1
|
Saczuk K, Dudek M, Matczyszyn K, Deiana M. Advancements in molecular disassembly of optical probes: a paradigm shift in sensing, bioimaging, and therapeutics. NANOSCALE HORIZONS 2024; 9:1390-1416. [PMID: 38963132 DOI: 10.1039/d4nh00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The majority of self-assembled fluorescent dyes suffer from aggregation-caused quenching (ACQ), which detrimentally affects their diagnostic and therapeutic effectiveness. While aggregation-induced emission (AIE) active dyes offer a promising solution to overcome this limitation, they may face significant challenges as the intracellular environment often prevents aggregation, leading to disassembly and posing challenges for AIE fluorogens. Recent progress in signal amplification through the disassembly of ACQ dyes has opened new avenues for creating ultrasensitive optical sensors and enhancing phototherapeutic outcomes. These advances are well-aligned with cutting-edge technologies such as single-molecule microscopy and targeted molecular therapies. This work explores the concept of disaggregation-induced emission (DIE), showcasing the revolutionary capabilities of DIE-based dyes from their design to their application in sensing, bioimaging, disease monitoring, and treatment in both cellular and animal models. Our objective is to provide an in-depth comparison of aggregation versus disaggregation mechanisms, aiming to stimulate further advancements in the design and utilization of ACQ fluorescent dyes through DIE technology. This initiative is poised to catalyze scientific progress across a broad spectrum of disciplines.
Collapse
Affiliation(s)
- Karolina Saczuk
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
Marinho E, Figueiredo PR, Araújo R, Proença MF. A simple protocol for the synthesis of perylene bisimides from perylene tetracarboxylic dianhydride. RSC Adv 2024; 14:11141-11150. [PMID: 38590355 PMCID: PMC10999908 DOI: 10.1039/d4ra01576b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Perylene bisimides are highly attractive polycyclic aromatic hydrocarbons due to their photostability associated to unique and characteristic photochemical properties. They have been widely used for analytical purposes, despite the hydrophobicity of most of these compounds. The ring substitution pattern plays an important role in fine-tuning the physicochemical properties that govern solubility and aggregation. In this work, a selection of perylene bisimides were prepared from the reaction of perylenetetracarboxylic dianhydride with α-amino acids or primary aliphatic and aromatic amines. These molecules were obtained in good yield by a simple synthetic protocol based on the use of imidazole as a green solvent and avoiding the need for complex purification methods, a major advantage for future applications. Functionalization of the exocyclic substituent can also be performed and was exemplified by the incorporation of the maleimide and anthraquinone moieties.
Collapse
Affiliation(s)
- Elina Marinho
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| | - Pedro R Figueiredo
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| | - Rui Araújo
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| | - M Fernanda Proença
- Department of Chemistry, University of Minho Campus de Gualtar 4710-057 Braga Portugal +351 253604379
| |
Collapse
|
3
|
Gopinath SCB, Ramanathan S, More M, Patil K, Patil SJ, Patil N, Mahajan M, Madhavi V. A Review on Graphene Analytical Sensors for Biomarker-based Detection of Cancer. Curr Med Chem 2024; 31:1464-1484. [PMID: 37702170 DOI: 10.2174/0929867331666230912101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
