1
|
Ajitha M, Haines BE, Musaev DG. Mechanism and Selectivity of Copper-Catalyzed Bromination of Distal C(sp 3)-H Bonds. Organometallics 2023; 42:2467-2476. [PMID: 37772274 PMCID: PMC10526628 DOI: 10.1021/acs.organomet.2c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 02/25/2023]
Abstract
Unactivated C(sp3)-H bonds are the most challenging substrate class for transition metal-catalyzed C-H halogenation. Recently, the Yu group [Liu, T.; Myers, M. C.; Yu, J. Q. Angew. Chem., Int. Ed.2017, 56 (1), 306-309] has demonstrated that a CuII/phenanthroline catalyst and BrN3, generated in situ from NBS and TMSN3 precursors, can achieve selective C-H bromination distal to a directing group. The current understanding of the mechanism of this reaction has left numerous questions unanswered. Here, we investigated the mechanism of Cu-catalyzed C(sp3)-H bromination with distal site selectivity using density functional theory calculations. We found that this reaction starts with the Br-atom transfer from BrN3 to the Cu center that occurs via a small energy barrier at the singlet-triplet state seam of crossing. In the course of this reaction, the presence of the N-H bond in the substrate is critically important and acts as a directing group for enhancing the stability of the catalyst-substrate interaction and for the recruitment of the substrate to the catalyst. The required C-centered radical substrate formation occurs via direct C-H dehydrogenation by the Cu-coordinated N3 radical, rather than via the previously proposed N-H bond dehydrogenation and then the 1,5-H transfer from the γ-(C-H) bond to the N-radical center pathway. The C-H bond activation by the azide radical is a regioselectivity-controlling step. The following bromination of the C-centered radical by the Cu-coordinated bromine completes the product formation. This reaction step is the rate-limiting step, occurs at the singlet-to-triplet state seam of the crossing point, and is exergonic.
Collapse
Affiliation(s)
- Manjaly
J. Ajitha
- Cherry L. Emerson Center for Scientific
Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | | | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific
Computation, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Schulz G, George V, Taser D, Kirschning A. Taming Bromine Azide for Use in Organic Solvents─Radical Bromoazidations and Alcohol Oxidations. J Org Chem 2023; 88:3781-3786. [PMID: 36821827 PMCID: PMC10028602 DOI: 10.1021/acs.joc.2c03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The formation of bromine azide from the bisazidobromate(I) anion or alternatively from Zhdankin's reagent, using a phosphonium bromide salt as a common starting point, is reported. After homolytic cleavage in the presence of alkenes or alcohols either 1,2-functionalization or alternatively the selective oxidation of secondary alcohols in the presence of primary alcohols occur. The scopes and limitations of the use of BrN3 are covered.
Collapse
Affiliation(s)
- Göran Schulz
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Vincent George
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Daghan Taser
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
3
|
Shee M, Singh NDP. Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chem Soc Rev 2022; 51:2255-2312. [PMID: 35229836 DOI: 10.1039/d1cs00494h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of azide radical (N3˙) occurs from its precursors primarily via a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This in situ generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e- oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N3˙ via electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, etc.), (ii) chemical reactivities and kinetics, (iii) methods to produce N3˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization via HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
4
|
Wan L, Jiang M, Cheng D, Liu M, Chen F. Continuous flow technology-a tool for safer oxidation chemistry. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00520k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advantages and benefits of continuous flow technology for oxidation chemistry have been illustrated in tube reactors, micro-channel reactors, tube-in-tube reactors and micro-packed bed reactors in the presence of various oxidants.
