1
|
McCahill AL, Zhang T, Saven JG, Kloxin CJ, Pochan DJ. Peptide Bundlemer Networks or Lattices: Controlling Cross-Linking and Self-Assembly Using Protein-like Display of Chemistry. ACS NANO 2024; 18:25695-25707. [PMID: 39228265 DOI: 10.1021/acsnano.4c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Coiled-coil 'bundlemer' peptides were selectively modified with allyloxycarbonyl (alloc)-protected lysine, a non-natural amino acid containing an alkene on its side chain. The specific display of this alkene from the coiled-coil surface with protein-like specificity enabled this residue to be used as a covalent linkage for creating peptide networks with controllable properties or as a physical linkage for the self-assembly of bundlemers into unexpected, intricate lattices driven by the hydrophobic nature of the side chain. For network formation, peptides were modified with both alloc-protected lysine and cysteine amino acids for solution assembly into solvent-swollen films and subsequent covalent cross-linking via thiol-ene photo click reactions. The degree of network cross-linking, as determined by rheometry, was finely tuned by varying the specific spatial display of reactive groups on the bundlemer building block particles, transitioning between intrabundle and interbundle cross-linking. The designed display of alloc groups from the center of the bundlemer building block also prompted particle self-assembly into an unexpected intricate lattice with a porous morphology. The lattices were studied in a variety of solution conditions using transmission electron microscopy, cryotransmission electron microscopy, and small-angle X-ray scattering. The approximate particle arrangement in the lattice was determined by using coarse-grained modeling and machine learning optimization techniques along with experimental methods. The proposed truss-like face-centered cubic packing of the alloc-functionalized bundlemers agrees well with the experimental results.
Collapse
Affiliation(s)
- Amanda L McCahill
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tianren Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Philadelphia 19104, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Philadelphia 19104, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Mathieu‐Gaedke M, Böker A, Glebe U. How to Characterize the Protein Structure and Polymer Conformation in Protein‐Polymer Conjugates – a Perspective. MACROMOL CHEM PHYS 2023. [DOI: 10.1002/macp.202200353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Maria Mathieu‐Gaedke
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Ulrich Glebe
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
3
|
Guo R, Sinha NJ, Misra R, Tang Y, Langenstein M, Kim K, Fagan JA, Kloxin CJ, Jensen G, Pochan DJ, Saven JG. Computational Design of Homotetrameric Peptide Bundle Variants Spanning a Wide Range of Charge States. Biomacromolecules 2022; 23:1652-1661. [PMID: 35312288 DOI: 10.1021/acs.biomac.1c01539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the ability to design their sequences and structures, peptides can be engineered to realize a wide variety of functionalities and structures. Herein, computational design was used to identify a set of 17 peptides having a wide range of putative charge states but the same tetrameric coiled-coil bundle structure. Calculations were performed to identify suitable locations for ionizable residues (D, E, K, and R) at the bundle's exterior sites, while interior hydrophobic interactions were retained. The designed bundle structures spanned putative charge states of -32 to +32 in units of electron charge. The peptides were experimentally investigated using spectroscopic and scattering techniques. Thermal stabilities of the bundles were investigated using circular dichroism. Molecular dynamics simulations assessed structural fluctuations within the bundles. The cylindrical peptide bundles, 4 nm long by 2 nm in diameter, were covalently linked to form rigid, micron-scale polymers and characterized using transmission electron microscopy. The designed suite of sequences provides a set of readily realized nanometer-scale structures of tunable charge that can also be polymerized to yield rigid-rod polyelectrolytes.
Collapse
Affiliation(s)
- Rui Guo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,NIST Center for Neutron Research (NCNR), National Institute of Standards & Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Rajkumar Misra
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kyunghee Kim
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards & Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Grethe Jensen
- NIST Center for Neutron Research (NCNR), National Institute of Standards & Technology (NIST), Gaithersburg, Maryland 20899, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Stevens CA, Kaur K, Klok HA. Self-assembly of protein-polymer conjugates for drug delivery. Adv Drug Deliv Rev 2021; 174:447-460. [PMID: 33984408 DOI: 10.1016/j.addr.2021.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/07/2023]
Abstract
Protein-polymer conjugates are a class of molecules that combine the stability of polymers with the diversity, specificity, and functionality of biomolecules. These bioconjugates can result in hybrid materials that display properties not found in their individual components and can be particularly relevant for drug delivery applications. Engineering amphiphilicity into these bioconjugate materials can lead to phase separation and the assembly of high-order structures. The assembly, termed self-assembly, of these hierarchical structures entails multiple levels of organization: at each level, new properties emerge, which are, in turn, influenced by lower levels. Here, we provide a critical review of protein-polymer conjugate self-assembly and how these materials can be used for therapeutic applications and drug delivery. In addition, we discuss central bioconjugate design questions and propose future perspectives for the field of protein-polymer conjugate self-assembly.
