1
|
Li R, Han S, Gong P, Zou H. Synthesis of Raspberry-like PMMA Particles In a Ternary Solvent Mixture with Binary Initiators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24921-24933. [PMID: 39530842 DOI: 10.1021/acs.langmuir.4c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
There is continuing interest in the synthesis of raspberry-like polymer particles, among which most of the reports have tended to focus on polymer composite particles, while there are relatively few examples of polymer particles with a single component. In this study, raspberry-like poly(methyl methacrylate)(PMMA) particles were synthesized by a one-step method in a ternary solvent mixture with binary initiators. The effects of different polymerization parameters, including the solvent composition, the initiator composition, the stabilizer component, the polymerization temperature, the stirring rate, and the nature of the monomer, on the morphology and size of the resulting particles were studied. A plausible mechanism for raspberry-like particle formation was suggested based on the monitoring data of the polymerization kinetics. The raspberry-like PMMA particles have a high dispersion stability in a salty aqueous environment.
Collapse
Affiliation(s)
- Ruisi Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shuying Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Peiyuyao Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
2
|
Jiang X, Zhang D, Wang Y, Wang R, Kong XZ, Zhu X, Li S, Gu X. Facile Preparation of Raspberry-Like SiO 2@Polyurea Microspheres with Tunable Wettability and Their Application for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57672-57686. [PMID: 39380485 DOI: 10.1021/acsami.4c12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry-like microspheres have been widely used as superhydrophobic materials, photonic crystals, drug carriers, etc. Nevertheless, their preparation methods, usually consisting of multiple steps, are generally time- and energy-consuming. Herein raspberry-like SiO2@polyurea microspheres (SiO2@PUM) are readily prepared via a one-step precipitation polymerization of isophorone diisocyanate in a H2O/acetone mixture with the presence of SiO2 particles. The sphere size, surface roughness, and SiO2 content of SiO2@PUM are easily adjustable by varying the experimental conditions. TEM and SEM observations reveal that the final SiO2@PUM exhibits a core-shell structure, with polyurea (PU) in the core and SiO2 particles as the shell. In the process, the SiO2 particles were initially located on the PUM surface as a monolayer. With the reaction proceeding, the monolayer of SiO2 particles became thicker, forming a thicker layer of SiO2 particles on PUM due to the accumulation of SiO2 particles, leading to a multilayer structure of SiO2 particles on the shell of SiO2@PUM. The formation mechanism of the raspberry-like SiO2@PUM was thoroughly discussed and ascribed to electrostatic attraction between the positively charged PU and negatively charged SiO2 particles. Once dried, SiO2@PUM was superhydrophobic and turned hydrophilic if water-wetted. Using a layer of SiO2@PUM, effective separation with good reusability for a variety of oil-water mixtures was achieved regardless of the oil density and types of oil-water emulsions. This work presents a novel protocol for the preparation of raspberry-like microspheres with tunable wettability via a rapid and green process, and the resulting microspheres are highly effective for the separation of diverse types of oil-water mixtures.
Collapse
Affiliation(s)
- Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Diankai Zhang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujun Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Ruiqing Wang
- Department of Basic Courses, Shandong Shenghan Finance and Trade Vocational College, Jinan 250316, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangling Gu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Health and Medicine, Dezhou University, Dezhou 253023, China
| |
Collapse
|
3
|
Lin D, Li Y, Zhang L, Chen Y, Tan J. Scalable Preparation of Cylindrical Block Copolymer Micelles with a Liquid-Crystalline Perfluorinated Core by Photoinitiated Reversible Addition-Fragmentation Chain Transfer Dispersion Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Dongni Lin
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanling Li
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Synthesis of inorganic/organic raspberry-like composite particles for superhydrophobic and superlipophilic coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Inspired by the Nature: A Post-Printed Strategy to Efficiently Elaborate Parahydrophobic Surfaces. Biomimetics (Basel) 2022; 7:biomimetics7030122. [PMID: 36134926 PMCID: PMC9496598 DOI: 10.3390/biomimetics7030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022] Open
Abstract
The lack of drinkable water is one of the most significant risks for the future of the humanity. Estimates show that in the near future, this risk will become the origin of massive migrations leading to humanitarian disaster. As consequence, the development of solutions to provide water is becoming ever more critical, and a significant effort is devoted to identifying new sources of water. Among the developed strategies, fog harvesting, which takes advantage of atmospheric water to provide potable water, is a solution of interest due to its potential in sustainable development. Unfortunately, this approach suffers from low yield. In the present work, we take inspiration from living species to design and elaborate surfaces with high potential for water harvesting applications. This work takes advantage of 3D-printing and post-printing functionalization to elaborate a strategy that allows modelling, printing, and functionalization of surfaces to yield parahydrophobic behavior. The roughness and surface morphology of the prepared surfaces were investigated. These characteristics were then related to the observed wettability and potential of the functionalized interfaces for water harvesting applications. This work highlights significant variations in surface wettability via surface modification; strong hydrophobic behavior was observed via modification with linear carboxylic acids particularly for surfaces bearing vertical blades (plate with vertical blades and grid with vertical blades).
