1
|
Roy S, Pramanik P, Bhattacharya S. Exploring the role of G-quadruplex DNA, and their structural polymorphism, in targeting small molecules for the design of anticancer therapeutics: Progress, challenges, and future directions. Biochimie 2025; 234:120-145. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619, India.
| |
Collapse
|
2
|
Tanga S, Karmakar A, Hota A, Banerjee P, Maji B. Design and synthesis of nucleic acid nano-environment interactome-targeting small molecule PROTACs and their anticancer activity. NANOSCALE 2024; 16:12502-12509. [PMID: 38873939 DOI: 10.1039/d4nr01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Targeted protein degradation through PROteolysis TArgeting Chimeras (PROTACs) is a relatively new modality in cellular interventions. The minimum requirement for PROTACs to function is forming a tertiary complex of the protein of interest (POI), E3 ligase, and the molecular glue PROTAC. Here, we propose a new approach to modulate the nano-environment interactome of a non-protein target through a plausible quaternary complex of interactome-biomolecule of interest (BOI)-PROTAC and E3 ligase. We report nucleic acid-targeting PROTAC (NA-TAC) molecules by conjugating DNA-binding and E3 ligase ligands. We demonstrate that NA-TACs can target the G-quadruplex DNA and induce elevated DNA damage and cytotoxicity compared to the conventional G-quadruplex binding ligands. Our new class of NA-TACs lays the foundation for small molecule-based non-protein targeting PROTACs for interactome and nanoenvironment mapping and nucleic acid-targeted precision medicines.
Collapse
Affiliation(s)
- Sadiya Tanga
- Ashoka University, Department of Chemistry, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata 700091, West Bengal, India.
| | - Arkadeep Karmakar
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata 700091, West Bengal, India.
| | - Arpita Hota
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata 700091, West Bengal, India.
| | - Paramita Banerjee
- S N Bose National Centre for Basic Science, JD Block, Sector 3, Bidhannagar, Kolkata 700106, West Bengal, India
| | - Basudeb Maji
- Bose Institute, Department of Biological Sciences, EN 80, Sector V, Bidhannagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
3
|
Saxena A, Majee S, Ray D, Saha B. Inhibition of cancer cells by Quinoline-Based compounds: A review with mechanistic insights. Bioorg Med Chem 2024; 103:117681. [PMID: 38492541 DOI: 10.1016/j.bmc.2024.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
This article includes a thorough examination of the inhibitory potential of quinoline-based drugs on cancer cells, as well as an explanation of their modes of action. Quinoline derivatives, due to their various chemical structures and biological activity, have emerged as interesting candidates in the search for new anticancer drugs. The review paper delves into the numerous effects of quinoline-based chemicals in cancer progression, including apoptosis induction, cell cycle modification, and interference with tumor-growth signaling pathways. Mechanistic insights on quinoline derivative interactions with biological targets enlightens their therapeutic potential. However, obstacles such as poor bioavailability, possible off-target effects, and resistance mechanisms make it difficult to get these molecules from benchside to bedside. Addressing these difficulties might be critical for realizing the full therapeutic potential of quinoline-based drugs in cancer treatment.
Collapse
Affiliation(s)
- Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh
| | - Suman Majee
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Devalina Ray
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh; Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh.
