1
|
Shajari G, Erfan-Niya H, Fathi M, Amiryaghoubi N. Thiolated gellan gum/polyethylene glycol diacrylate hydrogels containing timolol maleate-loaded chitosan nanoparticles for ophthalmic delivery. Biomed Mater 2025; 20:025029. [PMID: 39938216 DOI: 10.1088/1748-605x/adb555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/12/2025] [Indexed: 02/14/2025]
Abstract
The combination of hydrogels with nanoformulations can significantly enhance the delivery and effectiveness of drugs in ophthalmic drug delivery systems. In the current study, the polyethylene glycol diacrylate (PEGDA)/thiolated gellan gum (GGSH) hydrogels based on GGSH and PEGDA were prepared via thiol-ene reaction using Irgacure 2959 as a photoinitiator. To this end, the modification of GG was achieved by esterification of the hydroxyl groups of GG with the carboxyl group of mercaptopropionic acid with a free thiol amount of 95.5 μmol g-1. To provide sustained release, chitosan nanoparticles (CSNPs) containing timolol maleate (TM) with 56.4% entrapment efficiency were synthesized by the desolvation method and encapsulated in the developed hydrogel. The values of zeta potential and particle size of CSNPs were +26.0 mV and 182.4 nm, respectively. The physico/chemical properties of the hydrogels were investigated via texture analyzer, FT-IR, XRD, and SEM. Thein vitrodegradation, swelling behavior, rheological assessments, cell viability testing, and porosity determination were evaluated. With the increase in PEGDA concentration, the mechanical properties were increased. While the rate of swelling, degradation, and drug release were decreased. Thein vitrobiocompatibility of hydrogels was confirmed using the MTT test. According to anex vivostudy, ocular drug delivery using the obtained transparent hydrogels is promising due to improved drug permeation and sustained release of TM via CSNPs.
Collapse
Affiliation(s)
- Golnaz Shajari
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Mochizuki K, Mitova V, Makino K, Terada H, Takeuchi I, Troev K. pH-Sensitive Amphiphilic Diblock Polyphosphoesters with Lactate Units: Synthesis and Application as Drug Carriers. Int J Mol Sci 2024; 25:4518. [PMID: 38674103 PMCID: PMC11049995 DOI: 10.3390/ijms25084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
pH-sensitive amphiphilic diblock polyphosphoesters containing lactic acid units were synthesized by multistep one-pot polycondensation reactions. They comprise acid-labile P(O)-O-C and C(O)-O-C bonds, the cleavage of which depends on the pH of the medium. The structure of these copolymers was characterized by 1H, 13C {H}, 31P NMR, and size exclusion chromatography (SEC). The newly synthesized polymers self-assembled into the micellar structure in an aqueous solution. The effects of the molecular weight of the copolymer and the length of the hydrophobic chain on micelle formation and stabilityand micelle size were studied via dynamic light scattering (DLS). Drug loading and encapsulation efficiency tests using doxorubicin revealed that hydrophobic drugs can be delivered by copolymers. It was established that the molecular weight of the copolymer, length of the hydrophobic chain and content of lactate units affects the size of the micelles, drug loading, and efficiency of encapsulation. A copolymer with 10.7% lactate content has drug loading (3.2 ± 0.3) and efficiency of encapsulation (57.4 ± 3.2), compared to the same copolymer with 41.8% lactate content (1.63%) and (45.8%), respectively. It was demonstrated that the poly[alkylpoly(ethylene glycol) phosphate-b-alkylpoly(ethylene glycol)lactate phosphate] DOX system has a pH-sensitive response capability in the result in which DOX was selectively accumulated into the tumor, where pH is acidic. The results obtained indicate that amphiphilic diblock polyphosphoesters have potential as drug carriers.
Collapse
Affiliation(s)
- Kasumi Mochizuki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Violeta Mitova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Hiroshi Terada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
| | - Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Faculty of Pharmaceutical Science, Josai International University, 1 Gumyo, Togane 283-8555, Chiba, Japan
| | - Kolio Troev
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan; (K.M.); (K.M.); (H.T.); (I.T.)
