1
|
Wolski K, Smenda J, Świerz W, Dąbczyński P, Marzec M, Zapotoczny S. Self-Templating Copolymerization to Produce Robust Conductive Nanocoatings Based on Conjugated Polymer Brushes with Implementable Memristive Characteristics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309216. [PMID: 38334248 DOI: 10.1002/smll.202309216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Indexed: 02/10/2024]
Abstract
An effective synthesis of conductive polymer brushes, i.e., self-templating surface-initiated copolymerization (ST-SICP), is developed. It proceeds through copolymerization of pendant thiophene groups in the precursor multimonomer poly(3-methylthienyl methacrylate) (PMTM) brushes with free 3-methylthiophene (3MT) monomers leading to PMTM-co-P3MT brushes. This approach leads to improved conformational freedom of generated conjugated poly(thiophene)-based chains and their higher share in the brushes with respect to conjugation of pendant thiophene groups only. As a result, best performing conjugated PMTM-co-P3MT brushes demonstrate high ohmic conductivity in both out-of-plane and in-plane direction. Furthermore, thanks to the covalent anchoring as well as intra- and intermolecular connections, highly stable and mechanically robust nanocoatings are produced which can survive mechanical cleaning and long-term storage under ambient conditions. Grafting of ionic poly(sodium 4-styrenesulfonate) (PSSNa) in between PMTM-co-P3MT chains brings new properties to such binary mixed brushes that can operate as thin-film memristive coating with switchable conductance. It is worth mentioning that the crucial synthetic steps, i.e., grafting of precursor PMTM brushes by surface-initiated organocatalyzed atom transfer radical polymerization (SI-O-ATRP) and PSSNa chains by surface-initiated photoiniferter-mediated polymerization (SI-PIMP) are conducted under ambient conditions using only microliter volumes of reagents providing methodology that can be considered for use beyond the laboratory scale.
Collapse
Affiliation(s)
- Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Joanna Smenda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, Krakow, 30-348, Poland
| | - Wojciech Świerz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| | - Paweł Dąbczyński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, Krakow, 30-348, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30, Krakow, 30-059, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
| |
Collapse
|
2
|
Dang NTT, Le TQ, Duc Cuong N, Linh NLM, Le LS, Tran TD, Nguyen HP. Polythiophene-wrapped Chitosan Nanofibrils with a Bouligand Structure toward Electrochemical Macroscopic Membranes. ACS OMEGA 2024; 9:13680-13691. [PMID: 38559940 PMCID: PMC10976385 DOI: 10.1021/acsomega.3c07894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Exploring structural biomimicry is a great opportunity to replicate hierarchical frameworks inspired by nature in advanced functional materials for boosting new applications. In this work, we present the biomimetic integration of polythiophene into chitosan nanofibrils in a twisted Bouligand structure to afford free-standing macroscopic composite membranes with electrochemical functionality. By considering the integrity of the Bouligand structure in crab shells, we can produce large, free-standing chitosan nanofibril membranes with iridescent colors and flexible toughness. These unique structured features lead the chitosan membranes to host functional additives to mimic hierarchically layered composites. We used the iridescent chitosan nanofibrils as a photonic platform to investigate the host-guest combination between thiophene and chitosan through oxidative polymerization to fabricate homogeneous polythiophene-wrapped chitosan composites. This biomimetic incorporation fully retains the twisted Bouligand organization of nanofibrils in the polymerized assemblies, thus giving rise to free-standing macroscopic electrochemical membranes. Our further experiments are the modification of the biomimetic polythiophene-wrapped chitosan composites on a glassy carbon electrode to design a three-electrode system for simultaneous electrochemical detection of uric acid, xanthine, hypoxanthine, and caffeine at trace concentrations.