Collapse
Affiliation(s)
- Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dang Cheng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
5
|
De A, Majee A. Synthesis of various functionalized
2
H
‐azirines: An
updated library. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aramita De
- Department of Chemistry Visva‐Bharati (A Central University) Santiniketan India
| | - Adinath Majee
- Department of Chemistry Visva‐Bharati (A Central University) Santiniketan India
| |
Collapse
|
6
|
Bisht GS, Dunchu TD, Gnanaprakasam B. Synthesis of Quaternary Spirooxindole 2H-Azirines under Batch and Continuous Flow Condition and Metal Assisted Umpolung Reactivity for the Ring-Opening Reaction. Chem Asian J 2021; 16:656-665. [PMID: 33464707 DOI: 10.1002/asia.202001418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Indexed: 11/06/2022]
Abstract
An efficient and new approach for the synthesis of spirooxindole 2H-azirines via intramolecular oxidative cyclization of 3-(amino(phenyl)methylene)-indolin-2-one derivatives in the presence of I2 and Cs2 CO3 under batch/continuous flow is described. This method is mild and facile to synthesize a variety of spirooxindole 2H-azirines derivatives in gram-scale. Furthermore, we have synthesized spiroaziridine derivatives from spirooxindole 2H-azirines derivatives via addition of Grignard reagent. In addition, we discloses an metal assisted attack of Grignard nucleophile at N-centre rather than C- of the spirooxindole 2H-azirines, which concurrently underwent ring opening of transient aziridines to afford N-substituted Z-3-(aminophenyl)indolin-2-one. A plausible mechanism for azirination and ring-opening reaction is also presented.
Collapse
Affiliation(s)
- Girish Singh Bisht
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| | - Tenzin Dolkar Dunchu
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, 411008, Pune, India
| |
Collapse
|
7
|
A continuous flow bromodimethylsulfonium bromide generator: application to the synthesis of 2-arylaziridines from styrenes. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00125-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Dallinger D, Gutmann B, Kappe CO. The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow. Acc Chem Res 2020; 53:1330-1341. [PMID: 32543830 PMCID: PMC7467564 DOI: 10.1021/acs.accounts.0c00199] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
In recent years, a steadily growing number of chemists, from both
academia and industry, have dedicated their research to the development
of continuous flow processes performed in milli- or microreactors.
The common availability of continuous flow equipment at virtually
all scales and affordable cost has additionally impacted this trend.
Furthermore, regulatory agencies such as the United States Food and
Drug Administration actively encourage continuous manufacturing of
active pharmaceutical ingredients (APIs) with the vision of quality
and productivity improvements. That is why the pharmaceutical industry
is progressively implementing continuous flow technologies. As a result
of the exceptional characteristics of continuous flow reactors such
as small reactor volumes and remarkably fast heat and mass transfer,
process conditions which need to be avoided in conventional batch
syntheses can be safely employed. Thus, continuous operation is particularly
advantageous for reactions at high temperatures/pressures (novel process
windows) and for ultrafast, exothermic reactions (flash chemistry). In addition to conditions that are outside of the operation range
of conventional stirred tank reactors, reagents possessing a high
hazard potential and therefore not amenable to batch processing can
be safely utilized (forbidden chemistry). Because of the small reactor
volumes, risks in case of a failure are minimized. Such hazardous
reagents often are low molecular weight compounds, leading generally
to the most atom-, time-, and cost-efficient route toward the desired
product. Ideally, they are generated from benign, readily available
and cheap precursors within the closed environment of the flow reactor
on-site on-demand. By doing so, the transport, storage, and handling
of those compounds, which impose a certain safety risk especially
on a large scale, are circumvented. This strategy also positively
impacts the global supply chain dependency, which can be a severe
issue, particularly in times of stricter safety regulations or an
epidemic. The concept of the in situ production of a hazardous material
is generally referred to as the “generator” of the material.
Importantly, in an integrated flow process, multiple modules can be
assembled consecutively, allowing not only an in-line purification/separation
and quenching of the reagent, but also its downstream conversion to
a nonhazardous product. For the past decade, research in our
group has focused on the continuous
generation of hazardous reagents using a range of reactor designs
and experimental techniques, particularly toward the synthesis of
APIs. In this Account, we therefore introduce chemical generator concepts
that have been developed in our laboratories for the production of
toxic, explosive, and short-lived reagents. We have defined three
different classes of generators depending on the reactivity/stability
of the reagents, featuring reagents such as Br2, HCN, peracids,
diazomethane (CH2N2), or hydrazoic acid (HN3). The various reactor designs, including in-line membrane
separation techniques and real-time process analytical technologies
for the generation, purification, and monitoring of those hazardous
reagents, and also their downstream transformations are presented.
