1
|
Hefnawy A, Abdelhamid AS, Abdelaziz MM, Elzoghby AO, Khalil IA. Recent advances in nano-based drug delivery systems for treatment of liver cancer. J Pharm Sci 2024; 113:3145-3172. [PMID: 39151795 DOI: 10.1016/j.xphs.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Liver cancer is one of the aggressive primary tumors as evident by high rate of incidence and mortality. Conventional treatments (e.g. chemotherapy) suffer from various drawbacks including wide drug distribution, low localized drug concentration, and severe off-site toxicity. Therefore, they cannot satisfy the mounting need for safe and efficient cancer therapeutics, and alternative novel strategies are needed. Nano-based drug delivery systems (NDDSs) are among these novel approaches that can improve the overall therapeutic outcomes. NDDSs are designed to encapsulate drug molecules and target them specifically to liver cancer. Thus, NDDSs can selectively deliver therapeutic agents to the tumor cells and avoid distribution to off-target sites which should improve the safety profile of the active agents. Nonetheless, NDDSs should be well designed, in terms of the preparing materials, nanocarriers structure, and the targeting strategy, in order to accomplish these objectives. This review discusses the latest advances of NDDSs for cancer therapy with emphasis on the aforementioned essential design components. The review also entails the challenges associated with the clinical translation of NDDSs, and the future perspectives towards next-generation NDDSs.
Collapse
Affiliation(s)
- Amr Hefnawy
- Smyth Lab, College of Pharmacy, University of Texas at Austin, TX 78712, USA.
| | - Ahmed S Abdelhamid
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Moustafa M Abdelaziz
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA.
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12582, Giza, Egypt.
| |
Collapse
|
2
|
Liu YL, Wang TH, Yeh NT, Huang WJ, Tzang BS, Wu IT, Chin HY, Hu SH, Hsu TC, Chiang WH. Tumor-activated targetable photothermal chemotherapy using IR780/zoledronic acid-containing hybrid polymeric nanoassemblies with folate modification to treat aggressive breast cancer. NANOSCALE 2024; 16:1415-1427. [PMID: 38167914 DOI: 10.1039/d3nr05637f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
To effectively treat aggressive breast cancer by tumor-activated targetable photothermal chemotherapy, in this work, folate (FA)-modified hybrid polymeric nanoassemblies (HPNs) with a poly(ethylene glycol) (PEG)-detachable capability are developed as vehicles for tumor-targeted co-delivery of IR780, a lipophilic photothermal reagent, and zoledronic acid (ZA), a hydrophilic chemotherapy drug. Through hydrophobic interaction-induced co-assembly, IR780 molecules and ZA/poly(ethylenimine) (PEI) complexes were co-encapsulated into a poly(lactic-co-glycolic acid) (PLGA)-rich core stabilized by the amphiphilic FA-modified D-α-tocopheryl poly(ethylene glycol) succinate (FA-TPGS) and acidity-sensitive PEG-benzoic imine-octadecane (C18) (PEG-b-C18) conjugates. The developed FA-ZA/IR780@HPNs with high ZA and IR780 payloads not only showed excellent colloidal stability in a serum-containing milieu, but also promoted IR780-based photostability and photothermal conversion efficiency. Furthermore, for FA-ZA/IR780@HPNs under simulated physiological conditions, the premature leakage of IR780 and ZA molecules was remarkably declined. In a mimetic acidic tumor microenvironment, the uptake of FA-ZA/IR780@HPNs by FA receptor-overexpressed 4T1 breast cancer cells was remarkably promoted by PEG detachment combined with FA receptor-mediated endocytosis, thus effectively hindering migration of cancer cells and augmenting the anticancer efficacy of photothermal chemotherapy. Notably, the in vivo studies demonstrated that the FA-ZA/IR780@HPNs largely deposited at 4T1 tumor sites and profoundly suppressed tumor growth and metastasis without severe systemic toxicity upon near infrared (NIR)-triggered IR780-mediated hyperthermia integrated with ZA chemotherapy. This work presents a practical strategy to treat aggressive breast tumors with tumor-triggered targetable photothermal chemotherapy using FA-ZA/IR780@HPNs.
Collapse
Affiliation(s)
- Yu-Ling Liu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Tzu-Hao Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wei-Jen Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - I-Ting Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
3
|
Yuan Y, Tan W, Mi Y, Wang L, Qi Z, Guo Z. Effect of Hydrophobic Chain Length in Amphiphilic Chitosan Conjugates on Intracellular Drug Delivery and Smart Drug Release of Redox-Responsive Micelle. Mar Drugs 2023; 22:18. [PMID: 38248643 PMCID: PMC10821436 DOI: 10.3390/md22010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores. The effect of hydrophobic chain lengths of amphiphilic conjugates on encapsulation capacity, redox sensitivity, trigger-release behavior, cellular uptake efficacy, antitumor effect and antimigratory activity of Dox-loaded micelles was systematically investigated. Studies found that Dox-loaded LC-Cys-CA micelle had superior loading capacity and enhanced redox sensitivity compared with the other two micelles. Release assay indicated that the three Dox-loaded micelles maintained sufficiently stability in normal blood circulation but rapidly disintegrated in tumor cells. More importantly, the LC-Cys-CA micelle with a longer hydrophobic chain length exhibited a higher accumulative Dox release percentage than the other two micelles. Additionally, an increase in hydrophobic chain lengths of amphiphilic conjugates improved cellular uptake efficiency, antitumor effect and antimigration activity of Dox-loaded micelles, which could be explained by enhanced loading ability and redox sensitivity. Our research was expected to provide a viable platform for achieving a desired therapeutic efficacy via the alteration of hydrophobic interaction.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linqing Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhen Qi
- College of Life Sciences, Yantai University, Yantai 264005, China;
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.Y.); (Y.M.); (L.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
4
|
Evaluation of pH-Sensitive Polymeric Micelles Using Citraconic Amide Bonds for the Co-Delivery of Paclitaxel, Etoposide, and Rapamycin. Pharmaceutics 2023; 15:pharmaceutics15010154. [PMID: 36678783 PMCID: PMC9866473 DOI: 10.3390/pharmaceutics15010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Paclitaxel (PTX), etoposide (ETP), and rapamycin (RAPA) have different mechanisms, allowing multiple pathways to be targeted simultaneously, effectively treating various cancers. However, these drugs have a low hydrosolubility, limiting clinical applications. Therefore, we used pH-sensitive polymeric micelles to effectively control the drug release in cancer cells and to improve the water solubility of PTX, ETP, and RAPA. The synergistic effect of PTX, ETP, and RAPA was evaluated in gastric cancer, and the combination index values were evaluated. Thin-film hydration was used to prepare PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles, and various physicochemical properties of these micelles were evaluated. In vitro cytotoxicity, pH-sensitivity, drug release profiles, in vivo pharmacokinetics, and biodistribution studies of PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles were evaluated. In the pH-sensitivity evaluation, the size of the micelles increased more rapidly at a pH of 5.5 than at a pH of 7.4. The release rate of each drug increased with decreasing pH values in PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles. In vitro and in vivo studies demonstrated that PTX/ETP/RAPA-loaded mPEG-pH-PCL micelles exhibit different drug release behaviors depending on the pH of the tumor and normal tissues and increased bioavailability and circulation time in the blood than solutions. Therefore, we propose that PTX/ETP/RAPA- loaded mPEG-pH-PCL micelles are advantageous for gastric cancer treatment in drug delivery systems.