Collapse
Affiliation(s)
- Nhan Thi Thanh Dang
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Thang Quoc Le
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Nguyen Duc Cuong
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Nguyen Le My Linh
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Lam Son Le
- Department
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen
Hue, Hue 530000, Vietnam
| | - Tien Dong Tran
- Department
of Chemistry, Hue University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Hai Phong Nguyen
- Department
of Chemistry, Hue University of Sciences, Hue University, 77 Nguyen
Hue, Hue 530000, Vietnam
| |
Collapse
|
3
|
Wolski K, Smenda J, Grobelny A, Dąbczyński P, Marzec M, Cernescu A, Wytrwal M, Bernasik A, Rysz J, Zapotoczny S. Surface engineering of mixed conjugated/polyelectrolyte brushes - Tailoring interface structure and electrical properties. J Colloid Interface Sci 2023; 634:209-220. [PMID: 36535159 DOI: 10.1016/j.jcis.2022.11.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
HYPOTHESIS Mixed polymer brushes (MPBs) could be synthesized by surface dilution of homopolymer brushes and subsequent grafting of other type of chains in the formed voids. Nanophase separation and dynamics of surface-grafted chains could be tailored by modification of their molecular architecture. Mixed polyelectrolyte and conjugated chains contribute synergistically to tailor properties of the coating. EXPERIMENTS A new synthetic strategy that allowed spatially controlled grafting of poly(sodium 4-styrenesulfonate) chains (PSSNa) in close neighborhood of poly(3-methylthienyl methacrylate) (PMTM) brushes (precursors of the conjugated chains) using surface-initiated polymerizations was developed. The final mixed conjugated/polyelectrolyte brushes were prepared by template polymerization of pendant thiophene groups in PMTM chains. Surface dynamics and nanophase separation of MPBs were studied by nanoscale resolution IR imaging, SIMS profiling and AFM mapping in selective solvents. FINDINGS Unconjugated MPBs were shown to undergo vertical, and horizontal nanophase separation, while the size and shape of the nanodomains were dependent on molar ratio of the mixed chains and their relative lengths. Generation of the conjugated chains led to diminishing of nanophase separation thanks to stronger mutual interactions of conjugated PMTM and PSSNa (macromolecular mixing). The obtained systems demonstrated tunable interfacial structure and resistance switching phenomenon desired in construction of smart surfaces or memristive devices.
Collapse
Affiliation(s)
- Karol Wolski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Joanna Smenda
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Grobelny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Dąbczyński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | | | - Magdalena Wytrwal
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Rysz
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Szczepan Zapotoczny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
4
|
Grobelny A, Lorenc K, Skowron Ł, Zapotoczny S. Synthetic Route to Conjugated Donor–Acceptor Polymer Brushes via Alternating Copolymerization of Bifunctional Monomers. Polymers (Basel) 2022; 14:polym14132735. [PMID: 35808780 PMCID: PMC9268968 DOI: 10.3390/polym14132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
Alternating donor–acceptor conjugated polymers, widely investigated due to their applications in organic photovoltaics, are obtained mainly by cross-coupling reactions. Such a synthetic route exhibits limited efficiency and requires using, for example, toxic palladium catalysts. Furthermore, the coating process demands solubility of the macromolecules, provided by the introduction of alkyl side chains, which have an impact on the properties of the final material. Here, we present the synthetic route to ladder-like donor–acceptor polymer brushes using alternating copolymerization of modified styrene and maleic anhydride monomers, ensuring proper arrangement of the pendant donor and acceptor groups along the polymer chains grafted from a surface. As a proof of concept, macromolecules with pendant thiophene and benzothiadiazole groups were grafted by means of RAFT and metal-free ATRP polymerizations. Densely packed brushes with a thickness up to 200 nm were obtained in a single polymerization process, without the necessity of using metal-based catalysts or bulky substituents of the monomers. Oxidative polymerization using FeCl3 was then applied to form the conjugated chains in a double-stranded (ladder-like) architecture.
Collapse
|
5
|
Grobelny A, Grobelny A, Zapotoczny S. Precise Stepwise Synthesis of Donor-Acceptor Conjugated Polymer Brushes Grafted from Surfaces. Int J Mol Sci 2022; 23:ijms23116162. [PMID: 35682845 PMCID: PMC9181774 DOI: 10.3390/ijms23116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Donor-acceptor (D-A) conjugated polymers are promising materials in optoelectronic applications, especially those forming ordered thin films. The processability of such conjugated macromolecules is typically enhanced by introducing bulky side chains, but it may affect their ordering and/or photophysical properties of the films. We show here the synthesis of surface-grafted D-A polymer brushes using alternating attachment of tailored monomers serving as electron donors (D) and acceptors (A) via coupling reactions. In such a stepwise procedure, alternating copolymer brushes consisting of thiophene and benzothiadiazole-based moieties with precisely tailored thickness and no bulky substituents were formed. The utilization of Sonogashira coupling was shown to produce densely packed molecular wires of tailored thickness, while Stille coupling and Huisgen cycloaddition were less efficient, likely because of the higher flexibility of D-A bridging groups. The D-A brushes exhibit reduced bandgaps, semiconducting properties and can form aggregates, which can be adjusted by changing the grafting density of the chains.