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
4
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
5
|
Zhou M, Cui R, Luo Z, Cong Z, Shao N, Yuan L, Gu J, He H, Liu R. Convenient and Controllable Synthesis of Poly(2-oxazoline)-Conjugated Doxorubicin for Regulating Anti-Tumor Selectivity. J Funct Biomater 2023; 14:382. [PMID: 37504877 PMCID: PMC10381835 DOI: 10.3390/jfb14070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Polyethylene glycol (PEG)-doxorubicin (DOX) conjugation is an important strategy to improve toxicity and enhance clinically therapeutic efficacy. However, with the frequent use of PEG-modified drugs, the accumulation of anti-PEG antibodies has become a tough issue, which limits the application of PEG-drug conjugation. As an alternative solution, poly(2-oxazoline) (POX)-DOX conjugation has shown great potential in the anti-tumor field, but the reported conjugation process of POX with DOX has drawbacks such as complex synthetic steps and purification. Herein, we propose a convenient and controllable strategy for the synthesis of POX-DOX conjugation with different chain lengths and narrow dispersity by N-boc-2-bromoacetohydrazide-initiated 2-ethyl-oxazoline polymerization and the subsequent deprotection of the N-Boc group and direct reaction with DOX. The DOX-PEtOx conjugates were firstly purified, and the successful conjugations were confirmed through various characterization methods. The synthetic DOX-PEtOxn conjugates reduce the toxicity of DOX and increase the selectivity to tumor cells, reflecting the promising application of this POX-DOX conjugation strategy in drug modification and development.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruxin Cui
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengjie Luo
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Cong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Shao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiawei Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shenzhen Research Institute, East China University of Science and Technology, Shenzhen 518063, China
| |
Collapse
|
6
|
Bhattacharya K, Das S, Kundu M, Singh S, Kalita U, Mandal M, Singha NK. Gold Nanoparticle Embedded Stimuli-Responsive Functional Glycopolymer: A Potential Material for Synergistic Chemo-Photodynamic Therapy of Cancer Cells. Macromol Biosci 2022; 22:e2200069. [PMID: 35797485 DOI: 10.1002/mabi.202200069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic therapy has emerged as a non-invasive treatment modality for several types of cancers. However, conventional hydrophobic photosensitizers (PS) suffer from low water solubility and poor tumor-targeting ability. Therefore, PS modified with glycopolymers can offer adequate water solubility, biocompatibility and tumor-targeting ability due to the presence of multiple sugar units. In this study, a well-defined block copolymer (BCP) poly(3-O-methacryloyl-D-glucopyranose)-b-poly(2-(4-formylbenzoyloxy)ethylmethacrylate) (PMAG-b-PFBEMA) containing pendant glucose and aldehyde units was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization method. A water-soluble PS (toluidine blue O; TBO) and a potent anti-cancer drug, Doxorubicin (Dox) were introduced to the polymer backbone via acid-labile Schiff-base reaction (PMAG-b-PFBEMA_TBO_Dox). The PMAG-b-PFBEMA_TBO_Dox was then anchored on the surface of AuNP via electrostatic interaction. This hybrid system exhibited excellent reactive oxygen species (ROS) generating ability under exposure of 630 nm LED along with triggered release of Dox under the acidic pH of tumor cells. The in vitro cytotoxicity study on human breast cancer cell line, MDA MB 231, for this hybrid system showed promising results due to the synergistic effect of ROS and Dox released. Thus, this glycopolymer-based dual (chemo-photodynamic) therapy model can work as potential material for future therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Sudarshan Singh
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Uddhab Kalita
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.,School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
7
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
8
|
|
9
|
Sato KI, Ito S, Higashihara T, Fuchise K. Precise synthesis of α,ω-chain-end functionalized poly(dimethylsiloxane) with azide groups based on metal-free ring-opening polymerization and a quantitative azidation reaction. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
13
|
Li H, He J, Zhang M, Liu J, Ni P. Glucose-Sensitive Polyphosphoester Diblock Copolymer for an Insulin Delivery System. ACS Biomater Sci Eng 2020; 6:1553-1564. [DOI: 10.1021/acsbiomaterials.9b01817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongping Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
14
|
Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py00234h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acid-degradable block copolymer-based nanoassemblies are promising intracellular candidates for tumor-targeting drug delivery as they exhibit the enhanced release of encapsulated drugs through their dissociation.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
15
|
Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host-guest interactions in water. In this review, recent progress in CD-based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH- and redox-responsive drug and gene delivery, enzyme-activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell-cell communication, as well as a geomagnetism-controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD-based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
16
|
Kong L, Campbell F, Kros A. DePEGylation strategies to increase cancer nanomedicine efficacy. NANOSCALE HORIZONS 2019; 4:378-387. [PMID: 32254090 DOI: 10.1039/c8nh00417j] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To maximize drug targeting to solid tumors, cancer nanomedicines with prolonged circulation times are required. To this end, poly(ethylene glycol) (PEG) has been widely used as a steric shield of nanomedicine surfaces to minimize serum protein absorption (opsonisation) and subsequent recognition and clearance by cells of the mononuclear phagocyte system (MPS). However, PEG also inhibits interactions of nanomedicines with target cancer cells, limiting the effective drug dose that can be reached within the target tumor. To overcome this dilemma, nanomedicines with stimuli-responsive cleavable PEG functionality have been developed. These benefit from both long circulation lifetimes en route to the targeted tumor as well as efficient drug delivery to target cancer cells. In this review, various stimuli-responsive strategies to dePEGylate nanomedicines within the tumor microenvironment will be critically reviewed.