| |
Collapse
|
4
|
Ghosh S, De D, Banerjee V, Biswas S, Ghosh U. High throughput screening of a new fluorescent G-quadruplex ligand having telomerase inhibitory activity in human A549 cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023:1-22. [PMID: 36919622 DOI: 10.1080/15257770.2023.2188220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Identification of a new G-quadruplex ligand having anti-telomerase activity would be a promising strategy for cancer therapy. The screened compound from ZINC database using docking studies was experimentally verified for its binding with three different telomeric G-quadruplex DNA sequences and anti-telomerase activity in A549 cells. Identified compound is an intrinsic fluorescent molecule, permeable to live cells and has a higher affinity to 22AG out of three different telomeric G-quadruplex DNA. It showed cytotoxicity and a significant reduction of telomerase activity in human A549 cells at a very low dose. So, this compound has a good anti-cancer effect.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Debapriya De
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Victor Banerjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Soumyajit Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, India
| |
Collapse
|
5
|
Chen M, Chen X, Huang G, Jiang Y, Gou Y, Deng J. Synthesis, anti-tumour activity, and mechanism of benzoyl hydrazine Schiff base-copper complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Alexander A, Pillai AS, Nallamuthu A, Pal H, Enoch IVMV, Sayed M. G-Quadruplex selectivity and cytotoxicity of a guanidine-encapsulated porphyrin-cyclodextrin conjugate. Int J Biol Macromol 2022; 218:839-855. [PMID: 35905761 DOI: 10.1016/j.ijbiomac.2022.07.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022]
Abstract
G-Quadruplex DNAs represent out-of-the-way nucleic acid conformations, frequently formed by guanine-rich sequences. They have emanated as cancer-associated targets for designed small molecules. The variation in the binding affinity of the synthesized compounds to duplex and quadruplex structures is an intriguing quest, solved by spectroscopic analysis. In this paper, we report the synthesis of a porphyrin-cyclodextrin conjugate, characterized by utilizing FT-IR, NMR, and mass spectrometry. Further, two benzimidazolylguanidines are synthesized which form host: guest complexes with the porphyrin-cyclodextrin conjugate. The structure of the complexes is optimized by analyzing their 2D ROESY spectra. The interactions of the host, guest, and the host: guest complexes with the duplex (calf thymus DNA) and quadruplex (kit22) nucleic acids are investigated employing UV-vis, fluorescence, circular dichroism, and DNA melting experiments. The calculated strengths of the compounds' binding with kit22 are in the order of 106, which is larger than those observed for the duplex DNA binding. The significant G-quadruplex selectivity of the host: guest complex of anthracenyl-benzimidazolylguanidine is discussed in detail. Further, the in vitro cytotoxicity of the compounds on MCF-7 cell lines is examined. The host: guest complexes show enhanced half-maximal inhibitory concentration values compared to the un-complexed compounds.
Collapse
Affiliation(s)
- Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Ananthi Nallamuthu
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Haridas Pal
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 00085, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| | - Mhejabeen Sayed
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 00085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Venkata Suseela Y, Sengupta P, Roychowdhury T, Panda S, Talukdar S, Chattopadhyay S, Chatterjee S, Govindaraju T. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS BIO & MED CHEM AU 2022; 2:125-139. [PMID: 37101746 PMCID: PMC10114666 DOI: 10.1021/acsbiomedchemau.1c00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
G-Quadruplex (GQ) nucleic acids are promising therapeutic targets in anticancer research due to their structural robustness, polymorphism, and gene-regulatory functions. Here, we presented the structure-activity relationship of carbazole-based monocyanine ligands using region-specific functionalization with benzothiazole (TCA and TCZ), lepidine (LCA and LCZ), and quinaldine (QCA and QCZ) acceptor moieties and evaluated their binding profiles with different oncogenic GQs. Their differential turn-on fluorescence emission upon GQ binding confirmed the GQ-to-duplex selectivity of all carbazole ligands, while the isothermal titration calorimetry results showed selective interactions of TCZ and TCA to c-MYC and BCL-2 GQs, respectively. The aldehyde group in TCA favors stacking interactions with the tetrad of BCL-2 GQ, whereas TCZ provides selective groove interactions with c-MYC GQ. Dual-luciferase assay and chromatin immunoprecipitation (ChIP) showed that these molecules interfere with the recruitment of specific