Collapse
|
5
|
Yang HY, Jang MS, Li Y, Du JM, Liu C, Lee JH, Fu Y. pH-responsive dynamically cross-linked nanogels with effective endo-lysosomal escape for synergetic cancer therapy based on intracellular co-delivery of photosensitizers and proteins. Colloids Surf B Biointerfaces 2022; 217:112638. [PMID: 35772354 DOI: 10.1016/j.colsurfb.2022.112638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Co-delivery of photosensitizers (PSs) and protein drugs represents great potentiality for enhancing the efficiency of synergistic cancer therapy. However, the intricate tumor-microenvironment and the lack of nanoplatforms to co-deliver both into cancer cells and activate their functions significantly hinder the clinical translation of this combined approach for cancer treatment. Herein, a chlorine e6 (Ce6)-functionalized and pH-responsive dynamically cross-linked nanogel (Ce6@NG) is fabricated by formation of benzoic imine linkages between Ce6-modified methoxy poly (ethyleneglycol)-block-poly (diethylenetriamine)-L-glutamate-Ce6 [MPEG-b-P(Deta)LG-Ce6] and terephthalaldehyde as cross-linkers for effective intracellular co-delivery of Ce6 and cytochrome c (CC), which could form a novel combination therapy system (CC/Ce6@NGs). The pH-sensitive benzoic imine bonds in the CC/Ce6@NGs endow them with excellent systemic stability under normal physiological environment while this nanosystem can be further cationized to enhance cell uptake in acidic extracellular environment. Upon cellular internalization, CC/Ce6@NGs can rapidly escape from the endo/lysosomal compartments and subsequently activate Ce6 to generate cytotoxic singlet oxygen upon laser irradiation and release of CC to induce programmed cell death by complete cleavage of benzoic imines at more acidic intracellular environments. Importantly, the catalase-like activity of CC can decompose H2O2 to produce O2 for hypoxia alleviation and improvement of the photodynamic therapy (PDT) of cancer. Moreover, this enhanced synergistic anticancer activity is confirmed both in vitro and in vivo. In view of the versatile chemical conjugation, this research offers a promising and smart nanosystem for intracellular co-delivery of PSs and therapeutic proteins.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, the Republic of Korea
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China
| | - Jia Meng Du
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, the Republic of Korea.
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China.
| |
Collapse
|
6
|
Redox-responsive properties of core-cross-linked micelles of poly(ethylene oxide)-b-poly(furfuryl methacrylate) for anticancer drug delivery application. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Chowdhury MMH, Salazar CJJ, Nurunnabi M. Recent advances in bionanomaterials for liver cancer diagnosis and treatment. Biomater Sci 2021; 9:4821-4842. [PMID: 34032223 DOI: 10.1039/d1bm00167a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, liver cancer is the fourth leading cause of cancer associated with death worldwide. It demands effective treatment and diagnostic strategies to hinder its recurrence, complexities, aggressive metastasis and late diagnosis. With recent progress in nanotechnology, several nanoparticle-based diagnostic and therapeutic modalities have entered into clinical trials. With further developments in nanoparticle mediated liver cancer diagnosis and treatment, the approach holds promise for improved clinical liver cancer management. In this review, we discuss the key advances in nanoparticles that have potential for liver cancer diagnosis and treatment. We also discuss the potential of nanoparticles to overcome the limitations of existing therapeutic modalities.
Collapse
Affiliation(s)
- Mohammed Mehadi Hassan Chowdhury
- School of Medicine, Faculty of Health, Deakin University, 75 Pigdons Road, Waurnponds, Vic-3216, Australia and Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | | | - Md Nurunnabi
- Environmental Science & Engineering, University of Texas at El Paso, TX 79968, USA. and Biomedical Engineering, University of Texas at El Paso, TX 79968, USA and Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA and Border Biomedical Research Center, University of Texas at El Paso, TX 79968, USA
| |
Collapse
|
8
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
9
|
Kazemi M, Ashjari M, Nazarabi M. Multi-sensitive curcumin-loaded nanomicelle based on ABC-CBA block copolymer for sustained drug delivery. Drug Dev Ind Pharm 2021; 47:552-561. [PMID: 33629638 DOI: 10.1080/03639045.2021.1890769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A type of multi-sensitive ABC-CBA block copolymer with thermal, glutathione and pH-responsive bonds was synthesized via ring opening polymerization along with cationic ring opening mechanisms. In continuum, the synthesized copolymer strands self-assembled into nanomicelles. The linear copolymer is comprised poly (methoxy ethylene glycol)-b-poly (2-ethyl-2-oxazoline)-b-poly (ε-caprolactone)-cystamine (i.e. [mPEG-b-PEtOz-PCL]2-Cys) and the curcumin was encapsulated inside the micelles mostly through hydrophobic interaction. The H-NMR, FTIR and GPC analysis were applied to identify the composition structure of the copolymer. The critical micelle concentration (CMC) value was achieved favorably 0.01 mg/mL for the synthesized copolymer. The morphology and particle size of solid nanocarrier were characterized by DLS, Zeta potential, AFM, TEM, and SEM micrographs. The drug loading content for the curcumin was attained 13.3% (w/w), and the entrapment efficacy of the drug in nanocarrier was obtained 79 percent. The in vitro release profile of the drug-loaded micelle was investigated by exposure to different pH, temperature and reduction circumstances, stimulated by tumor microenvironment conditions. The cell viability assay of the drug-loaded nanocarrier demonstrates high cytotoxicity toward HDF cells, while the drug-free nanocarrier has trifling toxicity and good biocompatibility. Therefore, according to the pleasant output of the research, this novel nanomicelle based on ABC-CBA block copolymer can be carried out effectively as an efficient nanocarrier in targeted drug delivery.