Collapse
Affiliation(s)
- Li Kong
- Leiden Institute of Chemistry - Supramolecular and Biomaterial Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands.
| | | | | |
Collapse
|
17
|
Wang P, Huang C, Xing Y, Fang W, Ren J, Yu H, Wang G. NIR-Light- and pH-Responsive Graphene Oxide Hybrid Cyclodextrin-Based Supramolecular Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1021-1031. [PMID: 30621394 DOI: 10.1021/acs.langmuir.8b03689] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, a novel triple-responsive graphene oxide hybrid supramolecular hydrogel based on the electrostatic self-assembly between graphene oxide and a quaternized polymer and the host-guest inclusion between α-cyclodextrins and poly(ethylene glycol) monomethyl ether (mPEG) was constructed. The quaternized polymer was synthesized by quaternization between pH-sensitive poly( N, N-dimethylaminoethyl methacrylate) and bromine end-capped poly(ethylene glycol) monomethyl ether. The supramolecular hydrogels prepared from the host-guest inclusion of poly(ethylene glycol) monomethyl ether and α-cyclodextrins would turn into a mobile sol phase when the temperature was increased above a certain temperature (Tgel-sol). Graphene oxide sheets not only acted as a core material to provide additional cross-linking but also absorbed NIR light and converted NIR light into heat to trigger the gel-sol transition. The constructed graphene oxide hybrid cyclodextrin-based supramolecular hydrogels could respond to NIR light, temperature, and pH, which could be beneficial for controlled release of cargoes and would hold great promise in the field of delivery systems.
Collapse
Affiliation(s)
- Panjun Wang
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Chao Huang
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Youmei Xing
- Hangzhou Greenda Electronic Materials Co., Ltd. , Hangzhou 310051 , China
| | - Weihua Fang
- Hangzhou Greenda Electronic Materials Co., Ltd. , Hangzhou 310051 , China
| | - Jie Ren
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Haifeng Yu
- Department of Materials Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education , Peking University , Beijing 100871 , China
| | - Guojie Wang
- School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
18
|
Li L, Song Y, He J, Zhang M, Liu J, Ni P. Zwitterionic shielded polymeric prodrug with folate-targeting and pH responsiveness for drug delivery. J Mater Chem B 2019; 7:786-795. [PMID: 32254853 DOI: 10.1039/c8tb02772b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic polymers are a class of polymers that acts as both Lewis base and Lewis acid in solution. These polymers not only have excellent properties of hydration, anti-bacterial adhesion, charge reversal and easy chemical modification, but also have characteristics of long-term circulation and suppress nonspecific protein adsorption in vivo. Here, we describe a novel folate-targeted and acid-labile polymeric prodrug under the microenvironment of tumor cells, abbreviated as FA-P(MPC-co-PEGMA-BZ)-g-DOX, which was synthesized via a combination of reversible addition-fragmentation chain transfer (RAFT) copolymerization, Schiff-base reaction, Click chemistry, and a reaction between the amine group of doxorubicin (DOX) and aldehyde functionalities of P(MPC-co-PEGMA-BZ) pendants, wherein MPC and PEGMA-BZ represent 2-(methacryloyloxy)ethyl phosphorylcholine and polyethylene glycol methacrylate ester benzaldehyde, respectively. The polymeric prodrug could self-assemble into nanoparticles in an aqueous solution. The average particle size and morphologies of the prodrug nanoparticles were observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. We also investigated the in vitro drug release behavior and observed rapid prodrug nanoparticle dissociation and drug release under a mildly acidic microenvironment. The methyl thiazolyl tetrazolium (MTT) assay verified that the P(MPC-co-PEGMA-BZ) copolymer possessed good biocompatibility and the FA-P(MPC-co-PEGMA-BZ)-g-DOX prodrug nanoparticles showed higher cellular uptake than those prodrug nanoparticles without the FA moiety. The results of cytotoxicity and the intracellular uptake of non-folate/folate targeted prodrug nanoparticles further confirmed that FA-P(MPC-co-PEGMA-BZ)-g-DOX could be efficiently accumulated and rapidly internalized by HeLa cells due to the strong interaction between multivalent phosphorylcholine (PC) groups and cell membranes. This kind of multifunctional FA-P(MPC-co-PEGMA-BZ)-g-DOX prodrug nanoparticle with combined target-ability and pH responsiveness demonstrates promising potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
19
|
Zhang D, Lv P, Zhou C, Zhao Y, Liao X, Yang B. Cyclodextrin-based delivery systems for cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:872-886. [PMID: 30606602 DOI: 10.1016/j.msec.2018.11.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/09/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023]
Abstract
Cyclodextrins, one of safe excipients, are able to form host-guest complexes with fitted molecules given the unique nature imparted by their structure in result of a number of pharmaceutical applications. On the other hand, targeted or responsive materials are appealing therapeutic platforms for the development of next-generation precision medications. Meanwhile, cyclodextrin-based polymers or assemblies can condense DNA and RNA in result to be used as genetic therapeutic agents. Armed with a better understanding of various pharmaceutical mechanisms, especially for cancer treatment, researchers have made lots of works about cyclodextrin-based drug delivery systems in materials chemistry and pharmaceutical science. This Review highlights recent advances in cyclodextrin-based delivery systems for cancer treatment capable of targeting or responding to the physiological environment. Key design principles, challenges and future directions, including clinical translation, of cyclodextrin-based delivery systems are also discussed.