transcription factors at c-MYC and BCL-2 promoters and stabilize the promoter GQ structures to inhibit their constitutive transcription in cancer cells. Their intrinsic turn-on fluorescence response with longer lifetimes upon GQ binding allowed real-time visualization of GQ structures at subcellular compartments. Confocal microscopy revealed the uptake of these ligands in the nucleoli, resulting in nucleolar stress. ChIP studies further confirmed the inhibition of Nucleolin occupancy at multiple GQ-enriched regions of ribosomal DNA (rDNA) promoters, which arrested rRNA biogenesis. Therefore, carbazole ligands act as the "double-edged swords" to arrest c-MYC and BCL-2 overexpression as well as rRNA biogenesis, triggering synergistic inhibition of multiple oncogenic pathways and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Yelisetty Venkata Suseela
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Pallabi Sengupta
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Panda
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Sangita Talukdar
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| | - Samit Chattopadhyay
- Cancer
Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kankurgachi, Kolkata 700054, India
| | - Thimmaiah Govindaraju
- Bioorganic
Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, P.O., Bengaluru, Karnataka 560064, India
| |
Collapse
|
8
|
Müller D, Saha P, Panda D, Dash J, Schwalbe H. Insights from Binding on Quadruplex Selective Carbazole Ligands. Chemistry 2021; 27:12726-12736. [PMID: 34138492 PMCID: PMC8518889 DOI: 10.1002/chem.202101866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Polymorphic G-quadruplex (G4) secondary DNA structures have received increasing attention in medicinal chemistry owing to their key involvement in the regulation of the maintenance of genomic stability, telomere length homeostasis and transcription of important proto-oncogenes. Different classes of G4 ligands have been developed for the potential treatment of several human diseases. Among them, the carbazole scaffold with appropriate side chain appendages has attracted much interest for designing G4 ligands. Because of its large and rigid π-conjugation system and ease of functionalization at three different positions, a variety of carbazole derivatives have been synthesized from various natural or synthetic sources for potential applications in G4-based therapeutics and biosensors. Herein, we provide an updated close-up of the literatures on carbazole-based G4 ligands with particular focus given on their detailed binding insights studied by NMR spectroscopy. The structure-activity relationships and the opportunities and challenges of their potential applications as biosensors and therapeutics are also discussed. This review will provide an overall picture of carbazole ligands with remarkable G4 topological preference, fluorescence properties and significant bioactivity; portraying carbazole as a very promising scaffold for assembling G4 ligands with a range of novel functional applications.
Collapse
Affiliation(s)
- Diana Müller
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| | - Puja Saha
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Deepanjan Panda
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| |
Collapse
|
9
|
Manoli F, Doria F, Colombo G, Zambelli B, Freccero M, Manet I. The Binding Pocket at the Interface of Multimeric Telomere G-quadruplexes: Myth or Reality? Chemistry 2021; 27:11707-11720. [PMID: 34152657 PMCID: PMC8456957 DOI: 10.1002/chem.202101486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/23/2023]
Abstract
Human telomeric DNA with hundreds of repeats of the 5'-TTAGGG-3' motif plays a crucial role in several biological processes. It folds into G-quadruplex (G4) structures and features a pocket at the interface of two contiguous G4 blocks. Up to now no structural NMR and crystallographic data are available for ligands interacting with contiguous G4s. Naphthalene diimide monomers and dyads were investigated as ligands of a dimeric G4 of human telomeric DNA comparing the results with those of the model monomeric G4. Time-resolved fluorescence, circular dichroism, isothermal titration calorimetry and molecular modeling were used to elucidate binding features. Ligand fluorescence lifetime and induced circular dichroism unveiled occupancy of the binding site at the interface. Thermodynamic parameters confirmed the hypothesis as they remarkably change for the dyad complexes of the monomeric and dimeric telomeric G4. The bi-functional ligand structure of the dyads is a fundamental requisite for binding at the G4 interface as only the dyads engage in complexes with 1 : 1 stoichiometry, lodging in the pocket at the interface and establishing multiple interactions with the DNA skeleton. In the absence of NMR and crystallographic data, our study affords important proofs of binding at the interface pocket and clues on the role played by the ligand structure.
