1
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Highly Effective Crosslinker for Redox-Sensitive Gene Carriers. ADVANCES IN POLYMER TECHNOLOGY 2021. [DOI: 10.1155/2021/5635981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polyethyleneimine (PEI) has been extensively used as a common gene carrier due to its high gene transfection efficiency. PEI1.8k shows significantly lower cytotoxicity than its high molecular weight counterparts. However, it also has the problem of low gene transfection efficiency. To address the dilemma, a highly effective crosslinker (DTME) was synthesized to react with PEI1.8k to obtain CS-PEI1.8k. The reaction showed several advantages, such as a fast process in room temperature within nine hours with the product which can directly complex with DNA after removing the solvent. The ability of CS-PEI1.8k to agglomerate with DNA was proven by particle size, zeta potential, and gel retardation assays. The cytotoxic in vitro transfection ability and cell internalization capacity of CS-PEI1.8k were tested to verify the transfection capacity of CS-PEI1.8k. Moreover, we also studied the mechanism of the relatively high level of gene transfection by this binary complex compared with PEI25k.
Collapse
|
3
|
Polyethyleneimine-Oleic Acid Micelles-Stabilized Palladium Nanoparticles as Highly Efficient Catalyst to Treat Pollutants with Enhanced Performance. Polymers (Basel) 2021; 13:polym13111890. [PMID: 34204167 PMCID: PMC8201335 DOI: 10.3390/polym13111890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Water soluble organic molecular pollution endangers human life and health. It becomes necessary to develop highly stable noble metal nanoparticles without aggregation in solution to improve their catalytic performance in treating pollution. Polyethyleneimine (PEI)-based stable micelles have the potential to stabilize noble metal nanoparticles due to the positive charge of PEI. In this study, we synthesized the amphiphilic PEI-oleic acid molecule by acylation reaction. Amphiphilic PEI-oleic acid assembled into stable PEI-oleic acid micelles with a hydrodynamic diameter of about 196 nm and a zeta potential of about 34 mV. The PEI-oleic acid micelles-stabilized palladium nanoparticles (PO-PdNPsn) were prepared by the reduction of sodium tetrachloropalladate using NaBH4 and the palladium nanoparticles (PdNPs) were anchored in the hydrophilic layer of the micelles. The prepared PO-PdNPsn had a small size for PdNPs and good stability in solution. Noteworthily, PO-PdNPs150 had the highest catalytic activity in reducing 4-nitrophenol (4-NP) (Knor = 18.53 s−1mM−1) and oxidizing morin (Knor = 143.57 s−1M−1) in aqueous solution than other previous catalysts. The enhanced property was attributed to the improving the stability of PdNPs by PEI-oleic acid micelles. The method described in this report has great potential to prepare many kinds of stable noble metal nanoparticles for treating aqueous pollution.
Collapse
|
4
|
Mollazadeh S, Mackiewicz M, Yazdimamaghani M. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111536. [PMID: 33255089 DOI: 10.1016/j.msec.2020.111536] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Poor water solubility, off-target toxicity, and small therapeutic window are among major obstacles for the development of drug products. Redox-responsive drug delivery nanoplatforms not only overcome the delivery and pharmacokinetic pitfalls observed in conventional drug delivery, but also leverage the site-specific delivery properties. Cleavable diselenide and disulfide bonds in the presence of elevated reactive oxygen species (ROS) and glutathione concentration are among widely used stimuli-responsive bonds to design nanocarriers. This review covers a wide range of redox-responsive chemical structures and their properties for designing nanoparticles aiming controlled loading, delivery, and release of hydrophobic anticancer drugs at tumor site.