Collapse
Affiliation(s)
- Dongjing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Pin Lv
- Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, PR China
| | - Cheng Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yulin Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
20
|
Bai Y, Liu CP, Song X, Zhuo L, Bu H, Tian W. Photo- and pH- Dual-Responsive β-Cyclodextrin-Based Supramolecular Prodrug Complex Self-Assemblies for Programmed Drug Delivery. Chem Asian J 2018; 13:3903-3911. [DOI: 10.1002/asia.201801366] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/10/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry; Shaanxi University of Science and Technology; Xi'an 710021 China
| | - Cai Ping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry; Shaanxi University of Science and Technology; Xi'an 710021 China
| | - Xin Song
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 China
| | - Longhai Zhuo
- Shaanxi Key Laboratory of Chemical Additives for Industry; Shaanxi University of Science and Technology; Xi'an 710021 China
| | - Huaitian Bu
- Shaanxi Key Laboratory of Chemical Additives for Industry; Shaanxi University of Science and Technology; Xi'an 710021 China
- SINTEF Industry; Forskningsveien 1 0373 Oslo Norway
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science; Northwestern Polytechnical University; Xi'an 710072 China
| |
Collapse
|
21
|
Ju P, Hu J, Li F, Cao Y, Li L, Shi D, Hao Y, Zhang M, He J, Ni P. A biodegradable polyphosphoester-functionalized poly(disulfide) nanocarrier for reduction-triggered intracellular drug delivery. J Mater Chem B 2018; 6:7263-7273. [PMID: 32254638 DOI: 10.1039/c8tb01566j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stimuli-responsive and biodegradable polymeric carriers are of great importance for safe delivery and efficient release of chemotherapeutic agents. In this work, given the unique advantages of poly(disulfide)s and biodegradable polyphosphoesters, we designed and constructed a reduction-sensitive amphiphilic triblock copolymer poly(ethyl ethylene phosphate)-b-poly(disulfide)-b-poly(ethyl ethylene phosphate) (PEEP-PDS-PEEP) by combining thiol-disulfide polycondensation and ring-opening polymerization (ROP). The thiol-disulfide polycondensation between 1,6-hexanedithiol and 2,2'-dithiodipyridine yielded the linear telechelic pyridyl disulfide-terminated poly(disulfide)s, followed by the treatment with 2-mercaptoethanol to quantitatively produce dihydroxyl-terminated poly(disulfide)s, which was used to initiate the ROP reaction of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane, generating ABA-type amphiphilic triblock copolymers. The chemical structures of various polymers were thoroughly characterized and verified using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy. The resultant amphiphilic PEEP-PDS-PEEP could self-assemble into spherical nanoparticles in aqueous solution as evidenced from dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. Hydrophobic anti-tumor drug doxorubicin (DOX) was used to study the encapsulation capacity of nanoparticles, the drug loading content (DLC) and drug loading efficiency (DLE) values were determined to be 11.2% and 31.5%, respectively. In vitro release studies indicated that DOX was released much faster under reductive conditions compared to physiological conditions, confirming their reduction-responsive release behavior owing to the scission of the poly(disulfide) segment and subsequent disintegration of nanoparticles. The cellular uptake study using a live cell imaging system demonstrated that this DOX-loaded nanoparticle can be internalized into HeLa cells and release DOX over time. Methyl thiazolyl tetrazolium (MTT) assay revealed the favorable cytocompatibility of a bare triblock copolymer toward both L929 and HeLa cells, whereas the DOX-loaded copolymer nanoparticles exhibited the lower inhibitory ability against HeLa and HepG2 cell proliferation than free DOX. This finding presents a strategy for the construction of biocompatible and reduction-responsive polymeric drug carriers.