The engineering of nanoscale materials has broadened the scope of nanotechnology in a restricted functional system. Today, significant priority is given to immediate health diagnosis and monitoring tools for point-of-care testing and patient care. Graphene, as a one-atom carbon compound, has the potential to detect cancer biomarkers and its derivatives. The atom-wide graphene layer specialises in physicochemical characteristics, such as improved electrical and thermal conductivity, optical transparency, and increased chemical and mechanical strength, thus making it the best material for cancer biomarker detection. The outstanding mechanical, electrical, electrochemical, and optical properties of two-dimensional graphene can fulfil the scientific goal of any biosensor development, which is to develop a more compact and portable point-of-care device for quick and early cancer diagnosis. The bio-functionalisation of recognised biomarkers can be improved by oxygenated graphene layers and their composites. The significance of graphene that gleans its missing data for its high expertise to be evaluated, including the variety in surface modification and analytical reports. This review provides critical insights into graphene to inspire research that would address the current and remaining hurdles in cancer diagnosis.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Santheraleka Ramanathan
- Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mahesh More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, India
| | - Ketan Patil
- Department of Pharmaceutics, Ahinsa Institute of Pharmacy, Dondaicha, India
| | | | - Narendra Patil
- Department of Pharmacology, Dr. A.P.J. Abdul Kalam University, Indore, India
| | - Mahendra Mahajan
- Department of Pharmaceutical Chemistry, H.R. Patel Institute of Pharmacy, Shirpur, India
| | - Vemula Madhavi
- BVRIT Hyderabad college of Engineering for Women, Hyderabad, India
| |
Collapse
|
4
|
Yenurkar D, Nayak M, Mukherjee S. Recent advances of nanocrystals in cancer theranostics. NANOSCALE ADVANCES 2023; 5:4018-4040. [PMID: 37560418 PMCID: PMC10408581 DOI: 10.1039/d3na00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Emerging cancer cases across the globe and treating them with conventional therapies with multiple limitations have been challenging for decades. Novel drug delivery systems and alternative theranostics are required for efficient detection and treatment. Nanocrystals (NCs) have been established as a significant cancer diagnosis and therapeutic tool due to their ability to deliver poorly water-soluble drugs with sustained release, low toxicity, and flexibility in the route of administration, long-term sustainable drug release, and noncomplicated excretion. This review summarizes several therapies of NCs, including anticancer, immunotherapy, radiotherapy, biotheranostics, targeted therapy, photothermal, and photodynamic. Further, different imaging and diagnostics using NCs are mentioned, including imaging, diagnosis through magnetic resonance imaging (MRI), computed tomography (CT), biosensing, and luminescence. In addition, the limitations and potential solutions of NCs in the field of cancer theranostics are discussed. Preclinical and clinical data depicting the importance of NCs in the spotlight of cancer, its current status, future aspects, and challenges are covered in detail.
Collapse
Affiliation(s)
- Devyani Yenurkar
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Malay Nayak
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| |
Collapse
|
5
|
Gao X, Li Y, Zhang J, Cheng N, Zhang L, Zhang Z, Yao Z. Rapid detection of hydrogen sulfide in vegetables and monosodium glutamate based on perylene supramolecular aggregates using an indicator displacement assays strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121223. [PMID: 35429859 DOI: 10.1016/j.saa.2022.121223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide (H2S) has been clearly identified as a hazardous chemical pollutant that seriously affects food safety and human health. In order to develop a rapid, accurate and efficient H2S tracking method, this work propose a strategy based on indicator displacement assays (IDA). A water-soluble histidine-modified perylene diimide fluorescent probe was synthesized by a one-step method, and the probe can form supramolecular aggregates in the presence of Cd2+. There will be a fluorescence transformation of probe, caused by the change of the state of aggregation and adjusted by various concentration of S2-, which can achieve the fluorescence detection of S2-. The limit of detection is as low as 0.41 µmol/L. Particularly worth mentioning is that the probe in this work can be recycled for at least 5 times, which is environmentally friendly and economical. Finally, this method was applied in three kinds of vegetables and monosodium glutamate samples.
