1
|
Soutar DE, Mack HF, Ligorio M, Bissoyi A, Baker AN, Gibson MI. PVAylation: precision end-functionalized poly(vinyl alcohol) for site-selective bioconjugation. Chem Sci 2025:d5sc00772k. [PMID: 40290331 PMCID: PMC12019296 DOI: 10.1039/d5sc00772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
The (bio)conjugation of polymers onto proteins enhances their pharmacokinetics and stability, most commonly using PEG (polyethylene glycol), but there is a need for alternatives. Poly(vinyl alcohol), PVA, is a water-soluble, biocompatible and environmentally degradable polymer, which also has the unique function of ice recrystallisation inhibition (IRI) which can aid the cryopreservation of biologics. Site-specific PVA bioconjugation ("PVAylation") is underexplored due to the challenge of obtaining homogenous mono end-functional PVA. Here we show that following deprotection of the acetate (from the precursor poly(vinyl acetate)), the concurrent xanthate end-group reduction leads to a diversity of ambiguous end-groups which prevented precision conjugation. This is overcome by using a photo-catalyzed reduction of the omega-terminal xanthates to C-H, which is orthogonal to active-ester bioconjugation functionality at the alpha-chain terminus, demonstrated by MALDI-TOF mass spectrometry. This strategy enabled the preparation of well-defined mono-functional PVA displaying alkyne, biotin and O6-benzylguanine chain-end functionalities, which are each then used for covalent or non-covalent site-specific modification of three model proteins, introduce ice-binding function. These results will enable the synthesis of new bioconjugates containing PVA and be of particular benefit for low-temperature applications.
Collapse
Affiliation(s)
- Douglas E Soutar
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Ho Fung Mack
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Melissa Ligorio
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Akalabya Bissoyi
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
2
|
Angelini A, Car A, Dinu IA, Leva L, Yave W. Amphiphilic Poly(vinyl alcohol) Membranes Leaving Out Chemical Cross-Linkers: Design, Synthesis, and Function of Tailor-Made Poly(vinyl alcohol)-b-poly(styrene) Copolymers. Macromol Rapid Commun 2023; 44:e2200875. [PMID: 36628979 DOI: 10.1002/marc.202200875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Indexed: 01/12/2023]
Abstract
Tailor-made poly(vinyl alcohol)-b-poly(styrene) copolymers (PVA-b-PS) for separation membranes are synthesized by the combination of reversible-deactivation radical polymerization techniques. The special features of these di-block copolymers are the high molecular weight (>70 kDa), the high PVA content (>80 wt%), and the good film-forming property. They are soluble only in hot dimethyl sulfoxide, but by the "solvent-switch" technique, they self-assemble in aqueous media to form micelles. When the self-assembled micelles are cast on a porous substrate, thin-film membranes with higher water permeance than that of PVA homopolymer are obtained. Thus, by using these tailor-made PVA-b-PS copolymers, it is demonstrated that chemical cross-linkers and acid catalysts can no longer be needed to produce PVA membranes, since the PS nanodomains within the PVA matrix act as cross-linking points. Lastly, subsequent thermal annealing of the thin film enhances the membrane selectivity due to the improved microphase separation.
Collapse
Affiliation(s)
- Alessandro Angelini
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Anja Car
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Luigi Leva
- Research and Development Department, DeltaMem AG, Hegenheimermattweg 125, Allschwil, 4123, Switzerland
| | - Wilfredo Yave
- Research and Development Department, DeltaMem AG, Hegenheimermattweg 125, Allschwil, 4123, Switzerland
| |
Collapse
|
3
|
Pham TT, Aibara S, Omori T, Kimura Y, Yusa SI. Preparation of hydrophilic poly(vinyl alcohol)-containing amphiphilic diblock copolymers and their self-association in water. Polym J 2023. [DOI: 10.1038/s41428-023-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Lu M, Huang X, Cai X, Sun J, Liu X, Weng L, Zhu L, Luo Q, Chen Z. Hypoxia-Responsive Stereocomplex Polymeric Micelles with Improved Drug Loading Inhibit Breast Cancer Metastasis in an Orthotopic Murine Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20551-20565. [PMID: 35476401 DOI: 10.1021/acsami.1c23737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor metastasis is a leading cause of breast cancer-related death. Taxane-loaded polymeric formulations, such as Genexol PM and Nanoxel M using poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) micelles as drug carriers, have been approved for the treatment of metastatic breast cancer. Unfortunately, the physical instability of PEG-PLA micelles, leading to poor drug loading, premature drug leakage, and consequently limited drug delivery to tumors, largely hinders their therapeutic outcome. Inspired by the enantiomeric nature of PLA, this work developed stereocomplex PEG-PLA micelles through stereoselective interactions of enantiomeric PLA, which are further incorporated with a hypoxia-responsive moiety used as a hypoxia-cleavable linker of PEG and PLA, to maximize therapeutic outcomes. The results showed that the obtained micelles had high structural stability, showing improved drug loading for effective drug delivery to tumors as well as other tissues. Especially, they were capable of sensitively responding to the hypoxic tumor environment for drug release, reversing hypoxia-induced drug resistance and hypoxia-promoted cell migration for enhanced bioavailability under hypoxia. In vivo results further showed that the micelles, especially at a high dose, inhibited the growth of the primary tumor and improved tumor pathological conditions, consequently remarkably inhibiting its metastasis to the lungs and liver, while not causing any systemic toxicity. Hypoxia-responsive stereocomplex micelles thus emerge as a reliable drug delivery system to treat breast cancer metastasis.
