1
|
Pseudo-glycoconjugates with a C-glycoside linkage. Adv Carbohydr Chem Biochem 2022; 82:35-77. [PMID: 36470649 DOI: 10.1016/bs.accb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Work by the author and colleagues has been focused on the development of pseudo-glycans (pseudo-glycoconjugates), in which the O-glycosidic linkage of the natural-type glycan structure is replaced by a C-glycosidic linkage. These analogs are not degraded by cellular glycoside hydrolases and are thus expected to be useful molecular tools that may maintain the original biological activity for a long period in the cell. However, their biological potential is not yet well understood because only a few pseudo glycans have so far been synthesized. This article aims to provide a bird's-eye view of our recent studies on the creation of C-glycoside analogs of ganglioside GM3 based on the CHF-sialoside linkage, and summarizes the chemical insights acquired during our stereoselective synthesis of the C-sialoside bond, ultimately leading to pseudo-GM3. Conformational analysis of the synthesized CHF-sialoside disaccharides confirmed that the anticipated conformational control by F-atom introduction was successful, and furthermore, enhanced the biological activity. In order to improve access to C-glycoside analogs based on pseudo-GM3, it is still important to streamline the synthesis process. With this in mind, we designed and developed a direct C-glycosylation method using atom-transfer radical coupling, and employed it in syntheses of pseudo-isomaltose and pseudo-KRN7000.
Collapse
|
2
|
Zhang M, Chen HW, Liu QQ, Gao FT, Li YX, Hu XG, Yu CY. De Novo Synthesis of Orthogonally-Protected C2-Fluoro Digitoxoses and Cymaroses: Development and Application for the Synthesis of Fluorinated Digoxin. J Org Chem 2021; 87:1272-1284. [PMID: 34964642 DOI: 10.1021/acs.joc.1c02592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inspired by Roush's pioneering work on rare sugars, we have developed a scalable, stereoselective, de novo synthesis of orthogonally protected C2-fluoro digitoxose and cymarose, utilizing Sharpless kinetic resolution and organocatalytic fluorination as key steps. The utility of this strategy is demonstrated by the synthesis of a fluorinated analogue of digoxin, which indicates the fluorine on the sugar ring may have a significant impact on biological activity.
Collapse
Affiliation(s)
- Ming Zhang
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Wei Chen
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Qing-Quan Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Feng-Teng Gao
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Quintard A. Copper Catalyzed Decarboxylative Functionalization of Ketoacids. CHEM REC 2021; 21:3382-3393. [PMID: 33750015 DOI: 10.1002/tcr.202100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
Selective copper catalyzed activation of ketoacids and notably bio-sourced 1,3-acetonedicarboxylic acid, represents an attractive strategy to solve key synthetic challenges. Condensation with aldehydes under exceedingly mild conditions can create more rapidly known natural products scaffolds such as 1,3 polyols. In this account, the recent progress in this field, notably through multicatalytic combination with organocatalysis is described. In addition to the rapid preparation of natural product fragments, cascade incorporation of fluorine also provided new type of synthetic analogues of improved properties in a broad range of applications.
Collapse
Affiliation(s)
- Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|
4
|
Delbrouck JA, Bochatay VN, Tikad A, Vincent SP. Regioselective Synthesis of Difluorinated C-Furanosides Involving a Debenzylative Cycloetherification. Org Lett 2019; 21:5562-5566. [PMID: 31273996 DOI: 10.1021/acs.orglett.9b01878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly regioselective synthesis of valuable gem-difluorinated C-furanosides from unprotected aldoses via a debenzylative cycloetherification (DBCE) reaction induced by diethylaminosulfur trifluoride is descibed. The scope and limitations of this DBCE reaction are described using a series of commercially available pentoses and hexoses to afford, without selective protection/deprotection sequences, the corresponding gem-difluorinated C-furanosides in moderate to good yields.