Collapse
Affiliation(s)
- Pengfei Ju
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li L, Li D, Zhang M, He J, Liu J, Ni P. One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation. Bioconjug Chem 2018; 29:2806-2817. [PMID: 30005157 DOI: 10.1021/acs.bioconjchem.8b00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shell cross-linked (SCL) polymeric prodrug micelles have the advantages of good blood circulation stability and high drug content. Herein, we report on a new kind of pH/redox responsive dynamic covalent SCL micelle, which was fabricated by self-assembly of a multifunctional polymeric prodrug. At first, a macroinitiator PBYP- ss- iBuBr was prepared via ring-opening polymerization (ROP), wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, PBYP- hyd-DOX- ss-P(DMAEMA- co-FBEMA) prodrug was synthesized by a one-pot method with a combination of atom transfer radical polymerization (ATRP) and a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using a doxorubicin (DOX) derivative containing an azide group to react with the alkynyl group of the side chain in the PBYP block, while DMAEMA and FBEMA are the abbriviations of N, N-(2-dimethylamino)ethyl methacrylate and 2-(4-formylbenzoyloxy)ethyl methacrylate, respectively. The chemical structures of the polymer precursors and the prodrugs have been fully characterized. The SCL prodrug micelles were obtained by self-assembly of the prodrug and adding cross-linker dithiol bis(propanoic dihydrazide) (DTP). Compared with the shell un-cross-linked prodrug micelles, the SCL prodrug micelles can enhance the stability and prevent the drug from leaking in the body during blood circulation. The average size and morphology of the SCL prodrug micelles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The SCL micelles can be dissociated under a moderately acidic and/or reductive microenvironment, that is, endosomal/lysosomal pH medium or high GSH level in the tumorous cytosol. The results of DOX release also confirmed that the SCL prodrug micelles possessed pH/reduction responsive properties. Cytotoxicity and cellular uptake analyses further revealed that the SCL prodrug micelles could be rapidly internalized into tumor cells through endocytosis and efficiently release DOX into the HeLa and HepG2 cells, which could efficiently inhibit the cell proliferation. This study provides a fast and precise synthesis method for preparing multifunctional polymer prodrugs, which hold great potential for optimal antitumor therapy.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Dian Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , 215123 , People's Republic of China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| |
Collapse
|
23
|
Xu Z, Bratlie KM. Click Chemistry and Material Selection for in Situ Fabrication of Hydrogels in Tissue Engineering Applications. ACS Biomater Sci Eng 2018; 4:2276-2291. [DOI: 10.1021/acsbiomaterials.8b00230] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zihao Xu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kaitlin M. Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
24
|
Lan D, Chen X, Li P, Zou W, Wu L, Chen W. Using a Novel Supramolecular Gel Cryopreservation System in Microchannel to Minimize the Cell Injury. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5088-5096. [PMID: 29629777 DOI: 10.1021/acs.langmuir.8b00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The storage of living cells is the major challenge for cell research and cell treatment. Here, we introduced a novel supramolecular gel cryopreservation system which was prepared in the microchannel, and the supramolecular gel (BDTC) was self-assembled by gelator Boc- O-dodecyl-l-tyrosine (BDT). This cryopreservation system could obviously minimize the cell injury because the BDTC supramolecular gel had a more compact three-dimensional network structure when the BDT gelator self-assembled in the confined space of microchannel. This compact structure could confine the growth of the ice crystal, reduce the change rate of cell volumes and osmotic shock, decrease the freezing point of the cryopreservation system, and possess better protection capability. Furthermore, the results of functionality assessments showed that the thawed cells could grow and proliferate well and remain the same growth trend of the fresh cells after the RSC96 cells flowed out from the microchannel. This novel method has potential to be used for the cryopreservation of cells, cell therapy, and tissue engineering.
Collapse
Affiliation(s)
- Dongxu Lan
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Xi Chen
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Pengcheng Li
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Wei Zou
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Lili Wu
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| | - Wanyu Chen
- School of Materials Science and Engineering , Wuhan University of Technology , Wuhan , Hubei 430070 , China
| |
Collapse
|
25
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Appukutti N, Serpell CJ. High definition polyphosphoesters: between nucleic acids and plastics. Polym Chem 2018. [DOI: 10.1039/c8py00251g] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acids and synthetic polyphosphoester materials have been distinct fields – this review shows how these areas now comprise a continuum.
Collapse
|
27
|
Wang L, Shi X, Zhang J, Zhu Y, Wang J. Self-assembled pH-responsive supramolecular hydrogel for hydrophobic drug delivery. RSC Adv 2018; 8:31581-31587. [PMID: 35548234 PMCID: PMC9085726 DOI: 10.1039/c8ra06064a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/18/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel supramolecular hydrogel system, abbreviated as AGC16/NTS, prepared by molecular self-assembly of cationic gemini surfactant 1,3-bis(N,N-dimethyl-N-cetylammonium)-2-propylacrylatedibromide (AGC16) and anionic aromatic compound trisodium 1,3,6-naphthalenetrisulfonate (NTS), was used to encapsulate hydrophobic model drug curcumin (Cur), constructing a pH-responsive drug delivery system. Cur was effectively encapsulated into the hydrophobic domains of AGC16/NTS through hydrophobic interaction, which was confirmed by 1H NMR measurement. The effects of Cur on the mechanical strength, phase transition behaviour and morphology of AGC16/NTS were characterized by rheology and cryogenic scanning electron microscopy (cryo-SEM) methods. The pH-responsive release of Cur from AGC16/NTS was obtained and the release amount of Cur ascended with pH value decreasing from 7.4 to 3.0. The hydrodynamic sizes of the released Cur-aggregates determined by dynamic light scattering (DLS) were used to analyse the release process of Cur at different pH. The cell viability assay and cell imaging experiment demonstrated that Cur-loaded hydrogel has much higher cytotoxicity and better cell uptake compared to free Cur. Overall, the AGC16/NTS hydrogel is a prospective material for use in encapsulation and controlled-release of hydrophobic drug molecules. Supramolecular hydrogel, AGC16/NTS, was used to encapsulate hydrophobic drug curcumin (Cur), constructing a pH-responsive drug delivery system; the uptake of released Cur by cancer cells also occurred.![]()
Collapse
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xuefeng Shi
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jian Zhang
- State Key Laboratory of Offshore Oil Exploitation
- CNOOC Research Institute Co. Ltd
- Beijing 100028
- P. R. China
| | - Yuejun Zhu
- State Key Laboratory of Offshore Oil Exploitation
- CNOOC Research Institute Co. Ltd
- Beijing 100028
- P. R. China
| | - Jinben Wang
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
28
|
Jin H, Sun M, Shi L, Zhu X, Huang W, Yan D. Reduction-responsive amphiphilic polymeric prodrugs of camptothecin–polyphosphoester for cancer chemotherapy. Biomater Sci 2018; 6:1403-1413. [DOI: 10.1039/c8bm00162f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schematic illustration of the synthesis, self-assembly and reduction-responsive drug release of amphiphilic polymeric prodrugs (PCPTSP-co-PEEPs).