Collapse
Affiliation(s)
- Francesco Manoli
- Institute for Organic Synthesis and Photoreactivity (ISOF)National Research Council (CNR)Via P. Gobetti 10140129BolognaItaly
| | - Filippo Doria
- Department of ChemistryUniversity of PaviaV. le Taramelli 1027100PaviaItaly
| | - Giorgio Colombo
- Department of ChemistryUniversity of PaviaV. le Taramelli 1027100PaviaItaly
| | - Barbara Zambelli
- Department of Pharmacy and BiotechnologyUniversity of BolognaV. le Fanin 4040127BolognaItaly
| | - Mauro Freccero
- Department of ChemistryUniversity of PaviaV. le Taramelli 1027100PaviaItaly
| | - Ilse Manet
- Institute for Organic Synthesis and Photoreactivity (ISOF)National Research Council (CNR)Via P. Gobetti 10140129BolognaItaly
| |
Collapse
|
10
|
Roy S, Ali A, Bhattacharya S. Theoretical Insight into the Library Screening Approach for Binding of Intermolecular G-Quadruplex RNA and Small Molecules through Docking and Molecular Dynamics Simulation Studies. J Phys Chem B 2021; 125:5489-5501. [PMID: 34029082 DOI: 10.1021/acs.jpcb.0c10991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interactions of intermolecular G-quadruplex RNA and small molecules have been investigated by computational studies. Various anthraquinone, bisbenzimidazole, and carbazole-benzimidazole based ligands have shown a distinct preference to G-quadruplex structures as opposed to the corresponding duplex forms of DNA that were docked with telomeric G-quadruplex RNA. The comparative binding study of such ligands with G-quadruplex (G4) RNA showed higher binding affinities toward carbazole-benzimidazole ligands than those of the anthraquinone and bisbenzimidazole based ligands. A molecular dynamics simulation study was used to examine quadruplex-ligand interactions. Analysis of the binding free energy indicated the formation of the thermodynamically favorable RNA-ligand complex. The formation of several H-bonding interactions and the change of the solvent accessible surface area (SASA) also support the effective binding of the carbazole-benzimidazole ligands with G4 RNA structures. Thus, the library screening approach has assisted in getting a structure-activity relationship for the selected small molecules toward the G-quadruplex RNA binding, which can be applied in the targeting of G-quadruplex RNA medicated anticancer therapeutics.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Asfa Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.,School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| |
Collapse
|
11
|
Li J, Yang Q, Zhao L, Xu M, Zhang H. Carbazole derivative as an effective telomeric G-quadruplex DNA binder. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Singu PS, Chilakamarthi U, Mahadik NS, Keerti B, Valipenta N, Mokale SN, Nagesh N, Kumbhare RM. Benzimidazole-1,2,3-triazole hybrid molecules: synthesis and study of their interaction with G-quadruplex DNA. RSC Med Chem 2021; 12:416-429. [PMID: 34046624 DOI: 10.1039/d0md00414f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
A series of new benzimidazole-1,2,3-triazole hybrid derivatives have been synthesized via 'click' reaction and evaluated for their in vitro cytotoxicity as well as DNA binding affinity. MTT assay showed that all the six compounds are cytotoxic to PC3 and B16-F10 cancer cell lines. Though all the compounds showed moderate interaction with G4, c-Myc promoter DNA and dsDNA, 4f exhibited selective interaction with G-quadruplex DNA over duplex DNA as demonstrated by spectroscopic experiments like UV-vis spectroscopy, fluorescence spectroscopy, CD spectroscopy, thermal melting and fluorescence lifetime experiments. They also confirm the G-quadruplex DNA stabilizing potential of 4f. Viscosity measurements also confirm that 4f exhibits high G-quadruplex DNA selectivity over duplex DNA. Docking studies supported the spectroscopic observations. Cell cycle analysis showed that 4f induces G2/M phase arrest and induces apoptosis. Hence, from these experimental results it is evident that compound 4f may be a G-quadruplex DNA groove binding molecule with anticancer activity.