Collapse
Affiliation(s)
- Anna Grobelny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Artur Grobelny
- Selvita Services Sp. Z o.o., Bobrzyńskiego 14, 30-348 Kraków, Poland;
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-686-25-30
| |
Collapse
|
6
|
Grześ G, Wolski K, Uchacz T, Bała J, Louis B, Scheblykin IG, Zapotoczny S. Ladder-like Polymer Brushes Containing Conjugated Poly(Propylenedioxythiophene) Chains. Int J Mol Sci 2022; 23:ijms23115886. [PMID: 35682563 PMCID: PMC9180196 DOI: 10.3390/ijms23115886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023] Open
Abstract
The high stability and conductivity of 3,4-disubstituted polythiophenes such as poly(3,4-ethylenedioxythiophene) (PEDOT) make them attractive candidates for commercial applications. However, next-generation nanoelectronic devices require novel macromolecular strategies for the precise synthesis of advanced polymer structures as well as their arrangement. In this report, we present a synthetic route to make ladder-like polymer brushes with poly(3,4-propylenedioxythiophene) (PProDOT)-conjugated chains. The brushes were prepared via a self-templating surface-initiated technique (ST-SIP) that combines the surface-initiated atom transfer radical polymerization (SI-ATRP) of bifunctional ProDOT-based monomers and subsequent oxidative polymerization of the pendant ProDOT groups in the parent brushes. The brushes prepared in this way were characterized by grazing-angle FTIR, XPS spectroscopy, and AFM. Steady-state and time-resolved photoluminescence measurements were used to extract the information about the structure and effective conjugation length of PProDOT-based chains. Stability tests performed in ambient conditions and under exposure to standardized solar light revealed the remarkable stability of the obtained materials.
Collapse
Affiliation(s)
- Gabriela Grześ
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
- Correspondence: (K.W.); (S.Z.)
| | - Tomasz Uchacz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Justyna Bała
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
| | - Boris Louis
- Division of Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden; (B.L.); (I.G.S.)
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Ivan G. Scheblykin
- Division of Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden; (B.L.); (I.G.S.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (G.G.); (T.U.); (J.B.)
- Correspondence: (K.W.); (S.Z.)
| |
Collapse
|
7
|
Smenda J, Wolski K, Chajec K, Zapotoczny S. Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures. Polymers (Basel) 2021; 13:4458. [PMID: 34961009 PMCID: PMC8704565 DOI: 10.3390/polym13244458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
The synthesis of surface-grafted polymers with variable functionality requires the careful selection of polymerization methods that also enable spatially controlled grafting, which is crucial for the fabrication of, e.g., nano (micro) sensor or nanoelectronic devices. The development of versatile, simple, economical, and eco-friendly synthetic strategies is important for scaling up the production of such polymer brushes. We have recently shown that poly (3-methylthienyl methacrylate) (PMTM) and poly (3-trimethylsilyl-2-propynyl methacrylate) (PTPM) brushes with pendant thiophene and acetylene groups, respectively, could be used for the production of ladder-like conjugated brushes that are potentially useful in the mentioned applications. However, the previously developed syntheses of such brushes required the use of high volumes of reagents, elevated temperature, or high energy UV-B light. Therefore, we present here visible light-promoted metal-free surface-initiated ATRP (metal-free SI-ATRP) that allows the economical synthesis of PMTM and PTPM brushes utilizing only microliter volumes of reaction mixtures. The versatility of this approach was shown by the formation of homopolymers but also the block copolymer conjugated brushes (PMTM and PTPM blocks in both sequences) and patterned films using TEM grids serving as photomasks. A simple reaction setup with only a monomer, solvent, commercially available organic photocatalyst, and initiator decorated substrate makes the synthesis of these complex polymer structures achievable for non-experts and ready for scaling up.
Collapse
Affiliation(s)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (J.S.); (K.C.); (S.Z.)
| | | | | |
Collapse
|
8
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
|
10
|
Słowikowska M, Chajec K, Michalski A, Zapotoczny S, Wolski K. Surface-Initiated Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Concentration of FeBr 3 under Visible Light. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5139. [PMID: 33202639 PMCID: PMC7697009 DOI: 10.3390/ma13225139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Reversible deactivation radical polymerizations with reduced amount of organometallic catalyst are currently a field of interest of many applications. One of the very promising techniques is photoinduced atom transfer radical polymerization (photo-ATRP) that is mainly studied for copper catalysts in the solution. Recently, advantageous iron-catalyzed photo-ATRP (photo-Fe-ATRP) compatible with high demanding biological applications was presented. In response to that, we developed surface-initiated photo-Fe-ATRP (SI-photo-Fe-ATRP) that was used for facile synthesis of poly(methyl methacrylate) brushes with the presence of only 200 ppm of FeBr3/tetrabutylammonium bromide catalyst (FeBr3/TBABr) under visible light irradiation (wavelength: 450 nm). The kinetics of both SI-photo-Fe-ATRP and photo-Fe-ATRP in solution were compared and followed by 1H NMR, atomic force microscopy (AFM) and gel permeation chromatography (GPC). Brush grafting densities were determined using two methodologies. The influence of the sacrificial initiator on the kinetics of brush growth was studied. It was found that SI-photo-Fe-ATRP could be effectively controlled even without any sacrificial initiators thanks to in situ production of ATRP initiator in solution as a result of reaction between the monomer and Br radicals generated in photoreduction of FeBr3/TBABr. The optimized and simplified reaction setup allowed synthesis of very thick (up to 110 nm) PMMA brushes at room temperature, under visible light with only 200 ppm of iron-based catalyst. The same reaction conditions, but with the presence of sacrificial initiator, enabled formation of much thinner layers (18 nm).