Collapse
Affiliation(s)
- Xiao Gao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yining Li
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jialin Zhang
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100076, China
| | - Nan Cheng
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Li Zhang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Zijuan Zhang
- Agro-Product Safety Research Center, Chinese Academy of Inspection and Quarantine, Beijing 100076, China.
| | - Zhiyi Yao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Tariq A, Garnier U, Ghasemi R, Pierre Lefevre J, Mongin C, Brosseau A, Frédéric Audibert J, Pansu R, Dauzères A, Leray I. Perylene based PET Fluorescent molecular probes for pH monitoring. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Arshad F, Nabi F, Iqbal S, Khan RH. Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers. Colloids Surf B Biointerfaces 2022; 212:112356. [PMID: 35123193 DOI: 10.1016/j.colsurfb.2022.112356] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Graphene is a one-atom-thick carbon compound, which holds promises for detecting cancer biomarkers along with its derivatives. The atom-wide graphene layer is ideal for cancer biomarker detection due to its unique physicochemical properties like increased electrical and thermal conductivity, optical transparency, and enhanced chemical and mechanical strength. The scientific aim of any biosensor is to create a smaller and portable point of care device for easy and early cancer detection; graphene is able to live up to that. Apart from tumour detection, graphene-based biosensors can diagnose many diseases, their biomarkers, and pathogens. Many existing remarkable pieces of research have proven the candidacy of nanoparticles in most cancer biomarkers detection. This article discusses the effectiveness of graphene-based biosensors in different cancer biomarker detection. This article provides a detailed review of graphene and its derivatives that can be used to detect cancer biomarkers with high specificity, sensitivity, and selectivity. We have highlighted the synthesis procedures of graphene and its products and also discussed their significant properties. Furthermore, we provided a detailed overview of the recent studies on cancer biomarker detection using graphene-based biosensors. The different paths to create and modify graphene surfaces for sensory applications have also been highlighted in each section. Finally, we concluded the review by discussing the existing challenges of these biosensors and also highlighted the steps that can be taken to overcome them.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202001, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Sana Iqbal
- Department of Electrical Engineering, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India.
| |
Collapse
|
8
|
Huang B, Liang B, Zhang R, Xing D. Molecule fluorescent probes for adenosine triphosphate imaging in cancer cells and in vivo. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Singh P, Sharma P, Sharma N, Kaur S. A perylene diimide-based nanoring architecture for exogenous and endogenous ATP detection: biochemical assay for monitoring phosphorylation of glucose. J Mater Chem B 2021; 10:107-119. [PMID: 34889936 DOI: 10.1039/d1tb02235k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Positively charged amphiphiles hold great significance in supramolecular chemistry due to their good solubility, and physiochemical and molecular recognition properties. Herein, we report the synthesis, characterization and molecular recognition properties of the dicationic amphiphile based on perylene diimide-tyrosine alkyl amide amine (PDI 3). PDI 3 showed the formation of a nanoring architecture in the self-assembled aggregated state (90% H2O-DMSO mixture) as observed by SEM and TEM studies. The diameter of the nanoring is around 30-50 nm with a height varying from 1 to 2 nm. The self-assembled aggregates of PDI 3 are very sensitive towards nucleoside triphosphates. Upon addition of ATP, PDI 3 showed a decrease in the absorbance and emission intensity at 535 and 580 nm (due to the monomer state), respectively. The lowest detection limit for ATP is 10.8 nM (UV) and 3.06 nM (FI). Upon interaction of ATP with PDI 3, the nanoring morphology transformed into a spherical structure. These changes could be attributed to the formation of ionic self-assembled aggregates between dicationic PDI 3 and negatively charged ATP via electrostatic and H-bonding interactions. The complexation mechanism of PDI 3 and ATP was confirmed by optical, NMR, Job's plot, DLS, SEM and AFM studies. PDI 3 displays low cytotoxicity toward MG-63 cells and can be successfully used for the detection of exogenous and endogenous ATP. The resulting PDI 3 + ATP complex is successfully used as a 'turn-on' biochemical assay for monitoring phosphorylation of glucose.