Collapse
Affiliation(s)
- Padma S Singu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Ushasri Chilakamarthi
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Namita S Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Bhamidipati Keerti
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Narasimhulu Valipenta
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Santosh N Mokale
- Y. B. Chavan College of Pharmacy Dr. Rafiq Zakaria Campus Aurangabad-431001 India
| | - Narayana Nagesh
- Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology ANNEXE II, Uppal Road Hyderabad 500007 India
| | - Ravindra M Kumbhare
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
13
|
Andreeva DV, Tikhomirov AS, Shchekotikhin AE. Ligands of G-quadruplex nucleic acids. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Ceramella J, Iacopetta D, Barbarossa A, Caruso A, Grande F, Bonomo MG, Mariconda A, Longo P, Carmela S, Sinicropi MS. Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment. Mini Rev Med Chem 2020; 20:444-465. [PMID: 31951166 DOI: 10.2174/1389557520666200117144701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 12/11/2022]
Abstract
Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | | | | | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| | - Saturnino Carmela
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| |
Collapse
|
15
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
16
|
Sinicropi MS, Iacopetta D, Rosano C, Randino R, Caruso A, Saturnino C, Muià N, Ceramella J, Puoci F, Rodriquez M, Longo P, Plutino MR. N-thioalkylcarbazoles derivatives as new anti-proliferative agents: synthesis, characterisation and molecular mechanism evaluation. J Enzyme Inhib Med Chem 2018; 33:434-444. [PMID: 29383954 PMCID: PMC6010102 DOI: 10.1080/14756366.2017.1419216] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
Synthetic or natural carbazole derivatives constitute an interesting class of heterocycles, which showed several pharmaceutical properties and occupied a promising place as antitumour tools in preclinical studies. They target several cellular key-points, e.g. DNA and Topoisomerases I and II. The most studied representative, i.e. Ellipticine, was introduced in the treatment of metastatic breast cancer. However, because of the onset of dramatic side effects, its use was almost dismissed. Many efforts were made in order to design and synthesise new carbazole derivatives with good activity and reduced side effects. The major goal of the present study was to synthesise a series of new N-thioalkylcarbazole derivatives with anti-proliferative effects. Two compounds, 5a and 5c, possess an interesting anti-proliferative activity against breast and uterine cancer cell lines without affecting non-tumoural cell lines viability. The most active compound (5c) induces cancer cells death triggering the intrinsic apoptotic pathway by inhibition of Topoisomerase II.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS Policlinico San Martino-IST, Genova, Italy
| | - Rosario Randino
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | | | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Messina, Italy
| |
Collapse
|
17
|
Binding Study of the Fluorescent Carbazole Derivative with Human Telomeric G-Quadruplexes. Molecules 2018; 23:molecules23123154. [PMID: 30513661 PMCID: PMC6321567 DOI: 10.3390/molecules23123154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023] Open
Abstract
The carbazole ligand 3 was synthesized, characterized and its binding interactions with human telomeric (22HT) G-quadruplex DNA in Na+ and K+-containing buffer were investigated by ultraviolet-visible (UV-Vis) spectrophotometry, fluorescence, circular dichroism (CD) spectroscopy, and DNA melting. The results showed that the studied carbazole ligand interacted and stabilized the intramolecular G-quadruplexes formed by the telomeric sequence in the presence of sodium and potassium ions. In the UV-Vis titration experiments a two-step complex formation between ligand and G-quadruplex was observed. Very low fluorescence intensity of the carbazole derivative in Tris HCl buffer in the presence of the NaCl or KCl increased significantly after addition of the 22HT G4 DNA. Binding stoichiometry of the ligand/G-quadruplex was investigated with absorbance-based Job plots. Carbazole ligand binds 22HT with about 2:1 stoichiometry in the presence of sodium and potassium ions. The binding mode appeared to be end-stacking with comparable binding constants of ~105 M−1 as determined from UV-Vis and fluorescence titrations data. The carbazole ligand is able to induce formation of G4 structure of 22HT in the absence of salt, which was proved by CD spectroscopy and melting studies. The derivative of carbazole 3 shows significantly higher cytotoxicity against breast cancer cells then for non-tumorigenic breast epithelial cells. The cytotoxic activity of ligand seems to be not associated with telomerase inhibition.