Collapse
Affiliation(s)
- Monika Słowikowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Kamila Chajec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Adam Michalski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| |
Collapse
|
11
|
Słowikowska M, Wolski K, Wójcik AJ, Wesner D, Schönherr H, Zapotoczny S. Unraveling the nanomechanical properties of surface-grafted conjugated polymer brushes with ladder-like architecture. Polym Chem 2020. [DOI: 10.1039/d0py01422b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surface-grafted polymer brushes with ladder-like architecture enforce extended conformation of the chains affecting their mechanical and tribological properties.
Collapse
Affiliation(s)
| | - Karol Wolski
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Artur J. Wójcik
- Faculty of Chemistry
- Jagiellonian University
- 30-387 Krakow
- Poland
| | - Daniel Wesner
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ)
- Department of Chemistry and Biology
- School of Science and Technology
- University of Siegen
- 57076 Siegen
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ)
- Department of Chemistry and Biology
- School of Science and Technology
- University of Siegen
- 57076 Siegen
| | | |
Collapse
|
12
|
Benetti EM, Divandari M, Ramakrishna SN, Morgese G, Yan W, Trachsel L. Loops and Cycles at Surfaces: The Unique Properties of Topological Polymer Brushes. Chemistry 2017; 23:12433-12442. [DOI: 10.1002/chem.201701940] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Edmondo M. Benetti
- Laboratory for Surface Science and Technology; ETH Zürich; Rämistrasse 101 8092 Zürich Switzerland
- Department of Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente, P.O. Box 217; 7500 AE Enschede The Netherlands
| | - Mohammad Divandari
- Laboratory for Surface Science and Technology; ETH Zürich; Rämistrasse 101 8092 Zürich Switzerland
| | | | - Giulia Morgese
- Laboratory for Surface Science and Technology; ETH Zürich; Rämistrasse 101 8092 Zürich Switzerland
| | - Wenqing Yan
- Laboratory for Surface Science and Technology; ETH Zürich; Rämistrasse 101 8092 Zürich Switzerland
| | - Lucca Trachsel
- Laboratory for Surface Science and Technology; ETH Zürich; Rämistrasse 101 8092 Zürich Switzerland
| |
Collapse
|
13
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Wolski K, Gruszkiewicz A, Wytrwal-Sarna M, Bernasik A, Zapotoczny S. The grafting density and thickness of polythiophene-based brushes determine the orientation, conjugation length and stability of the grafted chains. Polym Chem 2017. [DOI: 10.1039/c7py01418j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-templating surface-initiated method combining ATRP and oxidative polymerization leads to the formation of ladder-like polythiophene-based brushes with a 90–100 mer conjugation length.
Collapse
Affiliation(s)
- K. Wolski
- Jagiellonian University
- Faculty of Chemistry
- 30-387 Krakow
- Poland
| | - A. Gruszkiewicz
- Jagiellonian University
- Faculty of Chemistry
- 30-387 Krakow
- Poland
| | - M. Wytrwal-Sarna
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- Krakow
- Poland
| | - A. Bernasik
- AGH University of Science and Technology
- Academic Centre for Materials and Nanotechnology
- Krakow
- Poland
- AGH University of Science and Technology
| | - S. Zapotoczny
- Jagiellonian University
- Faculty of Chemistry
- 30-387 Krakow
- Poland
| |
Collapse
|
15
|
Schroot R, Jäger M, Schubert US. Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures. Chem Soc Rev 2017; 46:2754-2798. [DOI: 10.1039/c6cs00811a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review details synthetic strategies leading to structurally-defined electrochemically and (photo)redox-active polymer architectures,e.g.block, graft and end functionalized (co)polymers.
Collapse
Affiliation(s)
- Robert Schroot
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| |
Collapse
|
16
|
Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.06.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Szuwarzyński M, Wolski K, Zapotoczny S. Enhanced stability of conductive polyacetylene in ladder-like surface-grafted brushes. Polym Chem 2016. [DOI: 10.1039/c6py00977h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation and characterization of polyacetylene-based brushes that exhibit exceptional long term stability in air is presented here.
Collapse
Affiliation(s)
| | - Karol Wolski
- Jagiellonian University
- Faculty of Chemistry
- 30-060 Krakow
- Poland
| | | |
Collapse
|