Collapse
Affiliation(s)
- Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies II, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Poonam Sharma
- Department of Chemistry, UGC Centre for Advanced Studies II, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Neha Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143 005, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143 005, India
| |
Collapse
|
10
|
Chakravarty S, Roy Chowdhury S, Mukherjee S. AIE materials for cancer cell detection, bioimaging and theranostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:19-44. [PMID: 34782105 DOI: 10.1016/bs.pmbts.2021.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AIE materials exhibit weakly emissive or non-emissive properties in dilute solutions while emit powerful fluorescence in the aggregated/solid state. Recently, AIE based materials have gained immense attention due to their multifunctional role in cancer cell detection, bioimaging and cancer theranostics. In this present book chapter, we will highlight recent advancements of AIE materials for different cancer theranostics applications.
Collapse
Affiliation(s)
- Sudesna Chakravarty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States
| | - Sayan Roy Chowdhury
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
11
|
A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
|
13
|
Sun W, Liu G, Tong M, Wang H, Liu S. A mitochondria-targeting fluorescent sensor for on-off-on response to Cu 2+ and ATP in cells and zebrafish. Analyst 2021; 146:1892-1896. [PMID: 33480364 DOI: 10.1039/d0an02256j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cupric ion (Cu2+) and adenosine triphosphate (ATP) are functionally important in mitochondria and play essential roles in many important biological processes. In this work, a mitochondria-targeting fluorescent molecule Mito-A was used as a probe to detect Cu2+ and ATP. The results showed remarkable fluorescence quenching of Mito-A in the presence of Cu2+, and then the quenched fluorescence solution gradually recovered due to the ATP binding to Cu2+ from the structure of the molecule. Mito-A has high sensitivity to Cu2+ and ATP, with limits of detection (LOD) close to 40 nM and 0.43 μM, respectively. Cell imaging experiments showed that Mito-A has good mitochondria-targeting capabilities, and can be successfully employed for imaging Cu2+ and ATP in living cells and zebrafish.
Collapse
Affiliation(s)
- Wan Sun
- College of Medicine and Nursing, Dezhou University, Dezhou 253023, China.
| | | | | | | | | |
Collapse
|
14
|
Cho J, Keum C, Lee SG, Lee SY. Aggregation-driven fluorescence quenching of imidazole-functionalized perylene diimide for urea sensing. Analyst 2020; 145:7312-7319. [PMID: 32902520 DOI: 10.1039/d0an01252a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Stimuli-responsive self-assembly of functional amphiphilic molecules by specific chemical stimulants is a promising strategy for sensor application. Herein, we demonstrate a fast optical detection of urea in human urine by exploiting bolaform perylene diimide functionalized with imidazoles (PDI-Hm), whose aggregation is induced by urea hydrolysis. The hydroxides produced from the enzymatic urea hydrolysis deprotonate the imidazoles to reduce electrostatic repulsion between PDI-Hm molecules in a HCl-methanol mixture, thereby leading to aggregation and consequent fluorescence quenching. The molecular interaction of PDI-Hm was further scrutinized to understand the aggregation behavior driven by the screening of electrical repulsion. As an optical sensing probe, PDI-Hm displays a prompt response (<1 min) to hydroxide and detection limit of 0.4 mM for urea. PDI-Hm incorporating urease offers considerable selectivity toward urea among various components in human urine. The urea sensing accuracy of this PDI-Hm fluorescence chemosensor is comparable to that of a clinical method, showing 93.4% consistency. Furthermore, the PDI-Hm was fabricated into a gel film allowed for the fast screening of excessive urea in urine.