Collapse
|
6
|
Li Z, Zhao Y, Li S, Tu Y, Huang Z, Lin S, Hong L, Hu J. Facile preparation of raspberry-like mesoporous poly(styrene-co-divinylbenzene)/Ag composite particles for antibacterial superhydrophobic surfaces and liquid marbles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Klapiszewski Ł, Podkościelna B, Goliszek M, Kubiak A, Młynarczyk K, Jesionowski T. Synthesis, characterization and aging tests of functional rigid polymeric biocomposites with kraft lignin. Int J Biol Macromol 2021; 178:344-353. [PMID: 33652053 DOI: 10.1016/j.ijbiomac.2021.02.193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/13/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
This study concerns the synthesis of biocomposites with kraft lignin, investigation of their physicochemical properties, and tests of their resistance to environmental factors such as UV irradiation and water. The biocomposites were synthesized using bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BPA.DA) as a main monomer, ethylene glycol dimethacrylate (EGDMA) as a reactive diluent, and kraft lignin (L) as an environmentally friendly filler, in a UV curing process. Morphological analysis of the resulting materials was carried out using scanning electron microscopy and confocal microscopy. Thermal properties were investigated using thermogravimetric analysis. Tensile and flexural tests were performed for all obtained materials. Additionally, the wettability and swelling of the obtained composite samples were analyzed. The changes observed in the structure and properties of the polymers as a result of aging were investigated by means of ATR-FTIR analysis, optical profilometry and hardness tests. The results obtained regarding the effect of lignin addition on the properties of composite materials, with particular emphasis on their resistance to environmental factors, may be of crucial importance for their further applications, inter alia as UV-curable coating materials.
Collapse
Affiliation(s)
- Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Beata Podkościelna
- Maria Curie-Skłodowska University, Faculty of Chemistry, Institute of Chemistry, Marii Curie-Skłodowskiej 2, PL-20031 Lublin, Poland.
| | - Marta Goliszek
- Maria Curie-Skłodowska University, Faculty of Chemistry, Institute of Chemistry, Marii Curie-Skłodowskiej 2, PL-20031 Lublin, Poland
| | - Adam Kubiak
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Karolina Młynarczyk
- Maria Curie-Skłodowska University, Faculty of Chemistry, Institute of Chemistry, Marii Curie-Skłodowskiej 2, PL-20031 Lublin, Poland
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| |
Collapse
|
8
|
Li Z, Xiao Y, Liang S, Zhang T, Tu Y, Lin S, Huang Z, Hong L, Hu J. Facile fabrication of triple-scale colloidal particles and its application in Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Li S, Wang X, Li Z, Huang Z, Lin S, Hu J, Tu Y. Research progress of single molecule force spectroscopy technology based on atomic force microscopy in polymer materials: Structure, design strategy and probe modification. NANO SELECT 2021. [DOI: 10.1002/nano.202000235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shi Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xiao Wang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhihua Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Shudong Lin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
10
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
11
|
Hussain M, Xie J, Wang K, Wang H, Tan Z, Liu Q, Geng Z, Shezad K, Noureen L, Jiang H, Xu J, Zhang L, Zhu J. Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42734-42743. [PMID: 31622077 DOI: 10.1021/acsami.9b14286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this report, we present a facile approach to produce biodegradable polymeric microparticles with uniform sizes and controllable morphologies by blending hydrophobic poly(d, l-lactic-co-glycolide) (PLGA) and amphiphilic poly(d, l-lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG) in a microfluidic chip. Microparticles with tentacular, hollow hemispherical, and Janus structures were obtained after complete evaporation of the organic solvent by manipulating the interfacial behavior of emulsion droplets and the phase separation behavior inside the droplets. The number and length of the tentacles on the surface of tentacular microparticles could be tailored by varying the initial concentration and blending ratios of the polymers. The organic solvent played an important role in controlling the morphologies of microparticles. For example, blending PLA16k-b-PEG5k with PLGA100k in dichloromethane resulted in tentacular microparticles, whereas hollow hemispherical microparticles were obtained in trichloromethane. Moreover, these microparticles with controllable shapes and surface textures have significant influence on the immune response of dendritic cells (DCs), showing a morphology-dependent enhancement of DC maturation.