Collapse
Affiliation(s)
- Shirin Mollazadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcin Mackiewicz
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Poland
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Bholakant R, Qian H, Zhang J, Huang X, Huang D, Feijen J, Zhong Y, Chen W. Recent Advances of Polycationic siRNA Vectors for Cancer Therapy. Biomacromolecules 2020; 21:2966-2982. [DOI: 10.1021/acs.biomac.0c00438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
6
|
Shao X, Zhang S, Tang Y, Kong W. Micro RNA‐30b (inhibitor) nanoparticles suppressed the lipopolysaccharide (LPS)‐induced acute kidney injury. IET Nanobiotechnol 2019; 13:923-927. [PMID: 31811760 DOI: 10.1049/iet-nbt.2019.0110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Xiang Shao
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Suhua Zhang
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Ying Tang
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| | - Weixin Kong
- Department of Kidney DiseaseSuzhou Kowloon Hospital Affiliated to Medical College of Shanghai Jiaotong UniversitySuzhouJiangsu 215028People's Republic of China
| |
Collapse
|
7
|
Wang L, Zhang X, Cui Y, Guo X, Chen S, Sun H, Gao D, Yang Q, Kang J. Polyethyleneimine-oleic acid micelle-stabilized gold nanoparticles for reduction of 4-nitrophenol with enhanced performance. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00353-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Multifunctional PEG-b-polypeptide-decorated gold nanorod for targeted combined chemo-photothermal therapy of breast cancer. Colloids Surf B Biointerfaces 2019; 181:602-611. [PMID: 31202131 DOI: 10.1016/j.colsurfb.2019.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/16/2023]
Abstract
The combination of chemotherapy and photothermal therapy is acknowledged as one of the most promising approaches in cancer treatment. Targeted delivery and controlled drug release are two important factors for combined chemo-photothermal therapy. In this study, a multifunctional nanoplatform based on gold nanorod (GNR) decorated with folate-conjugated poly(ethylene glycol)-b-poly(L-γ-glutamylhydrazine) (FEGGH) containing disulfide linker and dihydroxyphenyl groups was developed for targeted combined chemo-photothermal therapy of breast cancer. FEGGH was synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride using folate/cystamine-heterobifunctionalized poly(ethylene glycol) as an initiator, following by hydrazinolysis and carbodiimide reactions. FEGGH was decorated onto GNR through Au-catechol bonds. Chemotherapeutic drug doxorubicin (DOX) was loaded onto the nanoplatform through pH-sensitive hydrazone linkage, obtaining final product FEGGHDOX-GNR. The DOX-loaded nanoplatform displayed excellent photostability and reduction/pH dual-responsive drug release behavior. Cytological studies demonstrated the effective internalization of FEGGHDOX-GNR into MCF-7 cells via folate-mediated endocytosis and additive therapeutic effect of combined photothermal-chemotherapy. These results indicate that our nanoplatform may be a promising strategy for targeted combined chemo-photothermal therapy of breast cancer.
Collapse
|
9
|
Gao Y, Jia L, Wang Q, Hu H, Zhao X, Chen D, Qiao M. pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16296-16310. [PMID: 30997984 DOI: 10.1021/acsami.9b02016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The enhanced endo-lysosomal sequestration still remains a big challenge in overcoming multidrug resistance (MDR). Herein, a dual-responsive polyplex with effective endo-lysosomal escape based on methoxypoly(ethylene glycol)-polylactide-polyhistidine-ss-oligoethylenimine (mPEG- b-PLA-PHis-ssOEI) was developed for codelivering MDR1 siRNA and doxorubicin (DOX). The polyplex showed good encapsulation of DOX and siRNA as well as triggered payload release in response to pH/redox stimuli because of the PHis protonation and the disulfide bond cleavage. The polyplex at an N/P ratio of 7 demonstrated a much higher payload delivery efficiency, MDR1 gene silence efficiency, cytotoxicity against MCF-7/ADR cell, and stronger MCF-7/ADR tumor growth inhibition than the polyplexes at higher N/P ratios. This was attributed to the stronger electrostatic attraction between siRNA and OEIs at higher N/P ratios that suppressed the release of MDR1 siRNA and OEIs, which played a dominant role in overcoming payload endo-lysosomal sequestration by the OEI-induced membrane permeabilization effect. Consequently, the polyplex with effective endo-lysosomal escape provides a rational approach for codelivery of siRNAs and chemotherapy agents for MDR reversal.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Drug Carriers/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Endosomes/chemistry
- Humans
- Hydrogen-Ion Concentration
- Lipids/chemistry
- MCF-7 Cells
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms/drug therapy
- Neoplasms/pathology
- Polyesters/chemistry
- Polyethylene Glycols/chemistry
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