Collapse
Affiliation(s)
- Hua Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai key laboratory of electrical insulation and thermal ageing
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Mo Sun
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai key laboratory of electrical insulation and thermal ageing
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Leilei Shi
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai key laboratory of electrical insulation and thermal ageing
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai key laboratory of electrical insulation and thermal ageing
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Wei Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai key laboratory of electrical insulation and thermal ageing
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai key laboratory of electrical insulation and thermal ageing
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
29
|
Chen D, Huang Y, Xu S, Jiang H, Wu J, Jin X, Zhu X. Self-Assembled Polyprodrug Amphiphile for Subcutaneous Xenograft Tumor Inhibition with Prolonged Acting Time In Vivo. Macromol Biosci 2017; 17. [PMID: 28737832 DOI: 10.1002/mabi.201700174] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/25/2017] [Indexed: 12/19/2022]
Abstract
Polymeric drug delivery system termed as "polyprodrug amphiphile" poly(2-methylacryloyloxyethyl phosphorylcholine)-b-poly(10-hydroxy-camptothecin methacrylate (pMPC-b-pHCPT) is developed for the prolonged-acting cancer therapy. It is obtained by two-step reversible addition-fragmentation chain transfer polymerization of zwitterionic monomer MPC and an esterase-responsive polymerizable prodrug methacrylic anhydride-CPT, respectively. This diblock polymer is composed of both antifouling (pMPC) and bioactive (pHCPT) segments and the drug is designed as a building block to construct the polymer skeleton directly. Due to its distinct amphiphilicity, the polymer can self-assemble into micelles with different dynamic sizes by facilely tuning the ratio of MPC/HCPT under physiological conditions. The outer pMPC shell is superhydrophilic to form dense hydrate layer preventing the nanosystem from unwanted nonspecific protein adsorption, which is the main lead cause of the rapid clearance of nanoparticles in vivo, thus facilitating the accumulation of drugs in tumor sites via enhanced permeability and retention effect. The configuration of the polyprodrug amphiphile is confirmed by several measurements. The resistance to albumin adsorption, prolonged plasma retention time, accumulation in tumor sites, and anticancer activity of the micelles is also investigated in vitro and in vivo. This novel amphiphile can be expected as a promising agent for the passive targeted prolonged-acting cancer therapy.
Collapse
Affiliation(s)
- Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Shuting Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Huangyong Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Jieli Wu
- Instrumental Analysis Center, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
30
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [PMID: 28472638 DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
31
|
Sun Y, Du X, He J, Hu J, Zhang M, Ni P. Dual-responsive core-crosslinked polyphosphoester-based nanoparticles for pH/redox-triggered anticancer drug delivery. J Mater Chem B 2017; 5:3771-3782. [PMID: 32264066 DOI: 10.1039/c7tb00440k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
"Intelligent" crosslinked nanoparticles (NPs) provide great advantages in enhancing drug bioavailability and reducing side effects in anticancer therapeutics. In this study, a novel biodegradable polyphosphoester-based functional copolymer prodrug PTX-(PBYP-g-MPA)-b-PEEP was prepared to construct pH/redox dual-responsive core-crosslinked nanoparticles (DOX/CCL NPs), in which paclitaxel (PTX) was conjugated to the polyphosphoester to form an amphiphilic prodrug and doxorubicin (DOX) was encapsulated inside the prodrug NPs. At first, PTX was used as an initiator to polymerize 2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane (BYP) and 2-ethoxy-2-oxo-1,3,2-dioxaphospholane (EOP) by one-pot sequential ring-opening polymerization, yielding a biodegradable polymeric prodrug PTX-PBYP-b-PEEP. Subsequently, a radical-mediated thiol-yne "click" reaction was performed between the alkynyl groups on the PBYP segment and the thiol group of 3-mercaptopropionic acid (MPA) to form a functional carboxyl group at the side chain. The potential positively charged DOX·HCl can be physically encapsulated via electrostatic interaction with the carboxyl group and hydrophobic interaction. Afterwards, the DOX/CCL NPs with cleavable disulfide (S-S) linkages can be formed by partial crosslinking through amidation between the pendant carboxyl groups and cystamine. These NPs possess multifunctional characteristics used for in vitro drug release. Notably, a redox-responsive crosslinker, cystamine dihydrochloride, and synergetic non-covalent interactions not only stabilize the nanoparticles, achieve high DOX-loading capacity of drug loading content (DLC, 14.6%) and drug loading efficiency (DLE, 73.1%), but also endow the DOX/CCL NPs with controlled drug release capacity, which is due to the cleavage of S-S bonds in the presence of 10 mM glutathione (GSH) and weakened electrostatic interaction caused by the protonation of carboxyl groups at a lower pH (5.0). Moreover, these pH/redox dual-responsive DOX/CCL NPs can be steadily internalized by HeLa cells, exhibiting high-efficiency cellular proliferation inhibition. This study presents a promising strategy for controlled intracellular drug release in cancer therapy.