Collapse
Affiliation(s)
- Mubashir Hussain
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jun Xie
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Ke Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Hua Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Zhengping Tan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Qianqian Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Zhen Geng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Khurram Shezad
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Laila Noureen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Hao Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Lianbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| |
Collapse
|
12
|
Ramos Chagas G, Akbari R, Godeau G, Mohammadizadeh M, Guittard F, Darmanin T. Electrodeposited Poly(thieno[3,2-b
]thiophene) Films for the Templateless Formation of Porous Structures by Galvanostatic and Pulse Deposition. Chempluschem 2017; 82:1351-1358. [DOI: 10.1002/cplu.201700389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/03/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Raziyeh Akbari
- Superconductivity Research Laboratory; Department of Physics; University of Tehran; North Kargar Ave., P.O. Box 14395 547 Tehran Iran
| | - Guilhem Godeau
- Université Côte d'Azur; NICE Lab; IMREDD; Parc Valrose 06100 Nice France
| | - Mohammadreza Mohammadizadeh
- Superconductivity Research Laboratory; Department of Physics; University of Tehran; North Kargar Ave., P.O. Box 14395 547 Tehran Iran
| | - Frédéric Guittard
- Université Côte d'Azur; NICE Lab; IMREDD; Parc Valrose 06100 Nice France
| | - Thierry Darmanin
- Université Côte d'Azur; NICE Lab; IMREDD; Parc Valrose 06100 Nice France
| |
Collapse
|
13
|
Mortier C, Bourd R, Godeau G, Guittard F, Darmanin T. Superhydrophobic and superoleophobic poly(3,4-ethylenedioxypyrrole) polymers synthesized using the Staudinger-Vilarrasa reaction. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractVegetal and animal reigns offer many examples of surfaces with surprising and interesting wetting properties. As example, springtails present superoleophobic properties allowing to live in soil and Lotus leaves show self-cleaning ability even under rainfalls. Indeed, it is known that self-cleaning properties can help to remove dust and particles during rainfalls and as a consequence to clean the surface. The bioinspiration of these surface properties is of a real interest for industrial applications in the nanotechnology field such as photovoltaic systems or anti corrosive material. Here, we use a strategy based on electropolymerization to obtain these properties. The Staudinger-Vilarrasa reaction is used to prepare innovative 3,4-ethylenedioxypyrrole (EDOP) monomers with fluorinated chains. Using C6F13 or C8F17 chains, the polymer surfaces formed after electrodeposition show superhydrophobic and superoleophobic features. Here we study the surface wettability depending on the surface energy (based on the perfluorinated chain length), the surface roughness and morphology.
Collapse
Affiliation(s)
- Claudio Mortier
- Université Côte d’Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France
| | - Romain Bourd
- Université Côte d’Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France
| | - Guilhem Godeau
- Université Côte d’Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France
| | - Frédéric Guittard
- Université Côte d’Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France
| | - Thierry Darmanin
- Université Côte d’Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France
| |
Collapse
|
14
|
Chakrabarty A, Ponnupandian S, Kang NG, Mays JW, Singha NK. Designing superhydrophobic surface based on fluoropolymer-silica nanocomposite via RAFT-mediated polymerization-induced self-assembly. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arindam Chakrabarty
- Rubber Technology Centre, Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Siva Ponnupandian
- Rubber Technology Centre, Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Nam-Goo Kang
- Department of Chemistry; University of Tennessee, 552 Buehler Hall; Knoxville Tennessee 37996
| | - Jimmy W. Mays
- Department of Chemistry; University of Tennessee, 552 Buehler Hall; Knoxville Tennessee 37996
| | - Nikhil K. Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
15
|
Understanding the mechanism for building woven fabrics with wettability ranging from superhydrophobic to superamphiphobic via an aqueous process. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kout EE, Trad RB, Kateb ME, Beji M, Laugier JP, Godeau G, Guittard F, Darmanin T. Combining Staudinger Reductive Amination and Amidification for the Control of Surface Hydrophobicity and Water Adhesion by Introducing Heterobifunctional Groups: Post- and Ante-Approach. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Emna El Kout
- Université Côte d'Azur; NICE Lab; IMREDD Nice 06200 France
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Rawia Ben Trad
- Université Côte d'Azur; NICE Lab; IMREDD Nice 06200 France
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Mejda El Kateb
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Mohammed Beji