Collapse
Affiliation(s)
- Marzieh Kazemi
- Nanostructures and Biopolymer Research Lab, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| | - Mohsen Ashjari
- Nanostructures and Biopolymer Research Lab, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.,Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Masoomeh Nazarabi
- Nanostructures and Biopolymer Research Lab, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| |
Collapse
|
10
|
Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021; 18:205-227. [PMID: 32969740 PMCID: PMC7904578 DOI: 10.1080/17425247.2021.1828339] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Nanocarrier-based delivery systems offer multiple benefits to overcome limitations of the traditional drug dosage forms, such as protection of the drug, enhanced bioavailability, targeted delivery to disease site, etc. Nanocarriers have exhibited tremendous successes in targeted delivery of therapeutics to the desired tissues and cells with improved bioavailability, high drug loading capacity, enhanced intracellular delivery, and better therapeutic effect. A specific design of stimuli-responsive nanocarriers allows for changing their structural and physicochemical properties in response to exogenous and endogenous stimuli. These nanocarriers show a promise in site specific controlled release of therapeutics under certain physiological conditions or external stimuli. AREAS COVERED This review highlights recent progresses on the multifunctional and stimuli-sensitive nanocarriers for targeted therapeutic drug delivery applications. EXPERT OPINION The progress from single functional to multifunctional nanocarriers has shown tremendous potential for targeted delivery of therapeutics. On our opinion, the future of targeted delivery of drugs, nucleic acids, and other substances belongs to the site-targeted multifunctional and stimuli-based nanoparticles with controlled release. Targeting of nanocarriers to the disease site enhance the efficacy of the treatment by delivering more therapeutics specifically to the affected cells and substantially limiting adverse side effects upon healthy organs, tissues, and cells.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| |
Collapse
|
11
|
Wang SW, Lin YK, Fang JY, Lee RS. Synthesis and characterization of redox and ultrasonic dual-responsive organic-inorganic amphiphilic hybrid copolymers for drug delivery. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2019.1685515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shiu-Wei Wang
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| | - Yin-Ku Lin
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan, Taiwan
| | - Ren-Shen Lee
- Division of Natural Science, Center of General Education, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
12
|
Intracellular delivery of cytochrome C using hypoxia-responsive polypeptide micelles for efficient cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111069. [DOI: 10.1016/j.msec.2020.111069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023]
|
13
|
Zhou H, Qi Z, Xue X, Wang C. Novel pH-Sensitive Urushiol-Loaded Polymeric Micelles for Enhanced Anticancer Activity. Int J Nanomedicine 2020; 15:3851-3868. [PMID: 32764919 PMCID: PMC7359855 DOI: 10.2147/ijn.s250564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of this study was to develop a means of improving the bioavailability and anticancer activity of urushiol by developing an urushiol-loaded novel tumor-targeted micelle delivery system based on amphiphilic block copolymer poly(ethylene glycol)-b-poly-(β-amino ester) (mPEG-PBAE). Materials and Methods We synthesized four different mPEG-PBAE copolymers using mPEG-NH2 with different molecular weights or hydrophobicity levels. Of these, we selected the mPEG5000-PBAE-C12 polymer and used it to develop an optimized means of preparing urushiol-loaded micelles. Response surface methodology was used to optimize this formulation process. The micellar properties, including particle size, pH sensitivity, drug release dynamics, and critical micelle concentrations, were characterized. We further used the MCF-7 human breast cancer cell line to explore the cytotoxicity of these micelles in vitro and assessed their pharmacokinetics, tissue distribution, and antitumor activity in vivo. Results The resulting micelles had a mean particle size of 160.1 nm, a DL value of 23.45%, and an EE value of 80.68%. These micelles were found to release their contents in a pH-sensitive manner in vitro, with drug release being significantly accelerated at pH 5.0 (98.74% in 72 h) without any associated burst release. We found that urushiol-loaded micelles were significantly better at inducing MCF-7 cell cytotoxicity compared with free urushiol, with an IC50 of 1.21 mg/L. When these micelles were administered to tumor model animals in vivo, pharmacokinetic analysis revealed that the total AUC and MRT of these micelles were 2.28- and 2.53-fold higher than that of free urushiol, respectively. Tissue distribution analyses further revealed these micelles to mediate significantly enhanced tumor urushiol accumulation. Conclusion The pH-responsive urushiol-loaded micelles described in this study may be ideally suited for clinical use for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Xingying Xue
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, People's Republic of China
| |
Collapse
|
14
|
Li B, Pang S, Li X, Li Y. PH and redox dual-responsive polymeric micelles with charge conversion for paclitaxel delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2078-2093. [PMID: 32643545 DOI: 10.1080/09205063.2020.1793708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we demonstrate a type of pH and redox dual-responsive micelles, which were self-assembled in aqueous solution by an amphiphilic polymer, methoxypoly(ethylene glycol)-cystamine-poly(L-glutamic acid)-imidazole (mPEG-SS-PGA-IM). Considering tumor cells or tissues exhibiting low pH values and high glutathione (GSH) concentration, mPEG-SS-PGA-IM micelles possessed the charge conversion at pH of tumor tissues, which can facilitate cellular uptake of tumor cells. Furthermore, mPEG-SS-PGA-IM micelles can escape from endo/lysosomes based on the proton sponge effect, following degraded by higher concentration of GSH in cytoplasm. CLSM images of HCT116 cells indicated that mPEG-SS-PGA-IM micelles can escape from endo/lysosomes and enter cytoplasm. MTT assay showed that (paclitaxel) PTX-loaded mPEG-SS-PGA-IM micelles had higher cytotoxicity against HCT116 cells compared with PTX-loaded mPEG-PBLG and mPEG-SS-PBLG micelles. These results indicated that these mPEG-SS-PGA-IM micelles, as novel and effective pH- and redox-responsive nanocarriers, have great potential to both improve drug targeting efficiency while also enhancing the antitumor efficacy of PTX.