Collapse
Affiliation(s)
- Junghyun Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | | | | | | |
Collapse
|
15
|
Sharma P, Kaur S, Kaur S, Singh P. Near-IR oxime-based solvatochromic perylene diimide probe as a chemosensor for Pd species and Cu 2+ ions in water and live cells. Photochem Photobiol Sci 2020; 19:504-514. [PMID: 32236245 DOI: 10.1039/c9pp00487d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A near-IR perylene diimide probe (OPR-PDI) containing an oxime-propargyl hybrid moiety at the bay position, was designed and synthesized for detection of Pd species and Cu2+ ions in 90% water, the solid state and MG-63 live cells. The aggregation tendency of OPR-PDI in different polarity solvents transmits solvatochromic and fluorochromic properties to differentiate certain organic solvents. Supramolecular aggregates of OPR-PDI in 90% water act as a dual chemosensor for palladium (Pd) species via de-propargylation or hydrolysis of the Schiff-base and Cu2+ ions via complexation with the O/N binding site with a low limit of detection (LOD) of the order of 7.9 × 10-8 M and 3.4 × 10-7 M respectively. TLC strips coated with OPR-PDI can be applied for sensing of Pd0 and Cu2+ ions in the solid state at levels as low as 34.6 ng cm-2 and 10.5 ng cm-2. OPR-PDI imprinted TLC strips could be used as paper sheets for writing coloured alphabets using Pd0 and Cu2+ ions as ink. Moreover, MTT assay showed that OPR-PDI has very low cytotoxicity (IC50 = 230 μM), good permeability, biocompatibility and can be applied for bio-imaging of Pd species and Cu2+ ions in MG-63 cells. DFT calculations, and cyclic voltammetric (CV) and NMR titration studies have also been discussed.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143 005, India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, 143 005, India.
| |
Collapse
|
16
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
17
|
Liu W, Suo Z, Liu Y, Feng L, Zhang B, Xing F, Zhu S. Water-Soluble Perylene Diimide for Highly Sensitive and Repeatable Metal Ion Detection with Novel Logic Gate Operation. Aust J Chem 2019. [DOI: 10.1071/ch18310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this paper, we report a synthesised water soluble perylene derivative, N,N′-di(2-aspartic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP), for highly sensitive and repeatable detection of copper (Cu2+) and aluminium ions (Al3+) and novel logic gate operation. In the presence of metal ions, a dramatic decrease in PASP optical intensity was induced based on the strong interaction between terminal carboxy groups and the metal ions. Detection limits of 0.22 and 0.24μM were respectively obtained at physiological pH. The signals could be recovered upon the addition of ethylenediaminetetraacetate (EDTA) and P2O74−, which competed for Cu2+ and Al3+ in the PASP-CuII and PASP-AlIII systems and induced their dissociation as secondary sensors for anions. At least four detection cycles were performed with a high recovery efficiency. Based on these phenomena, a novel three-level logic gate (OR-IMP-OR) was performed for smart signal readout with metal ions (Cu2+ and Al3+) and anions (EDTA and P2O74−) as input signals, and the relative change of optical intensity of PASP as output signal. Furthermore, the prepared PASP molecule also responded sensitively to Cu2+ and Al3+ in 10% diluted serum medium.
Collapse
|
18
|
Qu F, Sun C, Lv X, You J. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Mikrochim Acta 2018; 185:359. [PMID: 29978289 DOI: 10.1007/s00604-018-2888-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
This study reports on a method for fluorometric aptasensing of adenosine triphosphate (ATP). It is based on the interaction of dispersed (red) and agglomerated (blue) gold nanoparticles (AuNPs) with a water-dispered terbium(III) based metal-organic framework (Tb-MOF). The dispersed AuNPs quench the emissions of the Tb-MOF, while the aggregated AuNPs have little effect. Under the condition of high salt concentration, the free aptamer against ATP does not stabilize the AuNPs against aggregation. This causes a color change from red to blue and weak quenching of the fluorescence of the Tb-MOF (with peaks at 489 nm and 544 nm after excitation at 290 nm). On addition of ATP, it will be bound by its aptamer to form a complex that is adsorbed on the AuNPs. This protects the AuNPs from salt-induced aggregation and the color (with a peak at 525 nm) remains red. The two fluorescence bands of the Tb-MOF are therefore suppressed by fluorescence resonance energy transfer (FRET) between Tb-MOF and the dispersed AuNPs. Fluorescence drops linearly in the 50 nM to 10 μM ATP concentration range, and the detection limit is 23 nM. ATP analogs such