- Laboratory of Structural Organic Chemistry; Faculty of Sciences of Tunis; University of Tunis El Manar; Tunis 2092 Tunisia
| | - Jean-Pierre Laugier
- Centre Commun de Microscopie Appliquée (CCMA); Université Nice Sophia Antipolis; Nice 06100 France
| | - Guilhem Godeau
- Université Côte d'Azur; NICE Lab; IMREDD Nice 06200 France
| | | | | |
Collapse
|
17
|
Morphology evolution of poly(glycidyl methacrylate) colloids in the 1,1-diphenylethene controlled soap-free emulsion polymerization. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Szczepanski CR, Guittard F, Darmanin T. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Adv Colloid Interface Sci 2017; 241:37-61. [PMID: 28132673 DOI: 10.1016/j.cis.2017.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Parahydrophobic surfaces are an interesting class of materials that combines both high contact angles and very strong adhesion with wetting fluids, most commonly water. This unique set of properties makes parahydrophobic surfaces attractive for a variety of applications, including water harvesting and collection, guided fluid transport, and membrane development, amongst many others. Taking inspiration from natural surfaces that display this same behavior such as rose petals and gecko feet, synthetic approaches aim to incorporate the nano- and micro-scale topography as well as the low surface energy chemistry found on these interfaces. Here, we discuss the chemical and physical factors that contribute to parahydrophobic behavior and provide a comprehensive overview on the current technologies and procedures used towards constructing surfaces that mimic this behavior already observed in nature. This includes etching processes, colloidal assemblies, deposition methods, and in situ growth of surface features. Furthermore, issues such as ease of scale-up, efficiency of technical procedures, and other current challenges associated with these methods will be discussed to provide insight as to the future directions for this growing area of research.
Collapse
Affiliation(s)
| | - Frédéric Guittard
- Université Côte d'Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France
| | - Thierry Darmanin
- Université Côte d'Azur, NICE Lab, IMREDD, 61-63 Av. Simon Veil, 06200 Nice, France.
| |
Collapse
|
19
|
Development of perfluoropolyether modified raspberry paticles with fine hierarchical structure and their application in superhydrophobic surface. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Yu M, Wang Q, Zhang M, Deng Q, Chen D. Facile fabrication of raspberry-like composite microspheres for the construction of superhydrophobic films and applications in highly efficient oil–water separation. RSC Adv 2017. [DOI: 10.1039/c7ra07250c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inspired by the “lotus effect”, we proposed a facile synthetic route toward raspberry-like PS@SiO2 microspheres, which further lead to superhydrophobic surfaces.
Collapse
Affiliation(s)
- Mingguang Yu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Qing Wang
- State Key Laboratory of Pulp & Paper Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Min Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Qianjun Deng
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Dongchu Chen
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| |
Collapse
|
21
|
Wang Z, Guo Z. Biomimetic superwettable materials with structural colours. Chem Commun (Camb) 2017; 53:12990-13011. [DOI: 10.1039/c7cc07436k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review aims at offering a comprehension elaboration of the mechanism, recent biomimetic research and applications of biomimetic superwettable materials with structural colours. Futhermore, this review will provide significant insight into the design, fabrication and application of biomimetic superwettable materials with structural colours.
Collapse
Affiliation(s)
- Zelinlan Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
22
|
Godeau G, Ben Taher Y, Pujol M, Guittard F, Darmanin T. Perfluorinated ProDOT monomers for superhydrophobic/oleophobic surfaces elaboration. J Fluor Chem 2016. [DOI: 10.1016/j.jfluchem.2016.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Darmanin T, Bombera R, Colpo P, Valsesia A, Laugier JP, Rossi F, Guittard F. Bioinspired Rose-Petal-Like Substrates Generated by Electropolymerization on Micropatterned Gold Substrates. Chempluschem 2016; 82:352-357. [DOI: 10.1002/cplu.201600387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Thierry Darmanin
- Université Nice Sophia Antipolis; CNRS, LPMC, UMR 7336; 06100 Nice France
| | - Radoslaw Bombera
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Pascal Colpo
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Andrea Valsesia
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Jean-Pierre Laugier
- Université Nice Sophia Antipolis; Centre Commun de Microscopie Appliquée (CCMA); Parc Valrose 06100 Nice France
| | - François Rossi
- European Commission; DG Joint Research Centre; TP125, Via Fermi 21027 Ispra Italy
| | - Frédéric Guittard
- Université Nice Sophia Antipolis; CNRS, LPMC, UMR 7336; 06100 Nice France
| |
Collapse
|
24
|
|