Collapse
Affiliation(s)
- Bo Li
- Binzhou People's Hospital, Binzhou, China
| | | | - Xinxin Li
- Binzhou People's Hospital, Binzhou, China
| | - Yanhai Li
- Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
15
|
Yang HY, Li Y, Lee DS. Recent Advances of pH‐Induced Charge‐Convertible Polymer‐Mediated Inorganic Nanoparticles for Biomedical Applications. Macromol Rapid Commun 2020; 41:e2000106. [DOI: 10.1002/marc.202000106] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P. R. China
| | - Yi Li
- College of Material and Textile Engineering Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
16
|
Su M, Xiao S, Shu M, Lu Y, Zeng Q, Xie J, Jiang Z, Liu J. Enzymatic multifunctional biodegradable polymers for pH- and ROS-responsive anticancer drug delivery. Colloids Surf B Biointerfaces 2020; 193:111067. [PMID: 32388121 DOI: 10.1016/j.colsurfb.2020.111067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/09/2023]
Abstract
A new family of multifunctional biodegradable block copolymers, PEG-poly(ω-pentadecalactone-co-N-methyldiethyleneamine sebacate-co-2,2'-thiodiethylene sebacate) (PEG-PMT), were synthesized via lipase-catalyzed copolymerization procedures. Amphiphilic PEG-PMT copolymers can be readily transformed into stable micellar nanoparticles through self-assembling processes in aqueous medium. The particle sizes increase dramatically after exposure of the particles to the acidic pH and high reactive oxygen species (ROS) conditions in tumor microenvironments, due to protonation of thioether groups and oxidation of amino groups in the PMT micelle cores, respectively. For example, docetaxel (DTX)-loaded PEG-PM-19 % TS micelles were triggered synergistically by acidic pH and ROS stimuli to release over 85 % of the anti-cancer drug. In particular, DTX/PEG-PMT-19 % TS and DTX/PEG-PMT-48 % TS micelles performed better than commercial Duopafei formulation in prohibiting growth of CT-26 tumors xenografed in vivo (70 % of tumor-inhibiting efficiency). Biosafety analysis revealed that DTX-loaded PEG-PMT nanoparticles possessed minimal toxicity towards normal organs, such as liver and kidney. These experimental data demonstrated that the pH- and ROS-responsive PEG-PMT micelles are promising vectors for both delivery of anti-tumor drugs and their controlled release at tumor intracellular sites.
Collapse
Affiliation(s)
- Meifei Su
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Shuting Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Man Shu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yao Lu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Qiang Zeng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jianhua Xie
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaozhong Jiang
- Department of Biomedical Engineering, Integrated Science and Technology Center, Yale University, 600 West Campus Drive, West Haven, CT, 06516, United States.
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
17
|
Bej R, Dey P, Ghosh S. Disulfide chemistry in responsive aggregation of amphiphilic systems. SOFT MATTER 2020; 16:11-26. [PMID: 31776542 DOI: 10.1039/c9sm01960j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamic nature of the disulfide bond has enhanced the potential for disulfide based amphiphiles in the emerging biomedical field. Disulfide containing amphiphiles have extensively been used for constructing wide ranging soft nanostructures as potential candidates for delivery of drugs, proteins and genes owing to their degradable nature in the presence of intracellular glutathione (present in a many fold excess compared to the extracellular milieu). This degradable nature of amphiphiles is not only useful to deliver therapeutics but it also eliminates the toxicity issues associated with the carrier after delivery of such therapeutics. Therefore, these bioreducible and biocompatible nano-aggregates inspired researchers to use them as vehicles for therapeutic delivery and as a result the literature of disulfide containing amphiphiles has been intensified. This review article highlights the structural diversity in disulfide containing amphiphilic small molecule and polymeric systems, structural effects on their aqueous aggregation, redox-responsive disassembly and biological applications. Furthermore, the use of disulfide chemistry towards the design of cell penetrating polymers has also been discussed. Finally a brief perspective on some future opportunities of these systems is provided.
Collapse
Affiliation(s)
- Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
18
|
Bintang Ilhami F, Huang SY, Chen JK, Kao CY, Cheng CC. Multifunctional adenine-functionalized supramolecular micelles for highly selective and effective cancer chemotherapy. Polym Chem 2020. [DOI: 10.1039/c9py01557d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenine-functionalized supramolecular micelles are rapidly endocytosed by cancer cells and enable selective induction of tumor cell death, without harming normal cells.
Collapse
Affiliation(s)
- Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Graduate Institute of Biomedical Engineering
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Chen-Yu Kao
- Graduate Institute of Biomedical Engineering
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 10607
- Taiwan
- Advanced Membrane Materials Research Center
| |
Collapse
|
19
|
Li Y, Wei J, Wei Y, Cheng L, Guo B, Meng F, Li F, Zhong Z. Apolipoprotein E Peptide-Guided Disulfide-Cross-Linked Micelles for Targeted Delivery of Sorafenib to Hepatocellular Carcinoma. Biomacromolecules 2019; 21:716-724. [DOI: 10.1021/acs.biomac.9b01419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | | | | | - Feng Li
- Department of Respiratory Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, P. R. China
| | | |
Collapse
|
20
|
Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydr Polym 2019; 224:115174. [DOI: 10.1016/j.carbpol.2019.115174] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
|
21
|
Sun H, Gu X, Zhang Q, Xu H, Zhong Z, Deng C. Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules 2019; 20:4299-4311. [DOI: 10.1021/acs.biomac.9b01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaolei Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Qiang Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Hao Xu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Koutsikou TS, Krokidis MG, Boukos N, Mitrikas G, Efthimiadou E. Synthesis, characterization and evaluation of multi sensitive nanocarriers by using the layer by layer method. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Puglisi A, Bayir E, Timur S, Yagci Y. pH-Responsive Polymersome Microparticles as Smart Cyclodextrin-Releasing Agents. Biomacromolecules 2019; 20:4001-4007. [DOI: 10.1021/acs.biomac.9b01083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Antonino Puglisi
- Department of Chemistry, Maslak, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir, 35100, Turkey
| | - Suna Timur
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University Bornova, Izmir, 35100, Turkey
- Faculty of Science, Biochemistry Department, Ege University Bornova, Izmir, 35100, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Maslak, Istanbul Technical University, Istanbul, 34469, Turkey
| |
Collapse
|
24
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
25
|
Luo Y, Yin X, Yin X, Chen A, Zhao L, Zhang G, Liao W, Huang X, Li J, Zhang CY. Dual pH/Redox-Responsive Mixed Polymeric Micelles for Anticancer Drug Delivery and Controlled Release. Pharmaceutics 2019; 11:E176. [PMID: 30978912 PMCID: PMC6523239 DOI: 10.3390/pharmaceutics11040176] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Stimuli-responsive polymeric micelles (PMs) have shown great potential in drug delivery and controlled release in cancer chemotherapy. Herein, inspired by the features of the tumor microenvironment, we developed dual pH/redox-responsive mixed PMs which are self-assembled from two kinds of amphiphilic diblock copolymers (poly(ethylene glycol) methyl ether-b-poly(β-amino esters) (mPEG-b-PAE) and poly(ethylene glycol) methyl ether-grafted disulfide-poly(β-amino esters) (PAE-ss-mPEG)) for anticancer drug delivery and controlled release. The co-micellization of two copolymers is evaluated by measurement of critical micelle concentration (CMC) values at different ratios of the two copolymers. The pH/redox-responsiveness of PMs is thoroughly investigated by measurement of base dissociation constant (pKb) value, particle size, and zeta-potential in different conditions. The PMs can encapsulate doxorubicin (DOX) efficiently, with high drug-loading efficacy. The DOX was released due to the swelling and disassembly of nanoparticles triggered by low pH and high glutathione (GSH) concentrations in tumor cells. The in vitro results demonstrated that drug release rate and cumulative release are obviously dependent on pH values and reducing agents. Furthermore, the cytotoxicity test showed that the mixed PMs have negligible toxicity, whereas the DOX-loaded mixed PMs exhibit high cytotoxicity for HepG2 cells. Therefore, the results demonstrate that the dual pH/redox-responsive PMs self-assembled from PAE-based diblock copolymers could be potential anticancer drug delivery carriers with pH/redox-triggered drug release, and the fabrication of stimuli-responsive mixed PMs could be an efficient strategy for preparation of intelligent drug delivery platform for disease therapy.