as guanosine triphosphate, uridine triphosphate, cytidine triphosphate, adenosine monophosphate and cyclic adenosine monophosphate have no obvious interference. The method was successfully applied to the determination of ATP in (spiked) human plasma samples and gave satisfactory recoveries. Graphical abstract Schematic of a terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. The dispersed gold nanoparticles (AuNPs) quench the fluorescence of the terbium-based metal-organic framework (Tb-MOF), while the aggregated AuNPs have little effect. In the presence of adenosine triphosphate (ATP), the aptamer-ATP complexes provide greater protection towards AuNPs than aptamer alone under high salt condition. Based on this, a novel Tb-MOF@AuNP platform is established for ATP detection.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China. .,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Chao Sun
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China.,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Xiaoxia Lv
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China.,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China.,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.,Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, China
| |
Collapse
|
19
|
Simultaneous Detection of Adenosine Triphosphate and Glucose Based on the Cu-Fenton Reaction. SENSORS 2018; 18:s18072151. [PMID: 29973531 PMCID: PMC6069456 DOI: 10.3390/s18072151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023]
Abstract
Both adenosine triphosphate (ATP) and glucose are important to human health, and their abnormal levels are closely related to angiocardiopathy and hypoglycaemia. Therefore, the simultaneous determination of ATP and glucose with a single test mode is highly desirable for disease diagnostics and early recognition. Herein, a new fluorescence on/off switch sensing platform is developed by carbon nanodots (CNDs) to detect ATP and glucose simultaneously. The fluorescence of CNDs can be quenched by Cu2+ and hydrogen peroxide (H₂O₂), due to the formation of hydroxyl radicals (·OH) produced in the Cu-Fenton reaction. Based on the high affinity of Cu2+ with ATP, the fluorescence of CNDs will recover effectively after adding ATP. Additionally, glucose can be efficiently catalyzed by glucose oxidase (GOx) to generate H₂O₂, so the platform can also be utilized to analyze glucose. Under optimum conditions, this sensing platform displays excellent sensitivity and the linear ranges are from 0.1 to 7 μM for ATP with a limit of detection (LOD) of 30.2 nM, and from 0.1 to 7 mM for glucose with a LOD 39.8 μM, respectively. Benefiting from the high sensitivity and selectivity, this sensing platform is successfully applied for simultaneous detection of ATP and glucose in human serum samples with satisfactory recoveries.
Collapse
|
20
|
Weißenstein A, Saha-Möller CR, Würthner F. Optical Sensing of Aromatic Amino Acids and Dipeptides by a Crown-Ether-Functionalized Perylene Bisimide Fluorophore. Chemistry 2018; 24:8009-8016. [DOI: 10.1002/chem.201800870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Annike Weißenstein
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
| | - Chantu R. Saha-Möller
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Universität Würzburg; Institut für Organische Chemie; Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC); Universität Würzburg; Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
21
|
Balaji A, Zhang J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol 2017; 8:10. [PMID: 29250208 PMCID: PMC5725514 DOI: 10.1186/s12645-017-0035-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Conventional instruments for cancer diagnosis including magnetic resonance imaging, computed tomography scan, are expensive and require long-waiting time, whilst the outcomes have not approached to the successful early-stage diagnosis yet. Due to the special properties of graphene-based nanocomposites, e.g., good electrical and thermal conductivity, luminescence, and mechanic flexibility, these ultra-thin two-dimensional nanostructures have been extensively used as platforms for detecting biomolecules and cells. Herein, we discuss the development of two types of graphene and graphene oxide-based biosensors: electrochemical and optical, aimed for tumor detection and early diagnosis of cancer. Moreover, we highlight the challenges of their use as biosensors for cancer detection. Efficient surface modification and suitable bio-conjugation of graphene and graphene oxide is discussed, including key role in improvement of the biocompatibility, and improved performance in terms of selectivity and sensitivity towards the early diagnosis of cancer.