This Account should serve as food for thought to extend the scope
of chemical generators for accomplishing more efficient and more economic
processes.
Collapse
Affiliation(s)
- Doris Dallinger
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Bernhard Gutmann
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
9
|
Ramkumar N, Voskressensky LG, Sharma UK, Van der Eycken EV. Recent approaches to the synthesis of 2H-azirines. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02539-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Khlebnikov AF, Novikov MS, Rostovskii NV. Advances in 2H-azirine chemistry: A seven-year update. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Yi R, Qian L, Wan B. Synthesis of spiropyrrolidine oxindoles through Rh(II)-catalyzed olefination/cyclization of diazooxindoles and vinyl azides. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(18)63200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Tiwari V, Singh A. Expeditious Conversion of Iodoallenes to Iodoenals Mediated by Sodium Azide and Iodine. ChemistrySelect 2018. [DOI: 10.1002/slct.201801121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vibha Tiwari
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh India
| | - Anand Singh
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur-208016, Uttar Pradesh India
| |
Collapse
|
13
|
Rossa TA, Suveges NS, Sá MM, Cantillo D, Kappe CO. Continuous multistep synthesis of 2-(azidomethyl)oxazoles. Beilstein J Org Chem 2018. [PMID: 29520312 PMCID: PMC5827817 DOI: 10.3762/bjoc.14.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An efficient three-step protocol was developed to produce 2-(azidomethyl)oxazoles from vinyl azides in a continuous-flow process. The general synthetic strategy involves a thermolysis of vinyl azides to generate azirines, which react with bromoacetyl bromide to provide 2-(bromomethyl)oxazoles. The latter compounds are versatile building blocks for nucleophilic displacement reactions as demonstrated by their subsequent treatment with NaN3 in aqueous medium to give azido oxazoles in good selectivity. Process integration enabled the synthesis of this useful moiety in short overall residence times (7 to 9 min) and in good overall yields.
Collapse
Affiliation(s)
- Thaís A Rossa
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Departamento de Quıímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Nícolas S Suveges
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil 22941-909
| | - Marcus M Sá
- Departamento de Quıímica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - David Cantillo
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria.,Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
14
|
Glotz G, Lebl R, Dallinger D, Kappe CO. Integration of Bromine and Cyanogen Bromide Generators for the Continuous-Flow Synthesis of Cyclic Guanidines. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gabriel Glotz
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - René Lebl
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Doris Dallinger
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
15
|
Glotz G, Lebl R, Dallinger D, Kappe CO. Integration of Bromine and Cyanogen Bromide Generators for the Continuous-Flow Synthesis of Cyclic Guanidines. Angew Chem Int Ed Engl 2017; 56:13786-13789. [DOI: 10.1002/anie.201708533] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriel Glotz
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - René Lebl
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - Doris Dallinger
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW); Research Center Pharmaceutical Engineering GmbH (RCPE); Inffeldgasse 13 8010 Graz Austria
- Institute of Chemistry, NAWI Graz; University of Graz; Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
16
|
Plutschack MB, Pieber B, Gilmore K, Seeberger PH. The Hitchhiker's Guide to Flow Chemistry ∥. Chem Rev 2017; 117:11796-11893. [PMID: 28570059 DOI: 10.1021/acs.chemrev.7b00183] [Citation(s) in RCA: 1075] [Impact Index Per Article: 134.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Collapse
Affiliation(s)
- Matthew B Plutschack
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
17
|
Fu J, Zanoni G, Anderson EA, Bi X. α-Substituted vinyl azides: an emerging functionalized alkene. Chem Soc Rev 2017; 46:7208-7228. [DOI: 10.1039/c7cs00017k] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vinyl azides are highly versatile synthons that provide access to numerous N-heterocycles and other functional groups.