Collapse
Affiliation(s)
- Yue Sun
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Niu Y, Yuan X, Zhao Y, Zhang W, Ren L. Temperature and pH Dual-Responsive Supramolecular Polymer Hydrogels Hybridized with Functional Inorganic Nanoparticles. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanli Niu
- School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Yunhui Zhao
- School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| | - Wenyu Zhang
- Standardization Research Institute of China North Industries Group Corporation; Beijing 100089 China
| | - Lixia Ren
- School of Materials Science and Engineering; Tianjin Key Laboratory of Composite and Functional Materials; Tianjin University; Tianjin 300072 China
| |
Collapse
|
33
|
Hirano Y, Iwasaki Y. Bone-specific poly(ethylene sodium phosphate)-bearing biodegradable nanoparticles. Colloids Surf B Biointerfaces 2017; 153:104-110. [PMID: 28231498 DOI: 10.1016/j.colsurfb.2017.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
Chemotherapy is the most reliable treatment for osteoporosis and osseous metastases. To facilitate better drug delivery for bone treatments, a novel preparation of polymeric nanoparticles with high affinity to bone has been prepared. Two-step synthesis of cholesteryl-functionalized poly(ethylene sodium phosphate) (Ch-PEPn·Na) was performed via ring-opening polymerization of cyclic phosphoesters and the demethylation. The molecular weight of Ch-PEPn·Na could be well controlled by changing the ratio of cholesterol and cyclic phosphoesters. Because Ch-PEPn·Na exhibits an amphiphilic nature in aqueous media, Ch-PEPn·Na-bearing nanoparticles (PEPn·Na NPs) were prepared by a solvent evaporation technique. The size of the nanoparticles investigated in the current study is approximately 100nm, which was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to the presence of highly water-soluble polymer chains, dispersion of PEPn·Na NPs in aqueous media was stable for at least 1 week. Hemolytic activity of PEPn·Na NPs was found to be low and PEPn·Na NPs did not disintegrate mammalian cell membranes. Additionally, cytotoxicity of PEPn·Na NPs was not observed at concentrations below 100μg/mL. The adsorption of PEPn·Na NPs on hydroxyapatite (HAp) microparticles was studied in comparison with poly(ethylene glycol) nanoparticles (PEG NPs). Both PEPn·Na NPs and PEG NPs adsorbed well onto HAp microparticles in distilled water with binding equilibrium constants (KHAp) for PEPn·Na NPs and PEG NPs of 3.6×106 and 7.9×106, respectively. In contrast, only PEPn·Na NPs adsorbed onto HAp microparticles in a saline phosphate buffer. Moreover, the adsorption of PEPn·Na NPs onto HAp microparticles occurred even in the presence of 1.2mM calcium ions or low-pH media. The affinity of the nanoparticles to bovine bone slices was also studied, with the result that large quantities of adsorbed PEPn·Na NPs were observed on the slices by scanning electron microscope.
Collapse
Affiliation(s)
- Yuya Hirano
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564-8680, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564-8680, Japan; ORDIST, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564-0836, Japan.