Collapse
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland.
| | - Kuljeet Kaur
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Yao H, Olsen BD. SANS quantification of bound water in water-soluble polymers across multiple concentration regimes. SOFT MATTER 2021; 17:5303-5318. [PMID: 34013304 DOI: 10.1039/d0sm01962c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Contrast-variation small-angle neutron scattering (CV-SANS) is a widely used technique for quantifying hydration water in soft matter systems, but it is predominantly applied in the dilute regime or for systems with a well-defined structure factor. Here, CV-SANS was used to quantify the number of hydration water molecules associating with three water-soluble polymers with different critical solution temperatures and types of water-solute interactions in dilute, semidilute, and concentrated solution through the exploration of novel methods of data fitting and analysis. Multiple SANS fitting workflows with varying levels of model assumptions were evaluated and compared to give insight into SANS model selection. These fitting pathways ranged from general, model-free algorithms to more standard form and structure factor fitting. In addition, Monte Carlo bootstrapping was evaluated as a method to estimate parameter uncertainty through simulation of technical replicates. The most robust fitting workflow for dilute solutions was found to be form factor fitting without CV-SANS (i.e. polymer in 100% D2O). For semidilute and concentrated solutions, while the model-free approach can be mathematically defined for CV-SANS data, the addition of a structure factor imposes physical constraints on the optimization problem, suggesting that the optimal fitting pathway should include appropriate form and structure factor models. The measured hydration numbers were consistent with the number of tightly bound water molecules associated with each monomer unit, and the concentration dependence of the hydration number was largely governed by the chemistry-specific interactions between water and polymer. Polymers with weaker water-polymer interactions (i.e. those with fewer hydration water molecules) were found to have more bound water at higher concentrations than those with stronger water-polymer interactions due to the increase in the number of forced water-polymer contacts in the concentrated system. This SANS-based method to count hydration water molecules can be applied to polymers in any concentration regime, which will lead to improved understanding of water-polymer interactions and their impact on materials design.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
6
|
|
7
|
Yao H, Sheng K, Sun J, Yan S, Hou Y, Lu H, Olsen BD. Secondary structure drives self-assembly in weakly segregated globular protein–rod block copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01680e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imparting secondary structure to the polymer block can drive self-assembly in globular protein–helix block copolymers, increasing the effective segregation strength between blocks with weak or no repulsion.
Collapse
Affiliation(s)
- Helen Yao
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Kai Sheng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Jialing Sun
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Shupeng Yan
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Yingqin Hou
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Hua Lu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- P. R. China
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
8
|
Shao Q. Effect of conjugated (EK)10 peptide on structural and dynamic properties of ubiquitin protein: a molecular dynamics simulation study. J Mater Chem B 2020; 8:6934-6943. [DOI: 10.1039/d0tb00664e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide conjugation modulates the stability and biological acitivty of proteins via the allosteric effect.
Collapse
Affiliation(s)
- Qing Shao
- Chemical and Materials Engineering Department
- University of Kentucky
- Lexington KY
- USA
| |
Collapse
|
9
|
Huang A, Yao H, Olsen BD. SANS partial structure factor analysis for determining protein-polymer interactions in semidilute solution. SOFT MATTER 2019; 15:7350-7359. [PMID: 31468047 DOI: 10.1039/c9sm00766k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction between proteins and polymers in solution contributes to numerous important technological processes, including protein crystallization, biofouling, and the self-assembly of protein-polymer bioconjugates. To quantify these interactions, three different polymers-PNIPAM, POEGA, and PDMAPS-were each blended with a model protein mCherry and studied using contrast variation small angle neutron scattering (SANS). This technique allows for the decomposition of the SANS scattering intensity into partial structure factors corresponding to interactions between two polymer chains, interactions between two proteins, and interactions between a polymer chain and a protein, even for concentrations above the overlap concentration. Examining correlations between each component offers insight into the interactions within the system. In particular, mCherry-PNIPAM interactions are consistent with a depletion interaction, and mCherry-POEGA interactions suggest a considerable region of polymer enrichment close to the protein surface, indicative of attractive forces between the two. Interactions between mCherry and PDMAPS are more complex, with possible contributions from both depletion forces and electrostatic forces.