Collapse
Affiliation(s)
- Min Lu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xu Huang
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xiaohui Cai
- Department of Hematology, Nanjing Medical University, Affiliated Changzhou No. 2 People's Hospital, Changzhou 213000, People's Republic of China
| | - Jiajia Sun
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Xuemeng Liu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Lingyan Weng
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Qianqian Luo
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| | - Zhongping Chen
- Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, People's Republic of China
| |
Collapse
|
5
|
Zhu S, Yu X, You J, Yin T, Lin Y, Chen W, Dao L, Du H, Liu R, Xiong S, Hu Y. Study of the thermodynamics and conformational changes of collagen molecules upon self-assembly. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
He T, Narumi A, Wang Y, Xu L, Sato SI, Shen X, Kakuchi T. Amphiphilic diblock copolymers of poly(glycidol) with biodegradable polyester/polycarbonate. organocatalytic one-pot ROP and self-assembling property. Polym Chem 2021. [DOI: 10.1039/d1py01026c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poly(glycidol)-based block copolymers with excellent micelle formation properties were prepared via organocatalytic one-pot ROP.
Collapse
Affiliation(s)
- Tingyu He
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Atsushi Narumi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yanqiu Wang
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Liang Xu
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
| | - Shin-ichiro Sato
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Xiande Shen
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Chongqing Research Institute, Changchun University of Science and Technology, No. 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China
| |
Collapse
|
7
|
Moraes RM, Carvalho LT, Alves GM, Medeiros SF, Bourgeat-Lami E, Santos AM. Synthesis and Self-Assembly of Poly( N-Vinylcaprolactam)- b-Poly(ε-Caprolactone) Block Copolymers via the Combination of RAFT/MADIX and Ring-Opening Polymerizations. Polymers (Basel) 2020; 12:polym12061252. [PMID: 32486145 PMCID: PMC7362203 DOI: 10.3390/polym12061252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Well-defined amphiphilic, biocompatible and partially biodegradable, thermo-responsive poly(N-vinylcaprolactam)-b-poly(ε-caprolactone) (PNVCL-b-PCL) block copolymers were synthesized by combining reversible addition-fragmentation chain transfer (RAFT) and ring-opening polymerizations (ROP). Poly(N-vinylcaprolactam) containing xanthate and hydroxyl end groups (X–PNVCL–OH) was first synthesized by RAFT/macromolecular design by the interchange of xanthates (RAFT/MADIX) polymerization of NVCL mediated by a chain transfer agent containing a hydroxyl function. The xanthate-end group was then removed from PNVCL by a radical-induced process. Finally, the hydroxyl end-capped PNVCL homopolymer was used as a macroinitiator in the ROP of ε-caprolactone (ε-CL) to obtain PNVCL-b-PCL block copolymers. These (co)polymers were characterized by Size Exclusion Chromatography (SEC), Fourier-Transform Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance spectroscopy (1H NMR), UV–vis and Differential Scanning Calorimetry (DSC) measurements. The critical micelle concentration (CMC) of the block copolymers in aqueous solution measured by the fluorescence probe technique decreased with increasing the length of the hydrophobic block. However, dynamic light scattering (DLS) demonstrated that the size of the micelles increased with increasing the proportion of hydrophobic segments. The morphology observed by cryo-TEM demonstrated that the micelles have a pointed-oval-shape. UV–vis and DLS analyses showed that these block copolymers have a temperature-responsive behavior with a lower critical solution temperature (LCST) that could be tuned by varying the block copolymer composition.