Collapse
Affiliation(s)
- Aditya Balaji
- Department of Biomedical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9 Canada
| | - Jin Zhang
- Department of Biomedical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9 Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9 Canada
| |
Collapse
|
22
|
Huth K, Heek T, Achazi K, Kühne C, Urner LH, Pagel K, Dernedde J, Haag R. Noncharged and Charged Monodendronised Perylene Bisimides as Highly Fluorescent Labels and their Bioconjugates. Chemistry 2017; 23:4849-4862. [DOI: 10.1002/chem.201605847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/20/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Katharina Huth
- Institute of Chemistry and Biochemistry; Organic Chemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Timm Heek
- Institute of Chemistry and Biochemistry; Organic Chemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry; Organic Chemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Christian Kühne
- Institute of Laboratory Medicine; Clinical Chemistry and Pathobiochemistry; Charité; Universitätsmedizin Berlin; Augustenburger Platz 1 13353 Berlin Germany
| | - Leonhard H. Urner
- Institute of Chemistry and Biochemistry; Organic Chemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry; Organic Chemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine; Clinical Chemistry and Pathobiochemistry; Charité; Universitätsmedizin Berlin; Augustenburger Platz 1 13353 Berlin Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry; Organic Chemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| |
Collapse
|
23
|
An efficient strategy to assemble water soluble histidine-perylene diimide and graphene oxide for the detection of PPi in physiological conditions and in vitro. Biosens Bioelectron 2017; 89:636-644. [DOI: 10.1016/j.bios.2015.12.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/05/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022]
|
24
|
Grisci G, Mróz W, Catellani M, Kozma E, Galeotti F. Off-On Fluorescence Response of a Cysteine-based Perylene Diimide for Mercury Detection in Water. ChemistrySelect 2016. [DOI: 10.1002/slct.201600614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Giorgio Grisci
- Consiglio Nazionale delle Ricerche; Istituto per lo Studio delle Macromolecole; Via Corti 12 20133 Milano Italy
| | - Wojciech Mróz
- Consiglio Nazionale delle Ricerche; Istituto per lo Studio delle Macromolecole; Via Corti 12 20133 Milano Italy
| | - Marinella Catellani
- Consiglio Nazionale delle Ricerche; Istituto per lo Studio delle Macromolecole; Via Corti 12 20133 Milano Italy
| | - Erika Kozma
- Consiglio Nazionale delle Ricerche; Istituto per lo Studio delle Macromolecole; Via Corti 12 20133 Milano Italy
| | - Francesco Galeotti
- Consiglio Nazionale delle Ricerche; Istituto per lo Studio delle Macromolecole; Via Corti 12 20133 Milano Italy
| |
Collapse
|
25
|
Gao E, Sun N, Zhan Y, Qiu X, Ding Y, Zhang S, Zhu M. Spiral frameworks constructed by 1,2-phenylene-dioxydiacetic acid as highly sensitive and selective luminescent probes to detect PO43− ions in aqueous solutions. RSC Adv 2016. [DOI: 10.1039/c6ra13361d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three novel clubbed photo-luminescent lanthanide 1D coordination polymers, [Ln(L)(NO3)(H2O)2]n (where Ln is La, Ce, and Pr, respectively, and H2L = 1,2-phenylenedioxydiacetic acid), were synthesized under hydrothermal conditions.