| | - Li Jia
- Department of Pharmacy , Heze Medical College , Heze 274000 , P. R. China
| | | | | | | | | | | |
Collapse
|
10
|
Hou G, Qian J, Xu W, Sun T, Wang Y, Wang J, Ji L, Suo A. A novel pH-sensitive targeting polysaccharide-gold nanorod conjugate for combined photothermal-chemotherapy of breast cancer. Carbohydr Polym 2019; 212:334-344. [DOI: 10.1016/j.carbpol.2019.02.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 11/29/2022]
|
11
|
Zhang Y, Lin L, Liu L, Liu F, Maruyama A, Tian H, Chen X. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr Polym 2018; 201:246-256. [DOI: 10.1016/j.carbpol.2018.08.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023]
|
12
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Bar-Zeev M, Livney YD, Assaraf YG. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist Updat 2017; 31:15-30. [PMID: 28867241 DOI: 10.1016/j.drup.2017.05.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers. Top Curr Chem (Cham) 2017; 375:24. [DOI: 10.1007/s41061-017-0113-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
|
15
|
Suo A, Qian J, Zhang Y, Liu R, Xu W, Wang H. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:564-73. [PMID: 26952460 DOI: 10.1016/j.msec.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 11/19/2022]
Abstract
A comb-like amphiphilic copolymer methoxypolyethylene glycol-graft-poly(L-lysine)-block-poly(L-phenylalanine) (mPEG-g-PLL-b-Phe) was successfully synthesized. To synthesize mPEG-g-PLL-b-Phe, diblock copolymer PLL-b-Phe was first synthesized by successive ring-opening polymerization of α-amino acid N-carboxyanhydrides followed by the removal of benzyloxycarbonyl protecting groups, and then mPEG was grafted onto PLL-b-Phe by reductive amination via Schiff's base formation. The chemical structures of the copolymers were identified by (1)H NMR. mPEG-g-PLL-b-Phe copolymer had a critical micelle concentration of 6.0mg/L and could self-assemble in an aqueous solution into multicompartment nanomicelles with a mean diameter of approximately 78 nm. The nanomicelles could encapsulate doxorubicin (DOX) through hydrophobic and π-π stacking interactions between DOX molecules and Phe blocks and simultaneously complex P-gp siRNA with cationic PLL blocks via electrostatic interactions. The DOX/P-gp siRNA-loaded nanomicelles showed spherical morphology, possessed narrow particle size distribution and had a mean particle size of 120 nm. The DOX/P-gp siRNA-loaded nanomicelles exhibited pH-responsive release behaviors and displayed accelerated release under acidic conditions. The DOX/P-gp siRNA-loaded nanomicelles were efficiently internalized into MCF-7 cells, and DOX released could successfully reach nuclei. In vitro cytotoxicity assay demonstrated that the DOX/P-gp siRNA-loaded nanomicelles showed a much higher cytotoxicity in MCF-7 cells than DOX-loaded nanomicelles due to their synergistic killing effect and that the blank nanomicelles had good biocompatibility. Thus, the novel comb-like mPEG-g-PLL-b-Phe nanomicelles could be a promising vehicle for co-delivery of chemotherapeutic drug and genetic material.
Collapse
Affiliation(s)
- Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaping Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rongrong Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hejing Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
16
|
Zhou G, Xu Y, Chen M, Cheng D, Shuai X. Tumor-penetrating peptide modified and pH-sensitive polyplexes for tumor targeted siRNA delivery. Polym Chem 2016. [DOI: 10.1039/c6py00427j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The pH-sensitive copolymer enhanced the lysosome escape of polyplexes and modification of iRGD endowed the polyplexes with effective intratumoral delivery and high transfection efficiency.
Collapse
Affiliation(s)
- Guoyong Zhou
- PCFM Lab of Ministry of Education School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Yongmin Xu
- PCFM Lab of Ministry of Education School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macau 999078
- China
| | - Du Cheng
- PCFM Lab of Ministry of Education School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
- BME center
| |
Collapse
|
17
|
Yi X, Zhao D, Zhang Q, Xu J, Yuan G, Zhuo R, Li F. A co-delivery system based on a reduction-sensitive polymeric prodrug capable of loading hydrophilic and hydrophobic drugs for combination chemotherapy. Polym Chem 2016. [DOI: 10.1039/c6py00900j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A reduction-sensitive polymeric prodrug PEG-b-PMPMC-g-PTX was designed. The self-assemblies of polymeric prodrug could deliver drugs with different action mechanisms into tumor cells, leading to the apoptosis of tumor cells effectively.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Dan Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Quan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Jiaqi Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Gongdao Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|