| |
Collapse
|
34
|
Lu D, Zhang Y, Li Y, Luo C, Wang X, Guan X, Ma H, Zhao X, Wei Q, Lei Z. Preparation and properties of reversible hydrogels based on triblock poly(amino acid)s with tunable pH‐responsivity across a broad range. JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2017; 55:207-212. [DOI: 10.1002/pola.28375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Dedai Lu
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yongyong Zhang
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Yunfei Li
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Chen Luo
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiangya Wang
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaolin Guan
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Hengchang Ma
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaolong Zhao
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Qiangbing Wei
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Ziqiang Lei
- Key Laboratory of Eco‐environment‐related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, School of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 People's Republic of China
| |
Collapse
|
35
|
Jia X, Pei M, Zhao X, Tian K, Zhou T, Liu P. PEGylated Oxidized Alginate-DOX Prodrug Conjugate Nanoparticles Cross-Linked with Fluorescent Carbon Dots for Tumor Theranostics. ACS Biomater Sci Eng 2016; 2:1641-1648. [DOI: 10.1021/acsbiomaterials.6b00443] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xu Jia
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mingliang Pei
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xubo Zhao
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kun Tian
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tingting Zhou
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory
of Applied
Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry
and Resources Utilization of Gansu Province, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
36
|
Karim AA, Loh XJ. Towards Cyclodextrin-Based Supramolecular Materials. POLYMERS FOR PERSONAL CARE PRODUCTS AND COSMETICS 2016. [DOI: 10.1039/9781782623984-00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inclusion complexation between cyclodextrins (CDs) and various guests has been extensively investigated in supramolecular chemistry. Besides CDs, there are several important macrocyclic host families, such as crown ethers and cucurbiturils. Until now, the contribution of these other families to macromolecular self-assembly has been small compared to CDs. This chapter will focus on CDs as hosts for interaction with guest monomers to form hydrogels. CD interactions with other monomers were made possible depending on proper molecular recognition. Macroscopic molecular recognition can be categorized by three types of interactions: main chain (polyrotaxane), side chain, and sequential complexes. Utilizing CD as host molecule, polymers such as polyethers, cationic polymers, polyamines, polyesters, π-conjugated polymers, polyolefins, polyamides, polyurethanes, and inorganic polymers could interact to form inclusion complexes. This chapter will attempt to discuss these studies. Depending on the functional groups attached to the polymeric component, supramolecular formation can be altered based on the stimuli response. Introducing polymer side chains or groups that respond selectively towards external stimuli could affect the hydrogel formation. This chapter also discusses the stimuli response of such systems.
Collapse
Affiliation(s)
- Anis Abdul Karim
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
- Department of Materials Science and Engineering, National University of Singapore Singapore 117574 Singapore
| |
Collapse
|
37
|
Hu J, Zhang M, He J, Ni P. Injectable hydrogels by inclusion complexation between a three-armed star copolymer (mPEG-acetal-PCL-acetal-)3 and α-cyclodextrin for pH-triggered drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra07420k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel acid-cleavable and injectable supramolecular hydrogels based on inclusion complexes between the acid-cleavable star copolymer (mPEG-a-PCL-a-)3 and α-CD were prepared, and used as controlled drug delivery depots.
Collapse
Affiliation(s)
- Jian Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| |
Collapse
|
38
|
Gao L, Chen Y, Luo Q, Wang Y, Li X, Shen Z, Zhu W. Injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation. RSC Adv 2016; 6:94661-94668. [DOI: 10.1039/c6ra20691c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Novel injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation properties were prepared, which show significant cytotoxicity to HepG2 cells, and could be a potential candidate for intratumor drug delivery.
Collapse
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Yadong Chen
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
39
|
Cao D, He J, Xu J, Zhang M, Zhao L, Duan G, Cao Y, Zhou R, Ni P. Polymeric prodrugs conjugated with reduction-sensitive dextran–camptothecin and pH-responsive dextran–doxorubicin: an effective combinatorial drug delivery platform for cancer therapy. Polym Chem 2016. [DOI: 10.1039/c6py00701e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two types of stimuli-sensitive polymeric prodrugs for combinatorial cancer therapy have been prepared and found to exhibit favorable anticancer activity in vitro and in vivo.
Collapse
Affiliation(s)
- Dongling Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Jiaying Xu
- School for Radiological & Interdisciplinary Science
- and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- P. R. China
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Lin Zhao
- School for Radiological & Interdisciplinary Science
- and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- P. R. China
| | - Guangxin Duan
- School for Radiological & Interdisciplinary Science
- and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- P. R. China
| | - Youwen Cao
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| | - Ruhong Zhou
- School for Radiological & Interdisciplinary Science
- and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Soochow University
- Suzhou 215123
- P. R. China
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
| |
Collapse
|
40
|
Su Z, Liang Y, Yao Y, Wang T, Zhang N. Polymeric complex micelles based on the double-hydrazone linkage and dual drug-loading strategy for pH-sensitive docetaxel delivery. J Mater Chem B 2016; 4:1122-1133. [DOI: 10.1039/c5tb02188j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complex micelles, which integrated double-hydrazone linkage and dual drug-loading patterns, were constructed for the first time.
Collapse
Affiliation(s)
- Zhihui Su
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Ji'nan 250012
- China
| | - Yanchao Liang
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Ji'nan 250012
- China
| | - Yao Yao
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Ji'nan 250012
- China
| | - Tianqi Wang
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Ji'nan 250012
- China
| | - Na Zhang
- Department of Pharmaceutics
- School of Pharmaceutical Science
- Shandong University
- Ji'nan 250012
- China
| |
Collapse
|
41
|
Luan J, Shen W, Chen C, Lei K, Yu L, Ding J. Selenium-containing thermogel for controlled drug delivery by coordination competition. RSC Adv 2015. [DOI: 10.1039/c5ra22307e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A coordination-responsive selenium-containing thermogel was designed and synthesized for controlled cisplatin delivery by competitive coordination of glutathione, which broadens the strategy of tuning drug release using thermogelling systems.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| |
Collapse
|