we present a simple and reproducible approach to synthesize a set of monodispersed hexagonal-phase core NaGdF4:Yb/Ln (Ln = Er, Ho, Tm) of ∼3-4 nm and core/shell NaGdF4:Yb/Ln@NaGdF4 (Ln = Er, Ho, Tm) UCNCs of ∼5-6 nm. We show that the core/shell UCNCs can be up to ∼1000 times more efficient than the corresponding core UCNCs due to the effective suppression of surface-related quenching effects for the core. The observation of prolonged PL lifetime for the core/shell than that for the core UCNCs demonstrates the role of the inert shell layer for the protection of the core. The achievement of sub-6 nm NaGdF4 UCNCs with significantly improved luminescence efficiency constitutes a solid step towards high contrast UCPL optical imaging with secured biological safety.
Collapse
Affiliation(s)
- Jing Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | | | | | | |
Collapse
|
37
|
Lei P, Zhang P, Yao S, Song S, Dong L, Xu X, Liu X, Du K, Feng J, Zhang H. Optimization of Bi 3+ in Upconversion Nanoparticles Induced Simultaneous Enhancement of Near-Infrared Optical and X-ray Computed Tomography Imaging Capability. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27490-27497. [PMID: 27696854 DOI: 10.1021/acsami.6b08335] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bioimaging probes have been extensive studied for many years, while it is still a challenge to further improve the image quality for precise diagnosis in clinical medicine. Here, monodisperse NaGdF4:Yb3+,Tm3+,x% Bi3+ (abbreviated as GYT-x% Bi3+, x = 0, 5, 10, 15, 20, 25, 30) upconversion nanoparticles (UCNPs) have been prepared through the solvothermal method. The near-infrared upconversion emission intensity of GYT-25% Bi3+ has been enhanced remarkably than that of NaGdF4:Yb3+,Tm3+ (GYT) with a factor of ∼60. Especially, the near-infrared upconversion emission band centered at 802 nm is 150 times stronger than the blue emission band of GYT-25% Bi3+ UCNPs. Such high ratio of NIR/blue UCL intensity could reduce the damage to tissues in the bioimaging process. The possibility of using GYT-25% Bi3+ UCNPs with strong near-infrared upconversion emission for optical imaging in vitro and in vivo was performed. Encouragingly, the UCL imaging penetration depth can be achieved as deep as 20 mm. Importantly, GYT-25% Bi3+ UCNPs exhibit a much higher X-ray computed tomography (CT) contrast efficiency than GYT and iodine-based contrast agent under the same clinical conditions, due to the high X-ray attenuation coefficient of bismuth. Hence, simultaneous remarkable enhancement of NIR emission and X-ray CT signal in upconversion nanoparticles could be achieved by optimizing the doping concentration of Bi3+ ions. Additionally, Gd3+ ions in the UCNPs endow GYT-25% Bi3+ UCNPs with T1-weighted magnetic resonance (MR) imaging capability.
Collapse
Affiliation(s)
- Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Peng Zhang
- Department of Radiology, The Second Hospital of Jilin University , Changchun 130041, China
| | - Shuang Yao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | - Lile Dong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xia Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiuling Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | - Kaimin Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
38
|
Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK. The evolution of gadolinium based contrast agents: from single-modality to multi-modality. NANOSCALE 2016; 8:10491-10510. [PMID: 27159645 DOI: 10.1039/c6nr00267f] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Hui Peng
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Andrew K Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
39
|
Li D, Ma Q, Song Y, Xi X, Dong X, Yu W, Wang J, Liu G. Tunable multicolor luminescence and white light emission realized in Eu3+ mono-activated GdF3 nanofibers with paramagnetic performance. RSC Adv 2016. [DOI: 10.1039/c6ra21039b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GdF3:Eu3+ nanofibers with luminescent–magnetic bi-functionality have been successfully fabricated by combination of electrospinning followed by subsequent calcination with fluorination technology.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Yan Song
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xue Xi
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Jinxian Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| |
Collapse
|
40
|
Li D, Ma Q, Song Y, Xi X, Dong X, Yu W, Wang J, Liu G. NaGdF4:Dy3+ nanofibers and nanobelts: facile construction technique, structure and bifunctionality of luminescence and enhanced paramagnetic performances. Phys Chem Chem Phys 2016; 18:27536-27544. [DOI: 10.1039/c6cp05058a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NaGdF4:Dy3+ nanofibers and nanobelts with excellent luminescence-magnetic bi-functionality were fabricated via a combination of electrospinning and calcination with fluorination technology.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Yan Song
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xue Xi
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Jinxian Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province
- Changchun University of Science and Technology
- Changchun 130022
- China
| |
Collapse
|
41
|
Yang M, Wang T, Wang Y, Jiang C, Chen J, Zhao Y, Wang H, Jiang Y, Sun G, Liu J. Ultra-small and size tunable PVP-NaGdF4:Dy nanoparticles with high biocompatibility for multimodal tumor imaging. RSC Adv 2016. [DOI: 10.1039/c6ra18780c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ultra-small PVP-NaGdF4:Dy nanoprobes were prepared and they could induce obvious signal enhancement in T1/T2-weighted MRI and CT imaging.
Collapse
|
42
|
|
43
|
Ni D, Zhang J, Bu W, Zhang C, Yao Z, Xing H, Wang J, Duan F, Liu Y, Fan W, Feng X, Shi J. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials 2015; 76:218-25. [PMID: 26546914 DOI: 10.1016/j.biomaterials.2015.10.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 12/30/2022]
Abstract
It is well-known that multimodal imaging can integrate the advantages of different imaging modalities by overcoming their individual limitations. As ultra-high field magnetic resonance imaging (MRI) will be inevitably used in future MRI/X-ray computed tomography (CT) scanner, it is highly expected to develop high-performance nano-contrast agents for ultra-high field MR and CT dual-modality imaging, which has not been reported yet. Moreover, specific behavior of nano-contrast agents for ultra-high field MRI is a challenging work and still remains unknown. Herein, a novel type of NaHoF4 nanoparticles (NPs) with varied particle sizes were synthesized and explored as high-performance dual-modality contrast agents for ultra-high field MR and CT imaging. The specific X-ray absorption and MR relaxivity enhancements with varied nanoparticle diameters (3 nm, 7 nm, 13 nm and 29 nm) under different magnetic field (1.5/3.0/7.0 T) are investigated. Based on experimental results and theoretical analysis, the Curie and dipolar relaxation mechanisms of NaHoF4 NPs are firstly separated. Our results will greatly promote the future medical translational development of the NaHoF4 nano-contrast agents for ultra-high field MR/CT dual-modality imaging applications.
Collapse
Affiliation(s)
- Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jiawen Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenbo Bu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Chen Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenwei Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Huaiyong Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Fei Duan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanyan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Wenpei Fan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|