Collapse
Affiliation(s)
- Yongle Luo
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
- Safety Evaluation Department, Guangdong safety production technology center Co. Ltd., Guangzhou 510075, China.
| | - Xujun Yin
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xi Yin
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Anqi Chen
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lili Zhao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Gang Zhang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Wenbo Liao
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiangxuan Huang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Juan Li
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Can Yang Zhang
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
26
|
Yang HY, Jang MS, Li Y, Fu Y, Wu TP, Lee JH, Lee DS. Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. J Control Release 2019; 301:157-165. [PMID: 30905667 DOI: 10.1016/j.jconrel.2019.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Nanosized self-assemblies built from inorganic nanoparticles and polymer ligands have the potential to generate personalized theranostics systems for diagnostic imaging and cancer therapy. However, most of the theranostics systems suffer from poor targeting activity, insensitive diagnosis and drug leakage, leading to poor treatment results. In this study, a hierarchical tumor acidity-responsive magnetic nanobomb (termed HTAMN) was developed for photodynamic therapy and diagnostic imaging. The HTAMNs were formed through the self-assembly of chlorin e6 (Ce6)-functionalized polypeptide ligand, methoxy poly (ethyleneglycol)-block-poly (dopamine-ethylenediamine-2,3-dimethylmaleic anhydride)-L-glutamate-Ce6 [mPEG-b-P (Dopa-Ethy-DMMA)LG-Ce6] and superparamagnetic iron oxide nanoparticles (SPIONs). Negatively charged HTAMNs circulate in the blood for prolonged periods and promote tumor retention by passive targeting to the tumor. Once the HTAMNs arrive at the tumor location, the acidic extracellular tumor environment reverses the surface charge of the HTAMNs, resulting in tumor accumulation and cellular uptake. Moreover, in response to the more acidic environment inside cells, the photosensitizers are activated resulted in enhanced diagnostic imaging and cancer treatment. The in vitro and in vivo results indicate the effective tumor accumulation, internalization, diagnostic sensitivity and superior photodynamic therapy effect of the HTAMNs. Therefore, designing smart HTAMNs can promote the rapid development of cancer theranostics for clinical implementation.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Te Peng Wu
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
27
|
Saeedi S, Omrani I, Bafkary R, Sadeh E, Shendi HK, Nabid MR. Facile preparation of biodegradable dual stimuli-responsive micelles from waterborne polyurethane for efficient intracellular drug delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj03773j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel waterborne polyurethane based on main chain degradation under acidic and reductive conditions of tumors was synthesized.
Collapse
Affiliation(s)
- Sara Saeedi
- Department of Polymer and Material Chemistry
- Faculty of Chemistry and Petroleum Science
- Shahid Beheshti University
- G.C
- Tehran
| | - Ismail Omrani
- Department of Polymer and Material Chemistry
- Faculty of Chemistry and Petroleum Science
- Shahid Beheshti University
- G.C
- Tehran
| | - Reza Bafkary
- School of Chemistry
- Faculty of Science
- University of Tehran
- G.C
- Tehran
| | - Elaheh Sadeh
- Department of Polymer and Material Chemistry
- Faculty of Chemistry and Petroleum Science
- Shahid Beheshti University
- G.C
- Tehran
| | - Hasan Kashef Shendi
- Department of Polymer and Material Chemistry
- Faculty of Chemistry and Petroleum Science
- Shahid Beheshti University
- G.C
- Tehran
| | - Mohammad Reza Nabid
- Department of Polymer and Material Chemistry
- Faculty of Chemistry and Petroleum Science
- Shahid Beheshti University
- G.C
- Tehran
| |
Collapse
|
28
|
Liu P. Redox- and pH-responsive polymeric nanocarriers. STIMULI RESPONSIVE POLYMERIC NANOCARRIERS FOR DRUG DELIVERY APPLICATIONS 2019:3-36. [DOI: 10.1016/b978-0-08-101995-5.00001-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Deng Y, Yuan H, Yuan W. Hypoxia-responsive micelles self-assembled from amphiphilic block copolymers for the controlled release of anticancer drugs. J Mater Chem B 2018; 7:286-295. [PMID: 32254553 DOI: 10.1039/c8tb02505c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amphiphilic block copolymers poly(ethylene glycol)-block-poly(methacrylic acid-co-2-nitroimidazole methacrylate) (PEG-b-P(MAA-co-NIMA)) were synthesized by the combination of atom transfer radical polymerization (ATRP), hydrolysis and EDC reactions. These copolymers could self-assemble into spherical micelles in water. 2-Nitroimidazole (NI) groups presented hypoxia-responsive properties under hypoxia conditions. The hydrophobic NI groups could be converted into hydrophilic aminoimidazole (AI) groups, which would lead to the expansion of micelles. Moreover, the content of NI groups in the copolymers would affect the hydrophilic-hydrophobic balance and therefore influence the self-assembly behaviour of the copolymer and the morphologies of the micelles. The copolymer micelles were used as a drug delivery system for controlled release of anticancer drug doxorubicin (DOX). The in vitro cytotoxicity investigation revealed that the DOX-loaded micelles showed higher toxicity to hypoxic cells than to normoxic cells. As a result, the block copolymers are expected to be used as an intelligent carrier for hydrophobic drugs to treat hypoxia-associated diseases.