Collapse
Affiliation(s)
- Aaron Huang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
10
|
Huang A, Paloni JM, Wang A, Obermeyer AC, Sureka HV, Yao H, Olsen BD. Predicting Protein-Polymer Block Copolymer Self-Assembly from Protein Properties. Biomacromolecules 2019; 20:3713-3723. [PMID: 31502834 PMCID: PMC6794641 DOI: 10.1021/acs.biomac.9b00768] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Protein–polymer
bioconjugate self-assembly has attracted
a great deal of attention as a method to fabricate protein nanomaterials
in solution and the solid state. To identify protein properties that
affect phase behavior in protein–polymer block copolymers,
a library of 15 unique protein-b-poly(N-isopropylacrylamide) (PNIPAM) copolymers comprising 11 different
proteins was compiled and analyzed. Many attributes of phase behavior
are found to be similar among all studied bioconjugates regardless
of protein properties, such as formation of micellar phases at high
temperature and low concentration, lamellar ordering with increasing
temperature, and disordering at high concentration, but several key
protein-dependent trends are also observed. In particular, hexagonal
phases are only observed for proteins within the molar mass range
20–36 kDa, where ordering quality is also significantly enhanced.
While ordering is generally found to improve with increasing molecular
weight outside of this range, most large bioconjugates exhibited weaker
than predicted assembly, which is attributed to chain entanglement
with increasing polymer molecular weight. Additionally, order–disorder
transition boundaries are found to be largely uncorrelated to protein
size and quality of ordering. However, the primary finding is that
bioconjugate ordering can be accurately predicted using only protein
molecular weight and percentage of residues contained within β
sheets. This model provides a basis for designing protein–PNIPAM
bioconjugates that exhibit well-defined self-assembly and a modeling
framework that can generalize to other bioconjugate chemistries.
Collapse
Affiliation(s)
- Aaron Huang
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Justin M Paloni
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Amy Wang
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Allie C Obermeyer
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Hursh V Sureka
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Helen Yao
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Bradley D Olsen
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
11
|
Modulation of protein activity and assembled structure by polymer conjugation: PEGylation vs glycosylation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Fan Y, Migliore N, Raffa P, Bose RK, Picchioni F. Synthesis of Zwitterionic Copolymers via Copper-Mediated Aqueous Living Radical Grafting Polymerization on Starch. Polymers (Basel) 2019; 11:E192. [PMID: 30960176 PMCID: PMC6418991 DOI: 10.3390/polym11020192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 11/19/2022] Open
Abstract
[2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) is a well-studied sulfobetaine-methacrylate as its zwitterionic structure allows the synthesis of polymers with attractive properties like antifouling and anti-polyelectrolyte behavior. In the present work, we report the Cu⁰-mediated living radical polymerization (Cu⁰-mediated LRP) of SBMA in sodium nitrate aqueous solution instead of previously reported solvents like trifluoroethanol and sodium chloride aqueous/alcoholic solution. Based on this, starch-g-polySBMA (St-g-PSBMA) was also synthesized homogeneously by using a water-soluble waxy potato starch-based macroinitiator and CuBr/hexamethylated tris(2-aminoethyl)amine (Me₆TREN) as the catalyst. The structure of the macroinitiator was characterized by ¹H-NMR, 13C-NMR, gHSQC, and FT-IR, while samples of PSBMA and St-g-PSBMA were characterized by ¹H-NMR and FT-IR. Monomer conversion was monitored by ¹H-NMR, on the basis of which the reaction kinetics were determined. Both kinetic study and GPC results indicate reasonable controlled polymerization. Furthermore, a preliminary study of the thermal response behavior was also carried through rheological tests performed on aqueous solutions of the prepared materials. Results show that branched zwitterionic polymers are more thermal-sensitive than linear ones.
Collapse
Affiliation(s)
- Yifei Fan
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Nicola Migliore
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Patrizio Raffa
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Ranjita K Bose
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Francesco Picchioni
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
13
|
Abstract
Bioconjugates made of the model red fluorescent protein mCherry and synthetic polymer blocks show that topology, i.e. the BA, BA2, ABA and ABC chain structure of the block copolymers, where B represents the protein and A and C represent polymers, has a significant effect on ordering transitions and the type and size of nanostructures formed during microphase separation.