Collapse
|
18
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole ligands as c-myc G-quadruplex binders. Int J Biol Macromol 2018; 114:479-490. [DOI: 10.1016/j.ijbiomac.2018.03.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 10/24/2022]
|
19
|
Głuszyńska A, Juskowiak B, Kuta-Siejkowska M, Hoffmann M, Haider S. Carbazole Derivatives' Binding to c-KIT G-Quadruplex DNA. Molecules 2018; 23:E1134. [PMID: 29747481 PMCID: PMC6099540 DOI: 10.3390/molecules23051134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
The binding affinities of three carbazole derivatives to the intramolecular G-quadruplex (GQ) DNA formed by the sequence 5′-AGGGAGGGCGCTGGGAGGAGGG-3′, derived from the c-KIT 1 oncogene region, were investigated. All carbazole cationic ligands that differed in the substituents on the nitrogen atom were able to stabilize G-quadruplex, as demonstrated using UV-Vis, fluorescence and CD spectroscopic techniques as well as molecular modeling. The spectrophotometric titration results showed spectral features characteristic of these ligands-bathochromic shifts and initial hypochromicity followed by hyperchromicity at higher GQ concentrations. All free carbazole ligands exhibited modest fluorescent properties, but after binding to the DNA the fluorescence intensity increased significantly. The binding affinities of carbazole ligands to the c-KIT 1 DNA were comparable showing values in the order of 10⁵ M−1. Molecular modeling highlights the differences in interactions between each particular ligand and studied G-quadruplex, which potentially influenced binding strength. Obtained results relevant that all three investigated ligands have stabilization properties on studied G-quadruplex.
Collapse
Affiliation(s)
- Agata Głuszyńska
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Bernard Juskowiak
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Martyna Kuta-Siejkowska
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Marcin Hoffmann
- Laboratory of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska Street 89b, 61-614 Poznań, Poland.
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 1AX, UK.
| |
Collapse
|
20
|
Wang YT, Lü LR, Tang GM. Syntheses, crystal structures and luminescent properties of two salts with 2-((1 H -imidazol-1-yl)methyl)-1 H -benzimidazole. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Kaulage MH, Maji B, Pasadi S, Ali A, Bhattacharya S, Muniyappa K. Targeting G-quadruplex DNA structures in the telomere and oncogene promoter regions by benzimidazole‒carbazole ligands. Eur J Med Chem 2018; 148:178-194. [DOI: 10.1016/j.ejmech.2018.01.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/17/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
22
|
Dey N, Maji B, Bhattacharya S. Motion-Induced Changes in Emission as an Effective Strategy for the Ratiometric Probing of Human Serum Albumin and Trypsin in Biological Fluids. Chem Asian J 2018; 13:664-671. [DOI: 10.1002/asia.201701795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/23/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
| | - Basudeb Maji
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
| | - Santanu Bhattacharya
- Department of Organic Chemistry; Indian Institute of Science; Bangalore 560012 India
- Current Address: Indian Association for the Cultivation of Science; Kolkata 700032 India
| |
Collapse
|
23
|
Studies on interactions of carbazole derivatives with DNA, cell image, and cytotoxicity. Bioorg Med Chem 2018; 26:285-294. [DOI: 10.1016/j.bmc.2017.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 11/19/2022]
|
24
|
Dey N, Maji B, Bhattacharya S. A Versatile Probe for Caffeine Detection in Real-Life Samples via Excitation-Triggered Alteration in the Sensing Behavior of Fluorescent Organic Nanoaggregates. Anal Chem 2017; 90:821-829. [DOI: 10.1021/acs.analchem.7b03520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nilanjan Dey
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Basudeb Maji
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
25
|
Kerkour A, Mergny JL, Salgado GF. NMR based model of human telomeric repeat G-quadruplex in complex with 2,4,6-triarylpyridine family ligand. Biochim Biophys Acta Gen Subj 2016; 1861:1293-1302. [PMID: 28007578 DOI: 10.1016/j.bbagen.2016.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 11/25/2022]
Abstract
G-quadruplexes (G4) are one of the several different forms of non-canonical DNA structures that can occur in our genome. Their existence is thought to be implicated in important biological functions such as positive and negative transcription regulation or telomeric extension. The human telomeric sequence G4 formed by repetitive nucleotide sequences (T2AG3) at each chromosome end is an important example of intramolecular G4. Knowing the atomic details for different families of ligands targeting G-quadruplex structures hypothetically found in the telomeric repeat it is an important step for rational drug design. Especially if the aim is to prevent or interfere with telomerase extending the 3' end of telomeres. In this study, we report the structure of the complex formed between the telomeric repeat sequence (d[AG3(T2AG3)3]) intramolecular G-quadruplex and the 2,4,6-Triarylpyridine compound. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Abdelaziz Kerkour
- Univ. Bordeaux, CNRS/Inserm, Laboratoire ARNA, Institut Européen de Chimie et de Biologie (IECB), 2 rue Robert Escarpit 33607, Pessac, France
| | - Jean-Louis Mergny
- Univ. Bordeaux, CNRS/Inserm, Laboratoire ARNA, Institut Européen de Chimie et de Biologie (IECB), 2 rue Robert Escarpit 33607, Pessac, France
| | - Gilmar F Salgado
- Univ. Bordeaux, CNRS/Inserm, Laboratoire ARNA, Institut Européen de Chimie et de Biologie (IECB), 2 rue Robert Escarpit 33607, Pessac, France.