Collapse
Affiliation(s)
- Yinlu Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| | | | | |
Collapse
|
30
|
Toniolo G, Efthimiadou EK, Kordas G, Chatgilialoglu C. Development of multi-layered and multi-sensitive polymeric nanocontainers for cancer therapy: in vitro evaluation. Sci Rep 2018; 8:14704. [PMID: 30279462 PMCID: PMC6168533 DOI: 10.1038/s41598-018-32890-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/06/2018] [Indexed: 01/09/2023] Open
Abstract
Nanoscale drug delivery systems represent a promising strategy to treat cancer and to overcome the side effects of chemotherapy. In particular, hollow polymeric nanocontainers have attracted great interest because of their structural and morphological advantages and the variety of polymers that can be used, allowing the synthesis of stimuli-responsive materials capable of responding to the biochemical alterations of the tumour microenvironment. Here are reported the synthesis, characterization and in vitro evaluation of a three-stimuli-sensitive hollow nanocontainer consisting of three different shells, each one sensitive to a specific tumoral stimulus: in order pH, temperature and reducing environment. To test its properties, daunorubicin was used as a model drug, for which the nanocontainers exhibited excellent encapsulation ability. The in vitro drug release behaviour was studied under different conditions, where the system proved capable of responding to the selected tumoral stimuli by releasing a larger amount of drug than in physiological environment. The hollow system itself showed negligible cytotoxicity but the loaded nanocontainers and free drug showed identical cytotoxicity and intracellular localization. Therefore, this formulation can be considered as a promising platform to develop an injectable delivery system capable of improving systematic toxicity without affecting or reducing the activity of the encapsulated drug.
Collapse
Affiliation(s)
- Gianluca Toniolo
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens, Greece
| | - Eleni K Efthimiadou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens, Greece.
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Greece.
| | - George Kordas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens, Greece
| | - Chryssostomos Chatgilialoglu
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Athens, Greece
- Institute for Organic Synthesis and Photoreactivity ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
31
|
pH and reduction dual-stimuli-responsive PEGDA/PAMAM injectable network hydrogels via
aza-michael addition for anticancer drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29168] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
33
|
Yang HY, Li Y, Lee DS. Multifunctional and Stimuli-Responsive Magnetic Nanoparticle-Based Delivery Systems for Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering; Jilin Institute of Chemical Technology; Jilin City 132022 P. R. China
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering; Sungkyunkwan University; Suwon Gyeonggi-do 16419 South Korea
| |
Collapse
|
34
|
Liao ZS, Huang SY, Huang JJ, Chen JK, Lee AW, Lai JY, Lee DJ, Cheng CC. Self-Assembled pH-Responsive Polymeric Micelles for Highly Efficient, Noncytotoxic Delivery of Doxorubicin Chemotherapy To Inhibit Macrophage Activation: In Vitro Investigation. Biomacromolecules 2018; 19:2772-2781. [PMID: 29677448 DOI: 10.1021/acs.biomac.8b00380] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Self-assembled pH-responsive polymeric micelles, a combination of hydrophilic poly(ethylene glycol) segments and hydrogen bonding interactions within a biocompatible polyurethane substrate, can spontaneously self-assemble into highly controlled, nanosized micelles in aqueous solution. These newly developed micelles exhibit excellent pH-responsive behavior and biocompatibility, highly controlled drug (doxorubicin; DOX) release behavior, and high drug encapsulation stability in different aqueous environments, making the micelles highly attractive potential candidates for safer, more effective drug delivery in applications such as cancer chemotherapy. In addition, in vitro cell studies revealed the drug-loaded micelles possessed excellent drug entrapment stability and low cytotoxicity toward macrophages under normal physiological conditions (pH 7.4, 37 °C). When the pH of the culture media was reduced to 6.0 to mimic the acidic tumor microenvironment, the drug-loaded micelles triggered rapid release of DOX within the cells, which induced potent antiproliferative and cytotoxic effects in vitro. Importantly, fluorescent imaging and flow cytometric analyses confirmed the DOX-loaded micelles were efficiently delivered into the cytoplasm of the cells via endocytosis and then subsequently gradually translocated into the nucleus. Therefore, these multifunctional micelles could serve as delivery vehicles for precise, effective, controlled drug release to prevent accumulation and activation of tumor-promoting tumor-associated macrophages in cancer tissues. Thus, this unique system may offer a potential route toward the practical realization of next-generation pH-responsive therapeutic delivery systems.
Collapse
Affiliation(s)
- Zhi-Sheng Liao
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Jyun-Jie Huang
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine , Taipei Medical University , Taipei 11031 , Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli, Taoyuan 32043 , Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering , National Taiwan University , Taipei 10617 , Taiwan.,Department of Chemical Engineering , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan.,R&D Center for Membrane Technology , Chung Yuan Christian University , Chungli, Taoyuan 32043 , Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology , National Taiwan University of Science and Technology , Taipei 10607 , Taiwan
| |
Collapse
|
35
|
Yang HY, Fu Y, Li Y, Jang MS, Lee JH, Lee DS. Polymer ligand-assisted fabrication of multifunctional and redox-responsive self-assembled magnetic nanoclusters for bimodal imaging and cancer treatment. J Mater Chem B 2018; 6:5562-5569. [DOI: 10.1039/c8tb01798k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed multifunctional magnetic nanoclusters, which can serve as bimodal imaging probes for the detection of solid tumors and act as emerging PDT agents to suppress tumor growth.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City
- P. R. China
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City
- P. R. China
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University
- Gyeonggi-do 16419
- Republic of Korea
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute
- Seoul 06351
- Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute
- Seoul 06351
- Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University
- Gyeonggi-do 16419
- Republic of Korea
| |
Collapse
|
36
|
Cheewatanakornkool K, Niratisai S, Manchun S, Dass CR, Sriamornsak P. Characterization and in vitro release studies of oral microbeads containing thiolated pectin-doxorubicin conjugates for colorectal cancer treatment. Asian J Pharm Sci 2017; 12:509-520. [PMID: 32104364 PMCID: PMC7032137 DOI: 10.1016/j.ajps.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022] Open
Abstract
Novel oral microbeads were developed based on a biopolymer-drug conjugate of doxorubicin (DOX) conjugated with thiolated pectin via reducible disulfide bonds. The microbeads were fabricated by ionotropic gelation with cations such as Al3+, Ca2+ and Zn2+. The results showed that using zinc acetate can produce the strongest microbeads with spherical shape. However, the microbeads prepared from thiolated pectin-DOX conjugate were very soft and irregular in shape. To produce more spherical microbeads with suitable strength, the native pectin was then added to the formulations. The particle size of the microbeads ranged from 0.87 to 1.14 mm. The morphology of the microbeads was characterized by optical and scanning electron microscopy. DOX was still in crystalline form when used in preparing the microbeads, as confirmed by powder X-ray diffractometry. Drug release profiles showed that the microbeads containing thiolated pectin-DOX conjugate exhibited reduction-responsive character; in reducing environments, the thiolated pectin-DOX conjugate could uncouple resulting from a cleavage of the disulfide linkers and consequently release the DOX. The best-fit release kinetics of the microbeads containing thiolated pectin-DOX conjugate, in the medium without reducing agent, fit the Korsmeyer-Peppas model while those in the medium with reducing agent fit a zero-order release model. These results suggested that the microbeads containing thiolated pectin-DOX conjugate may be a promising platform for cancer-targeted delivery of DOX, exploiting the reducing environment typically found in tumors.