Collapse
Affiliation(s)
- Takuya Suguri
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Yokkaichi Research Center
| | - Bradley D. Olsen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
14
|
Barkley DA, Han SU, Koga T, Rudick JG. Peptide-Dendron Hybrids that Adopt Sequence-Encoded β-Sheet Conformations. Polym Chem 2018; 9:4994-5001. [PMID: 30923581 PMCID: PMC6433408 DOI: 10.1039/c8py00882e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Rational design rules for programming hierarchical organization and function through mutations of monomers in sequence-defined polymers can accelerate the development of novel polymeric and supramolecular materials. Our strategy for designing peptide-dendron hybrids that adopt predictable secondary and quaternary structures in bulk is based on patterning the sites at which dendrons are conjugated to short peptides. To validate this approach, we have designed and characterized a series of β-sheet-forming peptide-dendron hybrids. Spectroscopic studies of the hybrids in films reveal that the peptide portion of the hybrids adopts the intended secondary structure.
Collapse
Affiliation(s)
- Deborah A. Barkley
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sang Uk Han
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tadanori Koga
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
15
|
Liu X, Sun J, Gao W. Site-selective protein modification with polymers for advanced biomedical applications. Biomaterials 2018; 178:413-434. [DOI: 10.1016/j.biomaterials.2018.04.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022]
|
16
|
Mills CE, Michaud Z, Olsen BD. Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins. Biomacromolecules 2018; 19:2517-2525. [PMID: 29791150 DOI: 10.1021/acs.biomac.8b00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.
Collapse
Affiliation(s)
- Carolyn E Mills
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Zachary Michaud
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bradley D Olsen
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
17
|
Mukherjee I, Sinha SK, Datta S, De P. Recyclable Thermoresponsive Polymer−β-Glucosidase Conjugate with Intact Hydrolysis Activity. Biomacromolecules 2018; 19:2286-2293. [DOI: 10.1021/acs.biomac.8b00258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Charan H, Glebe U, Anand D, Kinzel J, Zhu L, Bocola M, Garakani TM, Schwaneberg U, Böker A. Nano-thin walled micro-compartments from transmembrane protein-polymer conjugates. SOFT MATTER 2017; 13:2866-2875. [PMID: 28352880 DOI: 10.1039/c6sm02520j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The high interfacial activity of protein-polymer conjugates has inspired their use as stabilizers for Pickering emulsions, resulting in many interesting applications such as synthesis of templated micro-compartments and protocells or vehicles for drug and gene delivery. In this study we report, for the first time, the stabilization of Pickering emulsions with conjugates of a genetically modified transmembrane protein, ferric hydroxamate uptake protein component A (FhuA). The lysine residues of FhuA with open pore (FhuA ΔCVFtev) were modified to attach an initiator and consequently controlled radical polymerization (CRP) carried out via the grafting-from technique. The resulting conjugates of FhuA ΔCVFtev with poly(N-isopropylacrylamide) (PNIPAAm) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA), the so-called building blocks based on transmembrane proteins (BBTP), have been shown to engender larger structures. The properties such as pH-responsivity, temperature-responsivity and interfacial activity of the BBTP were analyzed using UV-Vis spectrophotometry and pendant drop tensiometry. The BBTP were then utilized for the synthesis of highly stable Pickering emulsions, which could remain non-coalesced for well over a month. A new UV-crosslinkable monomer was synthesized and copolymerized with NIPAAm from the protein. The emulsion droplets, upon crosslinking of polymer chains, yielded micro-compartments. Fluorescence microscopy proved that these compartments are of micrometer scale, while cryo-scanning electron microscopy and scanning force microscopy analysis yielded a thickness in the range of 11.1 ± 0.6 to 38.0 ± 18.2 nm for the stabilizing layer of the conjugates. Such micro-compartments would prove to be beneficial in drug delivery applications, owing to the possibility of using the channel of the transmembrane protein as a gate and the smart polymer chains as trigger switches to tune the behavior of the capsules.
Collapse
Affiliation(s)
- Himanshu Charan
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chang D, Huang A, Olsen BD. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Dongsook Chang
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Ave Cambridge MA 02142 USA
| | - Aaron Huang
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Ave Cambridge MA 02142 USA
| | - Bradley D. Olsen
- Department of Chemical Engineering; Massachusetts Institute of Technology; 77 Massachusetts Ave Cambridge MA 02142 USA
| |
Collapse
|