Collapse
Affiliation(s)
- Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Giuseppe Zanoni
- Department of Chemistry
- University of Pavia
- 10-27100 Pavia
- Italy
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
18
|
Mandala D, Chada S, Watts P. Semi-continuous multi-step synthesis of lamivudine. Org Biomol Chem 2017; 15:3444-3454. [DOI: 10.1039/c7ob00480j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first semi-continuous flow synthesis of lamivudine, an antiretroviral drug used in the treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Devender Mandala
- Nelson Mandela Metropolitan University
- University Way
- Port Elizabeth
- South Africa
| | - Sravanthi Chada
- Nelson Mandela Metropolitan University
- University Way
- Port Elizabeth
- South Africa
| | - Paul Watts
- Nelson Mandela Metropolitan University
- University Way
- Port Elizabeth
- South Africa
| |
Collapse
|
19
|
Cantillo D, Kappe CO. Halogenation of organic compounds using continuous flow and microreactor technology. REACT CHEM ENG 2017. [DOI: 10.1039/c6re00186f] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Halogenation reactions involving highly reactive halogenating agents can be performed safely and with improved efficiency and selectivity under continuous flow conditions.
Collapse
Affiliation(s)
- David Cantillo
- Institute of Chemistry
- University of Graz
- Graz
- Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE)
| | - C. Oliver Kappe
- Institute of Chemistry
- University of Graz
- Graz
- Austria
- Research Center Pharmaceutical Engineering GmbH (RCPE)
| |
Collapse
|
20
|
Sun YM, Yu LZ, Zhu ZZ, Hu XB, Gao YN, Shi M. Electronic halocyclization and radical haloazidation of benzene-linked 1,7-dienes for the synthesis of functionalized 3,1-benzoxazines. Org Biomol Chem 2017; 15:634-639. [DOI: 10.1039/c6ob02566h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electronic halocyclization and radical haloazidation of benzene-linked 1,7-dienes by using TMSN3 as an azidyl source and NBS as a halogen source has been disclosed in this paper, producing a series of functionalized 3,1-benzoxazines in moderate to good yields.
Collapse
Affiliation(s)
- Yuan-Ming Sun
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecule Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Liu-Zhu Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecule Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Zi-Zhong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecule Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xu-Bo Hu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecule Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yu-Ning Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecule Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry and Molecule Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
21
|
Mizuno K, Nishiyama Y, Ogaki T, Terao K, Ikeda H, Kakiuchi K. Utilization of microflow reactors to carry out synthetically useful organic photochemical reactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.10.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Soliman HA, Khatab TK, Abdel-Megeid FM. Utilization of bromine azide to access vicinal-azidobromides from arylidene malononitrile. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV. Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 2016; 45:4892-928. [PMID: 27453961 DOI: 10.1039/c5cs00902b] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last two decades, flow technologies have become increasingly popular in the field of organic chemistry, offering solutions for engineering and/or chemical problems. Flow reactors enhance the mass and heat transfer, resulting in rapid reaction mixing, and enable a precise control over the reaction parameters, increasing the overall process selectivity, efficiency and safety. These features allow chemists to tackle unexploited challenges in their work, with the ultimate objective making chemistry more accessible for laboratory and industrial applications, avoiding the need to store and handle toxic, reactive and explosive reagents. This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions.
Collapse
Affiliation(s)
- M Movsisyan
- SynBioC, Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
24
|
Visible light induced azidation of aldehydic C–H with carbon tetrabromide and sodium azide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Cambié D, Bottecchia C, Straathof NJW, Hessel V, Noël T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem Rev 2016; 116:10276-341. [PMID: 26935706 DOI: 10.1021/acs.chemrev.5b00707] [Citation(s) in RCA: 922] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
Collapse
Affiliation(s)
- Dario Cambié
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Cecilia Bottecchia
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Natan J W Straathof
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process Technology, Eindhoven University of Technology , Den Dolech 2, 5600 MB Eindhoven, The Netherlands.,Department of Organic Chemistry, Ghent University , Krijgslaan 281 (S4), 9000 Ghent, Belgium
| |
Collapse
|