Collapse
Affiliation(s)
- Julien A Delbrouck
- University of Namur , Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61 , B-5000 Namur , Belgium
| | - Valentin N Bochatay
- University of Namur , Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61 , B-5000 Namur , Belgium
| | - Abdellatif Tikad
- Laboratoire de Chimie Moléculaire et Substances Naturelles, Faculté des Sciences , Université Moulay Ismail , B.P. 11201, Zitoune , Meknès 50050 , Morocco
| | - Stéphane P Vincent
- University of Namur , Département de Chimie, Laboratoire de Chimie Bio-Organique , rue de Bruxelles 61 , B-5000 Namur , Belgium
| |
Collapse
|
5
|
Ricucci A, Rodriguez J, Quintard A. Organo- and Copper-Multi-Catalyzed Pseudo Four-Component Access to gem
-Difluorohydrins. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Ricucci
- CNRS, Centrale Marseille, iSm2; Aix Marseille Université; 13397 Marseille France
| | - Jean Rodriguez
- CNRS, Centrale Marseille, iSm2; Aix Marseille Université; 13397 Marseille France
| | - Adrien Quintard
- CNRS, Centrale Marseille, iSm2; Aix Marseille Université; 13397 Marseille France
| |
Collapse
|
6
|
Altiti AS, Bachan S, Mootoo DR. The Crotylation Way to Glycosphingolipids: Synthesis of Analogues of KRN7000. Org Lett 2016; 18:4654-7. [PMID: 27560147 DOI: 10.1021/acs.orglett.6b02284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A synthesis of glycosphingolipids that centers on the reaction of O- and C-glycosyl crotylstannanes and relatively simple lipid aldehydes is described. The modularity of this strategy and versatility of the crotylation products make this an attractive approach to diverse, highly substituted libraries. The methodology is applied to analogues of the potent imunostimulatory glycolipid KRN7000, including O-, methylene-, and fluoromethine-linked isosteres with diastereomeric ceramide segments and 2-amido substitutes.
Collapse
Affiliation(s)
- Ahmad S Altiti
- Hunter College, The City University of New York (CUNY) , 695 Park Avenue, New York, New York 10021, United States.,The Graduate Center, CUNY , 365 Fifth Avenue, New York, New York 10016, United States
| | - Stewart Bachan
- Hunter College, The City University of New York (CUNY) , 695 Park Avenue, New York, New York 10021, United States.,The Graduate Center, CUNY , 365 Fifth Avenue, New York, New York 10016, United States
| | - David R Mootoo
- Hunter College, The City University of New York (CUNY) , 695 Park Avenue, New York, New York 10021, United States.,The Graduate Center, CUNY , 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
7
|
Hu XG, Lawer A, Peterson MB, Iranmanesh H, Ball GE, Hunter L. Diastereoselective Synthesis and Conformational Analysis of (2R)- and (2S)-Fluorostatines: An Approach Based on Organocatalytic Fluorination of a Chiral Aldehyde. Org Lett 2016; 18:662-5. [PMID: 26863092 DOI: 10.1021/acs.orglett.5b03592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stereoselectively fluorinated analogues of the amino acid statine have been efficiently synthesized. The key step is an organocatalytic electrophilic fluorination of a chiral β-oxygenated aldehyde, which provided a test of both diastereoselectivity and chemoselectivity. The target statine analogues were found to adopt unique conformations influenced by the fluorine gauche effect, rendering them potentially valuable building blocks for incorporation into bioactive peptides.
Collapse
Affiliation(s)
- Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University , Nanchang 330022, China.,School of Chemistry, UNSW Australia , Sydney, NSW 2052, Australia
| | - Aggie Lawer
- School of Chemistry, UNSW Australia , Sydney, NSW 2052, Australia
| | - Matthew B Peterson
- School of Chemistry, UNSW Australia , Sydney, NSW 2052, Australia.,Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, NSW 2109, Australia
| | - Hasti Iranmanesh
- School of Chemistry, UNSW Australia , Sydney, NSW 2052, Australia
| | - Graham E Ball
- School of Chemistry, UNSW Australia , Sydney, NSW 2052, Australia
| | - Luke Hunter
- School of Chemistry, UNSW Australia , Sydney, NSW 2052, Australia
| |
Collapse
|