Collapse
Affiliation(s)
- Kamonrak Cheewatanakornkool
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sathit Niratisai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Somkamol Manchun
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Thailand Institute of Scientific and Technological Research, Klong Luang, Pathum Thani 12120, Thailand
| | - Crispin R. Dass
- School of Pharmacy, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
- Curtin Health Institute for Research Innovation, Curtin University, Perth, WA 6845, Australia
| | - Pornsak Sriamornsak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
37
|
Zhao D, Yi X, Yuan G, Zhuo R, Li F. Design and Construction of a Smart Targeting Drug Delivery System Based on Phototriggered Competition of Host-Guest Interaction. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/09/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Dan Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education; College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Xiaoqing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education; College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Gongdao Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education; College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education; College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education; College of Chemistry and Molecular Science; Wuhan University; Wuhan 430072 China
| |
Collapse
|
38
|
CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids Surf B Biointerfaces 2017; 155:497-506. [DOI: 10.1016/j.colsurfb.2017.04.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 12/20/2022]
|
39
|
Yang HY, Jang MS, Li Y, Lee JH, Lee DS. Multifunctional and Redox-Responsive Self-Assembled Magnetic Nanovectors for Protein Delivery and Dual-Modal Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19184-19192. [PMID: 28524656 DOI: 10.1021/acsami.7b03747] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticle (NP) based model carriers present an emerging strategy for protein delivery. However, constructing a multifunctional nanocarrier with high loading capacity, diagnostic imaging capacity, and controlled release capability is a tremendous challenge for protein delivery systems. Thus, we herein report on the fabrication of redox-responsive magnetic nanovectors (termed RMNs) through self- assembly of Fe3O4 NPs and redox-responsive polymer ligands, which could effectively transport protein and trigger intracellular protein release. These RMNs also exhibited low toxicity, high stability, biocompatibility, and T2-weighted contrast-enhancement properties. In addition, they presented a quantized positively charged surface that had the capacity to load cyanine 5.5 (Cy5.5) labeled human serum albumin (HSA) with high loading efficiency (∼84%) via electrostatic interactions and which favored cellular uptake. Notably, studies of the in vitro protein release showed that HSA-Cy5.5-loaded RMNs (RMNs-HSA-Cy5.5) presented minimal cumulative release behavior under physiological conditions but release was rapidly enhanced under high glutathione concentration conditions. Confocal microscopy further revealed that protein was delivered and localized at the perinuclear region of tumor cells. Moreover, the in vivo imaging results confirmed that RMNs-HSA-Cy5.5 could serve as a dual-modal probe for simultaneous near-infrared fluorescence (NIRF) imaging and magnetic resonance (MR) imaging, which can be used for breast cancer diagnosis, and verified higher tumor accumulation of transported protein in a living body. Overall, we believe that these multifunctional RMNs exhibit great promise for protein delivery, cancer diagnosis and therapy, and multimodal imaging, as well as clinical applications.
Collapse
Affiliation(s)
- Hong Yu Yang
- Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 06351, Republic of Korea
| | - Yi Li
- Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 06351, Republic of Korea
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| |
Collapse
|
40
|
Skoulas D, Christakopoulos P, Stavroulaki D, Santorinaios K, Athanasiou V, Iatrou H. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment. Polymers (Basel) 2017; 9:208. [PMID: 30970886 PMCID: PMC6432035 DOI: 10.3390/polym9060208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP) of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000⁻2017.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Dimitra Stavroulaki
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | | | - Varvara Athanasiou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece.
| |
Collapse
|
41
|
John JV, Uthaman S, Augustine R, Manickavasagam Lekshmi K, Park IK, Kim I. Biomimetic pH/redox dual stimuli-responsive zwitterionic polymer block poly(
L
-histidine) micelles for intracellular delivery of doxorubicin into tumor cells. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28602] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johnson V. John
- BK21 PLUS Center for Advanced Chemical Technology; Department of Polymer Science and Engineering, Pusan National University; Busan 609-735 Republic of Korea
| | - Saji Uthaman
- Department of Biomedical Science; BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School; 160 Baekseo-ro, Gwangju 501-746 Republic of Korea
| | - Rimesh Augustine
- BK21 PLUS Center for Advanced Chemical Technology; Department of Polymer Science and Engineering, Pusan National University; Busan 609-735 Republic of Korea
| | - Kamali Manickavasagam Lekshmi
- Department of Biomedical Science; BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School; 160 Baekseo-ro, Gwangju 501-746 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science; BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School; 160 Baekseo-ro, Gwangju 501-746 Republic of Korea
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology; Department of Polymer Science and Engineering, Pusan National University; Busan 609-735 Republic of Korea
| |
Collapse
|
42
|
Patil SS, Wadgaonkar PP. Temperature and pH dual stimuli responsive PCL-b-PNIPAAm block copolymer assemblies and the cargo release studies. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sachin S. Patil
- Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Pune Maharashtra 411008 India
| | - Prakash P. Wadgaonkar
- Polymer Science and Engineering Division; CSIR-National Chemical Laboratory; Pune Maharashtra 411008 India
| |
Collapse
|
43
|
Wang M, Zhao T, Liu Y, Wang Q, Xing S, Li L, Wang L, Liu L, Gao D. Ursolic acid liposomes with chitosan modification: Promising antitumor drug delivery and efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1231-1240. [PMID: 27987679 DOI: 10.1016/j.msec.2016.11.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/14/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
Abstract
There are tremendous challenges on antitumor and its therapeutic drugs, and preparation of highly efficient nano-vehicles represents one of the novel topics in antitumor pharmaceutical field. Herein, the novel chitosan-coated ursolic acid (UA) liposome (CS-UA-L) was efficiently prepared with highly tumor targeting, drug controlled release and low side-effect. The CS-UA-L was uniformly spherical particles with diameter of ~130nm, and the size was more easily trapped into the tumor tissues. Chitosan modification can make liposomes carrying positive charges, which were inclined to combine with the negative charges on the surface of tumor cells, and then the CS-UA-L could release UA rapidly at pH5.0 comparing with pH7.4. Meanwhile, the CS-UA-L exhibited obvious anti-proliferative effect (76.46%) on HeLa cells and significantly antitumor activity (61.26%) in mice bearing U14 cervical cancer. The tumor tissues of CS-UA-L treated mice had enhanced cell apoptosis, extensive necrosis and low cell proliferation activity. These results demonstrated that the multifunctional CS-UA-L allowed a precision treatment for localized tumor, and reducing the total drug dose and side-effect, which hold a great promise in new safe and effective tumor therapy.