Collapse
Affiliation(s)
- Rodolfo M. Moraes
- Laboratory of Polymers, Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, EEL-USP, Estrada Municipal do Campinho, s/n, P.O. Box 116, Lorena SP 12602-810, Brazil; (R.M.M.); (L.T.C.); (G.M.A.); (S.F.M.)
| | - Layde T. Carvalho
- Laboratory of Polymers, Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, EEL-USP, Estrada Municipal do Campinho, s/n, P.O. Box 116, Lorena SP 12602-810, Brazil; (R.M.M.); (L.T.C.); (G.M.A.); (S.F.M.)
| | - Gizelda M. Alves
- Laboratory of Polymers, Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, EEL-USP, Estrada Municipal do Campinho, s/n, P.O. Box 116, Lorena SP 12602-810, Brazil; (R.M.M.); (L.T.C.); (G.M.A.); (S.F.M.)
| | - Simone F. Medeiros
- Laboratory of Polymers, Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, EEL-USP, Estrada Municipal do Campinho, s/n, P.O. Box 116, Lorena SP 12602-810, Brazil; (R.M.M.); (L.T.C.); (G.M.A.); (S.F.M.)
| | - Elodie Bourgeat-Lami
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS UMR 5265, Chemistry, Catalysis, Polymers and Processes (C2P2), 43 Bvd. du 11 Novembre 1918, F-69616 Villeurbanne, France
- Correspondence: (E.B.-L.); (A.M.S.)
| | - Amilton M. Santos
- Laboratory of Polymers, Department of Chemical Engineering, Engineering School of Lorena, University of São Paulo, EEL-USP, Estrada Municipal do Campinho, s/n, P.O. Box 116, Lorena SP 12602-810, Brazil; (R.M.M.); (L.T.C.); (G.M.A.); (S.F.M.)
- Correspondence: (E.B.-L.); (A.M.S.)
| |
Collapse
|
8
|
Ullah A, Shah SM, Hassan A, Maric M, Hussain H. Nitroxide‐mediated radical polymerization of methacryloisobutyl POSS and its block copolymers with poly(
n
‐acryloylmorpholine). JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Asad Ullah
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| | - Syed M. Shah
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| | - Abbas Hassan
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| | - Milan Maric
- Department of Chemical EngineeringMcGill University 3610 University Street Montreal, Quebec, H3A 0C5 Canada
| | - Hazrat Hussain
- Department of ChemistryQuaid‐i‐Azam University Islamabad 45320 Islamabad Pakistan
| |
Collapse
|
9
|
Muller J, Prelot B, Zajac J, Monge S. Synthesis and study of sorption properties of polyvinyl alcohol (PVA)-based hybrid materials. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Lu A, Wang J, Najarro MC, Li S, Deratani A. Synthesis and self-assembly of AB2-type amphiphilic copolymers from biobased hydroxypropyl methyl cellulose and poly(L-lactide). Carbohydr Polym 2019; 211:133-140. [DOI: 10.1016/j.carbpol.2019.01.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 01/22/2023]
|
11
|
Mishra AK, Choi C, Maiti S, Seo Y, Lee KS, Kim E, Kim JK. Sequential synthesis of well-defined poly(vinyl acetate)-block-polystyrene and poly(vinyl alcohol)-block-polystyrene copolymers using difunctional chloroamide-xanthate iniferter. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Altintas O, Speros JC, Bates FS, Hillmyer MA. Straightforward synthesis of model polystyrene-block-poly(vinyl alcohol) diblock polymers. Polym Chem 2018. [DOI: 10.1039/c8py00937f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Well-defined polystyrene-block-poly(vinyl alcohol) (PS-b-PVA) polymers were synthesizedviaRDRP protocols. The morphology of the block polymers was investigated by GISAXS and AFM.
Collapse
Affiliation(s)
- Ozcan Altintas
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | | | - Frank S. Bates
- Department of Chemical Engineering and Materials Science
- University of Minnesota
- Minneapolis
- USA
| | | |
Collapse
|
13
|
Yokota D, Kanazawa A, Aoshima S. Precise synthesis of UCST-type amphiphilic diblock copolymers with pendant imidazolium ionic liquid segments and their thermosensitive physical gelation at extremely low concentrations in water. Polym Chem 2018. [DOI: 10.1039/c8py01139g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UCST-type amphiphilic diblock copolymers were synthesized via living cationic polymerization and subsequent polymer reaction and they exhibited thermosensitive physical gelation behavior at an extremely low concentration in water.