| |
Collapse
|
26
|
Meng JP, Gong Y, Lin JH. Band Gaps and Photocurrent Responses of Bulk and Thin‐Film Coordination Polymers Based on 3,6‐Di(1
H
‐imidazol‐1‐yl)‐9
H
‐carbazole. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiang Ping Meng
- Department of Applied ChemistryCollege of Chemistry and Chemical EngineeringChongqing University400030ChongqingP. R. China
| | - Yun Gong
- Department of Applied ChemistryCollege of Chemistry and Chemical EngineeringChongqing University400030ChongqingP. R. China
| | - Jian Hua Lin
- Department of Applied ChemistryCollege of Chemistry and Chemical EngineeringChongqing University400030ChongqingP. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking University100871BeijingP. R. China
| |
Collapse
|
27
|
Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies. Future Med Chem 2016; 8:1259-90. [PMID: 27442231 DOI: 10.4155/fmc-2015-0017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade.
Collapse
|
28
|
Chen Y, Zhang Y. Functional and mechanistic analysis of telomerase: An antitumor drug target. Pharmacol Ther 2016; 163:24-47. [PMID: 27118336 DOI: 10.1016/j.pharmthera.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 01/26/2023]
|
29
|
Lin D, Fei X, Gu Y, Wang C, Tang Y, Li R, Zhou J. A benzindole substituted carbazole cyanine dye: a novel targeting fluorescent probe for parallel c-myc G-quadruplexes. Analyst 2016; 140:5772-80. [PMID: 26176020 DOI: 10.1039/c5an00866b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many organic ligands were synthesized to recognize G-quadruplexes. However, different kinds of G-quadruplexes (G4s) possess different structures and functions. Therefore, selective recognition of certain types of G4s is important for the study of G4s. In this paper, a novel cyanine dye, 3-(2-(4-vinylpyridine))-6-(2-((1-(4-sulfobutyl))-3,3-dimethyl-2-vinylbenz[e]indole)-9-ethyl-carbazole (9E PBIC), composed of benzindole and carbazole was designed and synthesised. The studies on UV-vis and fluorescence properties of the dye with different DNA forms showed that the dye exhibits almost no fluorescence under aqueous buffer conditions, but it increased over 100 fold in the presence of c-myc G4 and 10-30 fold in the presence of other G4s, while little in the presence of single/double-stranded DNA, indicating that it has excellent selectivity to c-myc 2345 G4. For the binding studies the dye is interacted with the c-myc 2345 G-quadruplex by using the end-stack binding model. It can be said that the dye is an excellent targeting fluorescent probe for c-myc G-quadruplexes.
Collapse
Affiliation(s)
- Dayong Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Shen R, Chen Y, Li Z, Qi H, Wang Y. Synthesis and biological evaluation of disubstituted amidoxanthones as potential telomeric G-quadruplex DNA-binding and apoptosis-inducing agents. Bioorg Med Chem 2016; 24:619-26. [DOI: 10.1016/j.bmc.2015.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022]
|
31
|
Kandemir H, Sengul IF. Facile Synthesis of Some 3-(Benzimidazol-2-yl)- and 3,6-Di(Benzimidazol-2-yl)-9-ethyl-9H-carbazoles. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2015.1094819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|