Collapse
Affiliation(s)
- Enjun Gao
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province
- Laboratory of Coordination Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Na Sun
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province
- Laboratory of Coordination Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Yang Zhan
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province
- Laboratory of Coordination Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Xue Qiu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province
- Laboratory of Coordination Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Yuqing Ding
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province
- Laboratory of Coordination Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Shaozhong Zhang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province
- Laboratory of Coordination Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province
- Laboratory of Coordination Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| |
Collapse
|
26
|
Li Q, Huang Q, Zhu JJ, Ji WG, Tong QX. Carbon dots–quinoline derivative nanocomposite: facile synthesis and application as a “turn-off” fluorescent chemosensor for detection of Cu2+ ions in tap water. RSC Adv 2016. [DOI: 10.1039/c6ra21034a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this paper, a novel quinoline derivative: 8-(pyridin-2-ylmethoxy)quinoline-2-carboxylic acid (Q) has been successfully synthesized, then it was coupled with carbon dots (CDs) to synthesize a CDs–Q nanocomposite by a simple and green method.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry
- Shantou University
- P. R. China
| | - Qitong Huang
- Department of Chemistry
- Shantou University
- P. R. China
- Department of Food and Biological Engineering
- Zhangzhou Institute of Technology
| | - Jie-Ji Zhu
- Department of Chemistry
- Shantou University
- P. R. China
| | - Wen-Gang Ji
- Department of Chemistry
- Shantou University
- P. R. China
| | | |
Collapse
|
27
|
Patra C, Bhanja AK, Mahapatra A, Mishra S, Saha KD, Sinha C. Coumarinyl thioether Schiff base as a turn-on fluorescent Zn(ii) sensor and the complex as chemosensor for the selective recognition of ATP, along with its application in whole cell imaging. RSC Adv 2016. [DOI: 10.1039/c6ra12369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A Zn2+ sensor, coumarinyl thioether Schiff base shows the LOD 0.068 μM. The fluorogenic complex, [ZnL] recognizes ATP in presence of other anions and the LOD, 6.7 μM, is the lowest in literature. Ligand is used for fluorescence cell imaging process.
Collapse
Affiliation(s)
- Chiranjit Patra
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | | | | | - Snehasis Mishra
- Cancer Biology & Inflammatory Disorder Division
- Indian Institute of Chemical Biology
- Kolkata-700 032
- India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division
- Indian Institute of Chemical Biology
- Kolkata-700 032
- India
| | | |
Collapse
|
28
|
Muthuraj B, Chowdhury SR, Iyer PK. Modulation of Amyloid-β Fibrils into Mature Microrod-Shaped Structure by Histidine Functionalized Water-Soluble Perylene Diimide. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21226-21234. [PMID: 26340532 DOI: 10.1021/acsami.5b07260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is associated with different types of amyloid peptide aggregates including senile plaques, fibrils, protofibrils, and oligomers. Due to these difficulties, a powerful strategy is needed for the disaggregation of amyloid aggregates by modulating their self-aggregation behavior. Herein, we report a unique approach toward transforming the aggregated amyloidogenic peptides using an amino acid functionalized perylene diimide as a molecular modulator, which is a different nondestructive approach as compared to inhibiting the aggregation of peptides. The histidine functionalized perylenediimide (PDI-HIS) molecule could coassemble with amyloid β (Aβ) peptides via hydrogen bonding that leads to the enhancement in the π-π interactions between Aβ and PDI-HIS moieties. The Thioflavin T (ThT) assay and various spectroscopic and microscopic techniques establish that the PDI-HIS molecules accelerate the Aβ1-40 and the amyloid aggregates in CSF into micro size coassembled structures. These results give rise to a new and unique complementary approach for modulating the biological effects of the aggregates in amyloidogenic peptides.
Collapse
Affiliation(s)
- Balakrishnan Muthuraj
- Department of Chemistry, Indian Institute of Technology , Guwahati 781039, Assam, India
| | - Sayan Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology , Guwahati 781039, Assam, India
| | - Parameswar K Iyer
- Department of Chemistry, Indian Institute of Technology , Guwahati 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology , Guwahati 781039, Assam, India
| |
Collapse
|
29
|
Venkatesan P, Wu SP. A turn-on fluorescent pyrene-based chemosensor for Cu(ii) with live cell application. RSC Adv 2015. [DOI: 10.1039/c5ra05440k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pyrene-based fluorescent sensor (PHP) was synthesized for Cu(ii) detection.
Collapse
Affiliation(s)
| | - Shu-Pao Wu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 300
- Taiwan
| |
Collapse
|