Collapse
Affiliation(s)
- Meili Wang
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Tingting Zhao
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Yanping Liu
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Qianqian Wang
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Shanshan Xing
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Lei Li
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Longgang Wang
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China
| | - Lanxiang Liu
- The First Hospital of Qinhuangdao, No. 258 Cultural Road, Qinhuangdao 066000, China
| | - Dawei Gao
- Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, China.
| |
Collapse
|
44
|
Jiang Y, Wang X, Liu X, Lv W, Zhang H, Zhang M, Li X, Xin H, Xu Q. Enhanced Antiglioma Efficacy of Ultrahigh Loading Capacity Paclitaxel Prodrug Conjugate Self-Assembled Targeted Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:211-217. [PMID: 27976583 DOI: 10.1021/acsami.6b13805] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glioblastoma multiforme (GBM) presents one of the most lethal brain tumor with a dismal prognosis. And nanodrug delivery system (nano-DDS) have raised a lot of concern, while the conventional nanoformulations addressed many limitations, especially the low drug loading capacity and poor stability in vivo. Herein, we proposed PTX prodrug (PTX-SS-C18) conjugate self-assembled nanoparticles (PSNPs) functionalized with Pep-1, glioma homing peptide, to overcome the blood brain tumor barrier (BBTB) via interleukin 13 receptor α2 (IL-13Rα2)-mediated endocytosis for targeting GMB. This nanocarrier was with ultrahigh drug loading capacity (56.03%) and redox-sensitivity to the up-expression of glutathione in glioma tumors. And compared with PEG-PSNPs, Pep-PSNPs could significantly enhance cellular uptake in U87MG cells via IL-13Rα2-mediated endocytosis. Enhanced cytotoxicity of Pep-PSNPs against U87MG cells and BCEC cells pretreated with glutathione monoester (GSH-OEt) confirmed that this nanosystem was sensitive to reduction environment, and there was significant difference between targeting and nontargeting groups in MTT assay. Real-time fluorescence image of intracranialU87MG glioma-bearing mice revealed that Pep-PSNPs could more efficiently accumulate at tumor site and improve the penetration. Furthermore, the ex vivo fluorescence imaging and corresponding semiquantitative results displayed that the glioma fluorescence intensity of Pep-PSNPs group was 1.74-fold higher than that of nontargeting group. Pep-PSNPs exhibited remarkable antiglioblastoma efficacy with an extended median survival time. In conclusion, Pep-PSNPs had a promising perspective as a targeting drug delivery system of PTX for glioma treatment.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Xiuzhen Wang
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Xin Liu
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Wei Lv
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Hongjuan Zhang
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Mingwan Zhang
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Xinrui Li
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Hongliang Xin
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| | - Qunwei Xu
- Department of Pharmaceutics, School of Pharmacy, and §Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, China
| |
Collapse
|
45
|
Jiang Z, Chen J, Ding J, Zhuang X, Chen X. Controlled Syntheses of Functional Polypeptides. ACS SYMPOSIUM SERIES 2017. [DOI: 10.1021/bk-2017-1252.ch008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
46
|
Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: In-vitro and in-vivo studies. Colloids Surf B Biointerfaces 2017; 149:369-378. [DOI: 10.1016/j.colsurfb.2016.10.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
|
47
|
Yang HY, Fu Y, Jang MS, Li Y, Lee JH, Chae H, Lee DS. Multifunctional Polymer Ligand Interface CdZnSeS/ZnS Quantum Dot/Cy3-Labeled Protein Pairs as Sensitive FRET Sensors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35021-35032. [PMID: 27983790 DOI: 10.1021/acsami.6b12877] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High-quality CdZnSeS/ZnS alloyed core/thick-shell quantum dots (QDs) as energy donors were first exploited in Förster resonance energy transfer (FRET) applications. A highly efficient ligand-exchange method was used to prepare low toxicity, high quantum yield, stabile, and biocompatible CdZnSeS/ZnS QDs densely capped with multifunctional polymer ligands containing dihydrolipoic acid (DHLA). The resulting QDs can be applied to construct QDs-based Förster resonance energy transfer (FRET) systems by their high affinity interaction with dye cyanine 3 (Cy3)-labeled human serum albumin (HSA). This QD-based FRET protein complex can serve as a sensitive sensor for probing the interaction of clofazimine with proteins using fluorescence spectroscopic techniques. The ability of FRET imaging both in vitro and in vivo not only reveals that the current FRET system can remain intact for 2 h but also confirms the potential of the FRET system to act as a nanocarrier for intracellular protein delivery or to serve as an imaging probe for cancer diagnosis.
Collapse
Affiliation(s)
| | | | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 135-710, Republic of Korea
| | | | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute , Seoul 135-710, Republic of Korea
| | | | | |
Collapse
|
48
|
Qu X, Yang Z. Benzoic-Imine-Based Physiological-pH-Responsive Materials for Biomedical Applications. Chem Asian J 2016; 11:2633-2641. [PMID: 27410679 DOI: 10.1002/asia.201600452] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaozhong Qu
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Materials Science and Opto-Electronic Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhenzhong Yang
- State Key Laboratory of Polymer Physics and Chemistry; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
49
|
Li Y, Yang HY, Lee DS. Polymer-Based and pH-Sensitive Nanobiosensors for Imaging and Therapy of Acidic Pathological Areas. Pharm Res 2016; 33:2358-72. [DOI: 10.1007/s11095-016-1944-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 12/27/2022]
|
50
|
An SY, Hong SH, Tang C, Oh JK. Rosin-based block copolymer intracellular delivery nanocarriers with reduction-responsive sheddable coronas for cancer therapy. Polym Chem 2016. [DOI: 10.1039/c6py00914j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rosin-based, reduction-responsive block copolymer-based nanocarriers exhibiting excellent colloidal stability enabling the delivery of anticancer drugs to cancerous tissues for the enhanced release of encapsulated drugs, offering great versatility as intracellular drug-delivery nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- So Young An
- Department of Chemistry and Biochemistry and Center for Nanoscience Research (CENR)
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Sung Hwa Hong
- Department of Chemistry and Biochemistry and Center for Nanoscience Research (CENR)
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Chuanbing Tang
- Department of Chemistry & Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry and Center for Nanoscience Research (CENR)
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|