Collapse
Affiliation(s)
- Daichi Yokota
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Osaka 560-0043
- Japan
| |
Collapse
|
14
|
Wang J, Caceres M, Li S, Deratani A. Synthesis and Self-Assembly of Amphiphilic Block Copolymers from Biobased Hydroxypropyl Methyl Cellulose and Poly(l
-lactide). MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jielin Wang
- Institut Européen des Membranes; UMR CNRS 5635; Université de Montpellier; 34095 Montpellier France
- Department of Materials Science; Fudan University; Shanghai 200433 P. R. China
| | - Marleny Caceres
- Institut Européen des Membranes; UMR CNRS 5635; Université de Montpellier; 34095 Montpellier France
| | - Suming Li
- Institut Européen des Membranes; UMR CNRS 5635; Université de Montpellier; 34095 Montpellier France
| | - André Deratani
- Institut Européen des Membranes; UMR CNRS 5635; Université de Montpellier; 34095 Montpellier France
| |
Collapse
|
15
|
Liu N, Ma CH, Sun RW, Huang J, Li C, Wu ZQ. Facile synthesis and chiral recognition of block and star copolymers containing stereoregular helical poly(phenyl isocyanide) and polyethylene glycol blocks. Polym Chem 2017. [DOI: 10.1039/c7py00028f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new Pd(ii) initiator bearing an alkyne headgroup was designed and synthesized.
Collapse
Affiliation(s)
- Na Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| | - Cui-Hong Ma
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| | - Rui-Wen Sun
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| | - Jian Huang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| | - Chonglong Li
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei 230009
- China
| |
Collapse
|
16
|
Ghamkhari A, Massoumi B, Jaymand M. Novel 'schizophrenic' diblock copolymer synthesized via RAFT polymerization: poly(2-succinyloxyethyl methacrylate)- b-poly[( N-4-vinylbenzyl), N, N-diethylamine]. Des Monomers Polym 2016; 20:190-200. [PMID: 29491792 PMCID: PMC5812174 DOI: 10.1080/15685551.2016.1239165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023] Open
Abstract
This article describes the synthesis and characterization of a novel 'schizophrenic' diblock copolymer [poly(2-succinyloxyethyl methacrylate)-b-poly[(N-4-vinylbenzyl),N,N-diethylamine)]; PSEMA-b-PVEA] via reversible addition of fragmentation chain transfer (RAFT) polymerization technique. The chemical structures of all samples as representatives were characterized by means of Fourier transform infrared (FTIR), and 1H nuclear magnetic resonance (NMR) spectroscopies. The molecular weights of PHEMA and PVEA segments were calculated to be 9770 and 12,630 gmol-1, respectively, from 1H NMR spectroscopy. The self-assembly behavior of the synthesized PSEMA-b-PVEA diblock copolymer was investigated by means of 1H NMR spectroscopy, dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM) observation. The average sizes of the PSEMA-b-PVEA micelles at pHs 3.0, 6.0, and 10.0 were obtained to be 294, 237, and 201 nm, respectively, from DLS analysis. The zeta potential measurements at various pHs demonstrated that the synthesized PSEMA-b-PVEA diblock copolymer has zwitterionic properties, and the range of isoelectric point's (IEP's) was determined as 5.8-7.3. It is expected that the synthesized PSEMA-b-PVEA diblock copolymer considered as a prospective candidate in nanomedicine applications such as drug delivery, mainly due to its excellent 'schizophrenic' micellization behavior.
Collapse
Affiliation(s)
| | | | - Mehdi Jaymand
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Synthesis and self-assembly of amphiphilic and biocompatible poly(vinyl alcohol)-block-poly(l-lactide) copolymer. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Lopez G, Guerre M, Schmidt J, Talmon Y, Ladmiral V, Habas JP, Améduri B. An amphiphilic PEG-b-PFPE-b-PEG triblock copolymer: synthesis by CuAAC click chemistry and self-assembly in water. Polym Chem 2016. [DOI: 10.1039/c5py01621e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new PEG2000-b-PFPE1200-b-PEG2000 amphiphilic triblock copolymer that undergoes self-assembly into micelles in water was synthesized by copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC).
Collapse
Affiliation(s)
- Gérald Lopez
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Montpellier
- France
| | - Marc Guerre
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Montpellier
- France
| | - Judith Schmidt
- Department of Chemical Engineering
- Technion-Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering
- Technion-Israel Institute of Technology
- Haifa 3200003
- Israel
| | - Vincent Ladmiral
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Montpellier
- France
| | - Jean-Pierre Habas
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Montpellier
- France
| | - Bruno Améduri
- Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM-ENSCM – Equipe Ingénierie et Architectures Macromoléculaires
- Montpellier
- France
| |
Collapse
|
19
|
Speetjens FW, Mahanthappa MK. Synthesis and Rheological Characterization of Poly(vinyl acetate-b-vinyl alcohol-b-vinyl acetate) Triblock Copolymer Hydrogels. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Frank W. Speetjens
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Mahesh K. Mahanthappa
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|